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Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a

significant risk factor for chronic kidney disease. There is a lack of an accurate

and comprehensive technique for detecting MASLD-related renal injury. This

study aims to evaluate the efficacy of arterial spin labeling (ASL), blood oxygen

level-dependent (BOLD) imaging, and proton density fat fraction (PDFF) for

assessing renal injury in an animal model of MASLD.

Methods: An animal model of MASLD was established using a high-fat diet.

Forty-nine 6-week-old male Sprague-Dawley rats were divided into the

pathology (14, 16, 18, 20, 22, and 24 weeks, n = 7 per subgroup) and

continuous-scanning (n = 7) groups. Renal alterations at different time points

were quantified through the application of ASL-renal blood flow (RBF), BOLD-

T2*, and Fat Fraction (FF), alongside pathological indices and blood

biochemical markers.

Results: RBF did not change significantly from 14–24 weeks, consistent with the

peritubular capillary density. Compared with those at week 14, renal T2*

significantly decreased at week 20, FF increased at week 20, and serum

creatine levels increased at week 24. Renal T2* and FF were significantly

correlated with renal H&E scores and HIF-1a expression (|r| = 0.3552–0.7745).

Kidney BOLD-T2*, liver and kidney FF enabled detecting renal injury in an animal

model of MASLD (area under the curve = 0.76–0.86).
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Conclusion: During fatty liver disease progression, renal blood oxygen levels

decreased, fat deposition increased, and blood flow remained unchanged. BOLD

and PDFF allowed accurately quantifying these changes to facilitate early

detection of kidney injury.
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1 Introduction

Metabolic Dysfunction-Associated Steatotic Liver Disease

(MASLD) has emerged as a major global health concern, driven

by its rising prevalence and the severe consequences associated with

its progression. MASLD exhibits a notably high prevalence,

especially among middle-aged individuals who are overweight yet

have normal liver enzyme levels (1). Furthermore, MASLD is linked

to an elevated risk of cardiovascular diseases and metabolic

disorders, as well as a growing risk of kidney disease (2, 3).

MASLD has been identified as a significant risk factor for chronic

kidney disease (CKD) (4). Abnormalities in cholesterol and fatty

acid metabolism in individuals with fatty liver may contribute to the

onset and progression of CKD.

Early detection of kidney injury is crucial for improving

treatment outcomes, reducing complications, enhancing

prognoses, and lowering healthcare burden (5). Kidney injury is

primarily diagnosed based on serum creatinine (Scr) levels;

however, Scr is not sensitive enough to detect early kidney injury

(6). Novel blood and urine biomarkers lack standardized diagnostic

criteria and sufficient clinical validation, limiting their application

in clinical practice (7). Thus, new non-invasive diagnostic methods

are urgently needed.

The potential pathophysiological mechanisms of fatty liver-

associated renal injury include cellular hypoxia, lipid deposition,

and inflammatory responses (8, 9). Previous studies have indicated

that the primary factor contributing to renal injury is alterations in

renal hemodynamics leading to changes in oxygenation status (10).

However, whether this theory applies to kidney injury associated

with fatty liver disease remains unclear. Additionally, recently

developed lipid-targeted therapeutics are undergoing clinical trials

for CKD (11), highlighting the critical importance of non-invasive

methods for detecting renal lipid content. Blood oxygen level-

dependent (BOLD) response is highly sensitive to tissue hypoxia

and enables effectively assessing tissue oxygenation status (12).

Arterial spin labeling (ASL) is a non-invasive and reliable

technique for evaluating organ blood perfusion (13). Proton

density fat fraction (PDFF) allows assessing renal lipid deposition

and is correlated with histological fat quantification in renal tissue

(14). Those techniques can be used to assess the progression of fatty

liver-related renal injury. Therefore, we used ASL, BOLD, and
02
PDFF imaging to assess the changes in renal blood flow (RBF),

renal oxygenation, and lipid content in a rodent model of MASLD.
2 Methods

2.1 Intervention

Adult Sprague-Dawley rats weighing 160–200 g (Beijing HFK

Bioscience Co. Ltd., Beijing, China) were used. All rats were housed

in the Key Laboratory of Organ Transplantation, Tianjin, China.

The rats had unrestricted access to food and water and were

maintained on a 12-hour/12-hour light/dark cycle. All rats were

fed a high-fat diet (D12451: 45 kcal% fat, 20 kcal% protein, 35 kcal%

carbohydrate) (Xiao Shu You Tai Biotechnology Co., Ltd, Beijing,

China). Forty-nine rats were divided into the continuous-scanning

(n = 7) or pathology (n = 42) groups. In the continuous-scanning

group, liver PDFF and kidney BOLD, PDFF, and ASL scans were

performed at 14, 16, 18, 20, 22, and 24 weeks. The pathology group

was further divided into six subgroups (n = 7 per subgroup) and fed

a high-fat diet for 14, 16, 18, 20, 22, and 24 weeks. At each time

point, the corresponding rats underwent liver PDFF and kidney

BOLD, PDFF, and ASL examinations (Figure 1a). The body weights

of all rats in both groups were monitored after the scans. In the

pathology group, rats were euthanized after the scans at each

time point, and venous blood was collected for biochemical

analyses. Liver and kidney tissue samples were obtained for

histopathological analyses.
2.2 Magnetic resonance imaging
assessment

MRI scans were performed on a 3TMRI system (MAGNETOM

Prisma, Siemens Healthineers, Erlangen, Germany) using a

dedicated small animal coil (16 channels, Chenguang Medical

Technology Co., Ltd., Shanghai, China). Rats were fasted for 8

hours prior to the MRI scan. During the scan, anesthesia was

maintained using a small animal anesthesia machine (Yuyan

Scientific Instrument Co., Ltd., Shanghai, China) with isoflurane

(2%) at a flow rate of 0.6 L/min. The rats were scanned in the supine
frontiersin.or
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position to minimize respiratory artifacts. T2-weighted images were

acquired using a turbo spin-echo sequence to observe the basic

anatomical structure of the kidneys. BOLD images were acquired in

the axial plane using a multi-echo gradient-echo sequence. The

Dixon technique was used to obtain transverse liver and kidney

images to calculate FF values. A research three-dimensional turbo-

gradient spin-echo pulsed ASL sequence was performed to obtain

RBF. Seven inversion times (300, 500, 700, 900, 1100, 1300, and

1500 ms) and a bolus length of 700 ms were used. Table 1 presents

the specific parameters of these sequences.
2.3 Laboratory assessment

The rats were humanely euthanized at the respective time

points, and 4 mL of venous blood was collected from the inferior

vena cava. The blood samples were then centrifuged at 3500 rpm for

15 minutes at 4°C. The supernatant was collected and analyzed

using the URIT-8210 automatic biochemical analyzer (URIT

Medical Electronic Co. Ltd., Guangxi, Guilin, China).
Frontiers in Endocrinology 03
All rats remained fasted and anesthetized after the MR scans.

Blood glucose levels were measured using the Yasee GLM-77

glucometer with venous blood collected from the tail vein. In the

pathology group, blood samples were collected from the inferior

vena cava. The centrifuged serum samples were analyzed for alanine

aminotransferase (ALT), aspartate aminotransferase (AST),

triglycerides (TG), cholesterol (CHOL), high-density lipoprotein,

Scr, and blood urea nitrogen (BUN) using corresponding reagent

kits (Jisibiology, China).

All experiments were reviewed and approved by the animal

care committee of the research institution. The study was

approved by the ethics committee of Nankai University (2022-

SYDWLL-000236).
2.4 Image analysis

Renal T2* and RBF maps were automatically generated inline

after data acquisition. Hepatic and renal PDFF maps were

calculated from Dixon images. Regions of interest (ROIs) were
FIGURE 1

Experimental workflow (a). Gross specimens of a rat liver after 14 weeks of consuming a high-fat diet (b). Gross specimens of rat kidneys and
schematic diagram of anatomical regions (c): 1 = cortex; 2 = outer stripe of the outer medulla; 3 = inner stripe of the outer medulla; 4 = inner
medulla. H&E-stained pathological sections of the kidney and corresponding schematic diagram of anatomical regions in rats on a high-fat diet (d).
Schematic diagram of ROI delineation in the T2-weighted axial fat suppression sequence of the kidney (e).
TABLE 1 MRI sequence parameters.

Sequences TR (ms) TE (ms) FOV (mm2) Slice thickness (mm) Matrix Acquisition time (min:s)

BOLD 255 3.22, 5.83, 8.42, 11.01, 13.63, 16.22 85×62 3 192×154 2:57

Dixon 3.93 1.3, 2.53 147×160 2 128×105 0:20

ASL 6000 49.86 153×153 3 64×64 7:05
TR, repetition time; TE, echo time; FOV, field of view.
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delineated on the MRI workstation (Siemens Healthineers,

Erlangen, Germany) using post-processing tools (syngo.via,

Siemens Healthcare, Erlangen, Germany) to compute T2*, FF,

and RBF values. On liver PDFF images, ROIs were manually

delineated, with each ROI area maintained at 5 mm2. T2* images

derived from the BOLD sequence were referenced against T2-

weighted images, and ROIs were delineated on the cortex (CO),

outer stripe of the outer medulla (OSOM), and inner stripe of the

outer medulla (ISOM) to obtain T2* values. Each ROI area was

maintained at 3 mm2. On renal RBF images, ROIs were manually

delineated to calculate corresponding values with each ROI area

maintained at 3 mm2. ROIs were selected to avoid the renal artery

and cover the largest cross-section of the renal anatomy. Each area

was measured three times, and the average value was recorded. Two

radiologists (with 5 and 10 years of experience in abdominal MRI)

evaluated the MRI data following a double-blind protocol.
2.5 Histopathological and
immunohistochemical assessments

After the MRI scans were completed, the rats in the pathology

group were euthanized. A portion of the left liver lobe was fixed in

10% neutral buffered formalin (Guangzhou Vigus Biotechnology

Co., Ltd., Guangzhou, China). The right kidney was excised and

bisected longitudinally, then fixed in 10% neutral buffered formalin.

After fixation, the liver and kidney tissues were routinely processed,

embedded in paraffin, sectioned into approximately 2-mm-

thick slices, and stained with hematoxylin and eosin (H&E

Biossci BPO92). Liver tissues were also stained using Masson’s

trichrome stain (Biossci BPO28). Kidney tissues underwent

immunohistochemical staining for hypoxia-inducible factor-

1a(HIF-1a, PTG 20960-1-AP) and CD34 (abcam, ab81289).

H&E-stained sections were evaluated under a microscope,

focusing on three fields of view (FOVs) in the CO, OSOM, and

ISOM. The sections were scored based on the percentage of damage,

with specific criteria, including tubular dilation, increased luminal

mucus, tubular cell swelling, vacuolization, protein casts, interstitial

vascular dilation and congestion, and tubular necrosis (0: normal; 1:

≤5%; 2: 5%–25%; 3: 25%–50%; 4: 50%–75%; 5: 75%–100%). The

HIF-1a positive-expression percentage was assessed, and the CD34

positive-expression percentage was used to evaluate peritubular

capillary (PTC) density. These assessments were performed using

ImageJ open-source software for semi-quantitative analysis. Five

random areas were selected from each section for statistical

analysis, with three FOVs per area, and the average values were

calculated. Two readers, with 8 and 5 years of clinical pathology

experience, evaluated the sections independently, blinded to the

experimental conditions.
2.6 Statistical analysis

GraphPad Prism (version 9.5.1; GraphPad Software, LLC) and

HIPLOT (version Pro 2.0; https://hiplot.com.cn/) were used for
Frontiers in Endocrinology 04
statistical analysis. All measured data are presented as means ±

standard deviation. Differences in RBF, T2* and FF among time

points in the continuous-scanning group were assessed using one-

way repeated-measures (ANOVA) for normally distributed data or

the Kruskal-Wallis test for non-normally distributed data.

Histological differences among time points in the pathology

group were evaluated using one-way ANOVA for normally

distributed data or the Kruskal-Wallis test for non-normally

distributed data. Correlations between MRI parameters,

histopathological indexes and biochemical markers were assessed

using Pearson’s correlation for normally distributed data or

Spearman’s correlation for non-normally distributed data. Using

an H&E score of ≥1 as the threshold, samples were categorized as

injured kidneys or normal kidneys. The diagnostic performances of

kidney T2*, liver and kidney FF, and Scr for renal injury were

evaluated using receiver operating characteristic (ROC) curve

analysis. P < 0.05 was considered statistically significant.
3 Results

3.1 General observation of the model

Figure 1b shows a gross fatty liver specimen, characterized by

diffuse enlargement, a gray-yellow and rough surface, thick and

blunt edges, and depressions upon pressure. Figure 1c shows the

gross specimen of a kidney from a rat with fatty liver. Figure 1d

shows H&E-stained kidney sections with the CO, OSOM and

ISOM. Figure 1e is a T2-weighted fat suppression image with its

corresponding ROI diagram, with anatomical bands corresponding

to the pathological sections of the kidney. Body weights did not

significantly differ between the continuous-scanning and

pathological groups (P = 0.4010). The body weights of the rats

significantly increased from 14 to 24 weeks (Figure 2a).
3.2 MRI measurements

3.2.1 Liver and renal FF
The hepatic FF increased progressively, whereas the renal FF

initially increased, then decreased. Liver and renal FF values did not

significantly differ between the two groups (all P > 0.05). The

hepatic FF increased significantly starting at 20 weeks compared

with that at 14 weeks, then peaked at 24 weeks (all P < 0.05). Renal

FF exhibited the most significant increase at 20 weeks (P < 0.05),

followed by a gradual decrease (Figures 2b, e, Table 2).

3.2.2 Renal BOLD-T2*
Renal T2* values initially decreased, then recovered slightly. T2*

values did not significantly differ among renal anatomical zones

between the two groups (all P > 0.05). Compared with baseline,

renal cortical T2* showed the most significant decreases at 18 and

20 weeks, reaching its lowest point at 20 weeks (P < 0.05). The T2*

value in the renal OSOM dropped to its lowest value at 20 weeks,

then gradually recovered (P < 0.05; Figures 2c, d, Table 2).
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TABLE 2 MRI parameters for the continuous-scanning and pathological groups at different time points.

Parameters Groups Renal zones 14 Weeks 16 Weeks 18 Weeks 20 Weeks 22 Weeks 24 Weeks

Liver FF (%) CG 38.19 ± 5.01 40.29 ± 4.96 41.43 ± 7.66 43.57 ± 2.57* 43.43 ± 1.72* 44.43 ± 1.51**

PG 41.34 ± 2.24 39.00 ± 4.00 43.86 ± 6.57 48.71 ± 3.86** 45.57 ± 6.92 44.71 ± 2.75

Kidney T2* (msec) CG CO 48.86 ± 4.74 47.57 ± 3.10 43.86 ± 3.24* 40.29 ± 4.23*** 43.57 ± 5.32 43.71 ± 5.02

OSOM 36.00 ± 2.31 35.00 ± 2.83 34.29 ± 1.50 31.00 ± 1.63* 32.00 ± 2.38 34.00 ± 2.24

ISOM 43.29 ± 5.59 41.43 ± 4.83 39.43 ± 3.31 37.57 ± 4.28 39.29 ± 3.99 38.86 ± 3.24

PG CO 50.09 ± 4.18 51.16 ± 2.99 44.82 ± 4.42** 40.88 ± 2.41*** 48.86 ± 1.57 43.86 ± 4.10**

OSOM 35.82 ± 2.19 35.72 ± 1.61 34.16 ± 2.08 31.33 ± 3.05** 36.57 ± 1.81 34.29 ± 2.69

ISOM 41.54 ± 3.57 37.29 ± 4.61 35.71 ± 4.89* 33.71 ± 3.82* 44.00 ± 2.58 41.29 ± 5.23

Kidney FF (%) CG 3.93 ± 0.97 5.09 ± 2.45 6.37 ± 1.83 7.02 ± 1.48* 5.76 ± 0.94 5.28 ± 1.66

PG 4.08 ± 1.27 3.47 ± 1.14 5.76 ± 1.22* 6.45 ± 1.39** 5.34 ± 1.00 5.90 ± 1.84

Kidney RBF (mL/
100g/minute)

CG 773.14 ± 9.16 769.71 ± 8.14 773.29 ± 6.40 770.86 ± 8.73 773.86 ± 7.31 777.57 ± 2.88

PG 775.29 ± 6.32 775.00 ± 7.05 775.86 ± 4.41 776.00 ± 5.26 776.86 ± 4.34 773.86 ± 8.15
F
rontiers in Endocrinology
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FF, fat fraction; RBF, renal blood flow; CG, continuous-scanning group; PG, pathological group; CO, cortex; OSOM, outer stripe of the outer medulla; ISOM, inner stripe of the outer medulla.
*P < 0.05; **P < 0.01; ***P < 0.001 vs. baseline (14 w).
FIGURE 2

Changes in various parameters in rats after 14 weeks of consuming a high-fat diet. (a) Body weight; (b) Liver FF changes over time; (c, d) BOLD-T2*
changes in renal cortex and outer stripe of the outer medulla over time; (e, f) Renal FF and RBF changes over time; (g–j) Immunohistochemical
staining indices (HIF-1a, PTC density) in the renal cortex, outer stripe of the outer medulla, and inner stripe of the outer medulla over time; (k, l)
Biochemical indices (AST, Scr) changes over time. *P < 0.05; **P < 0.01, compared with baseline (14 weeks).
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3.2.3 Renal ASL
Renal cortical ASL did not significantly differ between the two

groups (all P > 0.05). The renal cortical RBF did not significantly

differ at any time points (Table 2, Figure 2f). Figure 3 illustrates the

trend in pseudo-color changes for various MRI parameters.
3.3 Histopathological indices

Liver H&E staining showed numerous lipid vacuoles in the

hepatocytic cytoplasm, with nuclei pushed to one side and varying

degrees of inflammatory cell infiltration in the portal area. The

number of large vacuoles increased over time. Masson staining of

the liver showed no significant fibrosis around hepatocytes or in the

portal area throughout the study period.

H&E-stained kidney sections showed no significant damage at

14 weeks (baseline group). From 16–20 weeks, renal tubular cells

gradually became vacuolated, the tubular lumen slowly expanded,

and mucus increased within the lumen, with the most significant

damage at 20 weeks. After 20 weeks, damaged renal tubular cells

began to partially recover.

HIF-1a was positively expressed in all renal anatomical regions

at different time points, exhibiting an overall trend of an initial
Frontiers in Endocrinology 06
increase followed by a decrease. Compared with that at baseline,

HIF-1a expression in the CO and OSOM was most significantly

elevated at 20 weeks (all P < 0.05), and HIF-1a expression in the

ISOM was most significantly elevated at 18 and 20 weeks (P < 0.05).

PTC density did not significantly differ at any time points (P >

0.05). Figure 4 illustrates the pathological indicators. Figures 2g–j

and Table 3 display the values and trends in parameters.
3.4 Laboratory tests

Fasting blood glucose levels exhibited an overall increasing

trend. Compared with those at baseline (14 weeks), fasting blood

glucose levels increased significantly at 18 and 20 weeks (P < 0.05),

with the most significant increase at 24 weeks (P < 0.001). ALT,

AST, and CHOL levels were initially elevated, then subsequently

declined. Compared with those at baseline, ALT and AST levels

increased significantly at 18 and 20 weeks (all P < 0.05). CHOL

levels increased significantly at 18 weeks (P < 0.05). TG levels

initially increased, then decreased, then increased again, then finally

decreased. TG levels increased significantly at 16 and 22 weeks (P <

0.05). Scr levels showed no significant changes from 14–22 weeks,

but significantly decreased at 24 weeks compared with baseline (P <
FIGURE 3

Pseudo-color images of hepatic FF and renal BOLD-T2*, FF, and ASL-RBF changes from 14–24 weeks of consuming a high-fat diet. The liver FF
images demonstrate a gradual increase in FF values from 14–24 weeks. The BOLD images indicate a decline in T2* values starting at 18 weeks, with
the most significant decrease at 20 weeks, followed by a slight recovery from 20–24 weeks. The kidney FF images show the most pronounced
increase in FF values at 20 weeks, followed by a decrease from 20–24 weeks. The ASL images reveal no significant changes in RBF values from
14–24 weeks.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1547016
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2025.1547016
0.05). BUN levels showed no significant changes from 14–24 weeks

(P > 0.05). Figures 2k, i display the trends in AST and Scr,

respectively. Supplementary Table 1 provides the specific values

for each parameter.
3.5 Correlations among MRI parameters,
histopathology, and biochemical indicators

Renal T2* values in the CO and OSOM were negatively correlated

with renal H&E scores and HIF-1a expression (CO: r = −0.6342 to

−0.5461; OSOM: r = −0.3846 to −0.3552). T2* values in the ISOMwere

negatively correlated with ALT (r = −0.3255). Renal PDFF was

positively correlated with H&E scores and HIF-1a expression across
Frontiers in Endocrinology 07
all anatomical regions (CO: r = 0.3916–0.5435; OSOM: r =0.5455–

0.7745; ISOM: r =0.3925–0.4623). Renal T2* values in the CO were

negatively correlated with liver PDFF (r = −0.3891). Blood glucose

levels were positively correlated with renal H&E scores across all

anatomical regions (r =0.3746–0.4111). Liver PDFF was positively

correlated with CHOL (r = 0.3124). Figures 5a–i and Supplementary

Table 2 present the results and trends in these correlations.
3.6 ROC curve

ROC curve analysis demonstrated that renal BOLD-T2*, renal FF

and liver FF detected renal injury with AUCs of 0.857, 0.764 and 0.761,

respectively, whereas Scr could not be used to diagnose renal injury in
FIGURE 4

Liver H&E staining (×200), liver Masson trichrome staining (×40), kidney H&E staining (×200), HIF-1a staining (×200), and CD34 staining (×200). Liver
H&E staining shows an increasing degree of hepatocellular steatosis and an increase in large fat droplets after 14 weeks of consuming a high-fat
diet. Masson staining shows no significant fibrosis around hepatocytes throughout the process. Renal H&E staining shows no obvious damage at 14
weeks, slight vacuolation of tubular cells at 16 weeks, and gradually pronounced vacuolation at 18 weeks, with the most severe damage at 20 weeks,
and partial recovery after tubular cell damage from 22–24 weeks. Renal HIF-1a staining indicates varying degrees of hypoxia at different timepoints,
with the most severe hypoxia at 20 weeks, which gradually decreased over time. CD34 staining shows no significant change in the peritubular
capillary density of the kidneys.
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this model (P > 0.05). Renal cortical T2* values showed the highest

diagnostic efficacy, with 70.4% sensitivity and 86.7% specificity when

<47.5ms was used as the cutoff value (Figure 6, Supplementary Table 3).
4 Discussion

We found that from weeks 14 to 24 of feeding rats a high-fat

diet, RBF remained unchanged, blood oxygen levels decreased, and
Frontiers in Endocrinology 08
the fat content increased. The alterations in BOLD-T2* and FF

corresponded with histopathological changes and can be used to

detect renal injury.

Liver H&E staining revealed that hepatic steatosis gradually

increased over time throughout the modeling process, indicating a

progressive rise in liver fat content. The liver FF also progressively

increased, with themost pronounced increase occurring between 16 and

22 weeks, reflecting the continuous accumulation of TGs within the

hepatic tissue.Masson staining of the liver showed no significant fibrosis
TABLE 3 Pathological and immunohistochemical scores at different time points.

Pathological
Indicators

Renal zones 14 Weeks 16 Weeks 18 Weeks 20 Weeks 22 Weeks 24 Weeks

H&E score CO 0 ± 0 0.29 ± 0.49 0.57 ± 0.54 2.29 ± 0.49*** 1.86 ± 0.38*** 1.71 ± 0.49**

OSOM 0 ± 0 0.29 ± 0.49 0.57 ± 0.54 1.86 ± 0.38*** 1.29 ± 0.49** 1.71 ± 0.49***

ISOM 0 ± 0 0 ± 0 0.14 ± 0.38 1.14 ± 0.38*** 1.00 ± 0.58** 1.14 ± 0.38***

HIF-1a CO 5.62 ± 1.15 7.22 ± 1.31 8.76 ± 0.97** 11.75 ± 1.88**** 8.30 ± 1.55* 7.11 ± 1.81

OSOM 4.35 ± 1.26 4.52 ± 0.94 5.33 ± 0.77 6.92 ± 0.81** 6.02 ± 0.75 5.78 ± 1.03

ISOM 2.97 ± 0.74 3.15 ± 0.77 3.31 ± 0.58 4.64 ± 0.69** 3.56 ± 0.45 3.79 ± 0.68*

PTC 5.07 ± 0.78 5.39 ± 0.57 5.47 ± 0.40 5.48 ± 0.37 5.12 ± 0.35 5.37 ± 0.73
H&E, hematoxylin-eosin; HIF-1a, hypoxia-inducible factor-1a; PTC, peritubular capillary; CO, cortex; OSOM, outer stripe of the outer medulla; ISOM, inner stripe of the outer
medulla.*P < 0.05; **P < 0.01; ***P < 0.001 vs. baseline (14 w).
FIGURE 5

Correlation plots (a–h) depict the relationships among key biomarkers. The correlation matrix plot (i) illustrates the correlations between MRI
parameters (T2*, FF), histopathological markers (H&E, HIF-1a), and one biochemical marker (ALT).
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around hepatocytes or in the portal areas. These findings confirm that

the fatty liver model was successfully established and remained at the

steatosis stage throughout the experiment, even at week 24, without

progressing to fibrosis. We found that despite significant hepatic

steatosis at week 14 as indicated on the H&E-stained liver sections,

the renal H&E staining showed no noticeable damage. Therefore, we

designated week 14 of the high-fat diet as the baseline timepoint for

studying changes in the kidneys of rats with fatty liver.

Scr and BUN levels showed no significant increase during the

modeling process, which is consistent with previous research

findings (15). This might be because abnormalities in Scr levels

typically become evident only when over half of the nephron units

are damaged (16). At week 20, kidney FF and T2* values differed

from those at baseline. Therefore, FF and T2* were more sensitive

indicators of damage than were Scr and BUN. ASL measurements

did not significantly differ between groups, suggesting that RBF did

not change significantly throughout the study period. This was

further supported by the lack of differences in PTC among the

groups. The decreased T2* and increased HIF-1a indicate renal

hypoxia. Because the RBF did not change significantly, this hypoxia

was more likely due to increased oxygen consumption, consistent

with findings in a rabbit model of diabetic kidney disease (DKD)

(17), rather than a reduced oxygen supply. The increased

compensatory oxygen demand observed despite stable RBF may

be attributed to lipotoxicity-induced mitochondrial damage, which

disrupts cellular energy metabolism. This damage disrupts the

electron transport chain (ETC), leading to an overproduction of

mitochondrial reactive oxygen species (mtROS) and a reduction in

ATP synthesis (18, 19). Consequently, the increased energy demand

further elevates the need for oxygen within the kidney. Renal H&E
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staining showed the most significant injury at 20 weeks, when HIF-

1a staining was the most prominently positive. Subsequently,

varying degrees of recovery occurred between 20 and 24 weeks,

which may suggest that MASLD-related renal injury is a reversible

process. H&E staining of the kidneys revealed tubular vacuolation

and positive HIF-1a staining primarily in the CO and OSOM.

These areas of damage correspond to the predominant distribution

sites of glomeruli and proximal tubules. This may be related to the

more pronounced impact of lipid deposition on the glomeruli and

proximal tubules than on other renal compartments (11).

The inverse relationship between liver FF and renal T2*

suggests systemic metabolic dysregulation, which may link

hepatic steatosis to renal injury. Hepatic steatosis can trigger

systemic inflammation, contributing to liver and kidney

dysfunction in conditions like MASLD (20). Additionally,

imbalances in lipid metabolism and oxidative stress exacerbate

damage in both organs, with disrupted regulatory pathways

promoting steatosis in the liver and oxidative stress in the kidneys

(21–23). Renal T2*, H&E staining scores, and HIF-1a levels were

strongly correlated which is characterized by increased oxidative

stress and mitochondrial dysfunction leading to hypoxia.

Yamamoto et al. (19) found that a high-fat diet led to

accumulation of phospholipids within enlarged lysosomes in

proximal tubule cells, accompanied by impaired autophagic flux.

The relationship between mitochondrial oxidative stress, reactive

oxygen species generation, and mitochondrial engulfment is

intricately intertwined and involves various pathological

conditions of acute kidney injury (18).

FF enabled quantitatively measuring the fat content in the renal

parenchyma and was positively correlated with H&E scores and

HIF-1a. We hypothesize that excessive lipid accumulation within

renal cells may induce endoplasmic reticular stress and reactive

oxygen species production, leading to mitochondrial dysfunction

and impairing the cell’s ability to use oxygen. Liver FF values were

positively correlated with serum CHOL levels, whereas renal FF was

poorly correlated with lipid markers. This is consistent with

previous research indicating that hyperlipidemia and intrinsic

renal lipid metabolic regulatory mechanisms influenced renal

ectopic lipid accumulation (14, 24, 25). Liver and renal FF were

not correlated with serum TG levels, which is consistent with

previous findings (26, 27). This lack of correlation may be

because PDFF specifically reflects the TG concentration within

the tissue rather than in the bloodstream. Consequently, while

PDFF is a valuable tool for assessing tissue fat content, it may not

directly represent systemic lipid metabolism or circulating

TG levels.

ROC analysis revealed that renal BOLD-T2 and liver and

kidney FF enable effectively diagnosing renal injury in a rat

model of MASLD, whereas Scr is not a reliable diagnostic marker

for renal injury in this model. These findings highlight the

limitations of traditional biochemical markers such as Scr, which

often fail to detect early renal changes associated with hypoxia and

lipid deposition. By precisely quantifying these alterations, MRI

techniques enable earlier and more reliable detection of renal injury,
FIGURE 6

The ROC curves for liver FF, BOLD-T2*, and kidney FF were used to
distinguish renal injury from non-renal injury in a rat model of
MASLD from 14 weeks to 24 weeks.
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thus potentially improving clinical outcomes for patients with

MASLD-related renal damage. Notably, Wang et al. also

highlighted the diagnostic efficiency of cortical R2* and FF values,

showing significant differences between healthy controls and CKD

patients, thus supporting the potential of these imaging modalities

for noninvasive renal function evaluation in clinical settings (28).

This study had several limitations. First, the lack of

differentiation between the cortex and medulla in FF

measurements may limit the ability to detect localized lipid

accumulation patterns. Higher-field MRI, such as 7T, provides

better signal-to-noise ratio, spatial resolution, and spectral

accuracy, allowing for improved anatomical differentiation, more

accurate fat quantification, and reduced partial volume effects in

heterogeneous regions. Second, owing to the relatively low renal fat

content, current standard histopathological staining methods

cannot clearly show renal FF. Finally, high-fat diet models are

effective at inducing hepatic steatosis but often fail to replicate more

advanced features of human MASLD, such as fibrosis, which limits

their relevance for translational research. As a result, these models

may overestimate the effectiveness of drugs aimed at early-stage

steatosis while underestimating the potential of therapies targeting

fibrosis regression.

In conclusion, MASLD-related kidney injury in rats was

associated with renal hypoxia and lipid deposition, but with no

RBF decrease. BOLD and PDFF can serve as noninvasive methods

of evaluating renal changes and detecting early renal injury.

Integrating BOLD and PDFF into clinical practice can

significantly enhance the monitoring and management of

MASLD-related renal injury.
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