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Primary aldosteronism is the most common cause of secondary hypertension,

yet most cases remain unrecognized and left without optimal treatment. The

diagnostic inertia may be attributed to the lack of specific symptoms, insufficient

awareness among physicians, still conflicting indications for screening for

primary aldosteronism and first and foremost challenging diagnostics. This

review describes the current challenges of biochemical diagnostics of primary

aldosteronism, including screening, case confirmation and subtyping. It also

discusses immunoassays widely used in assessment of suspected autonomous

aldosterone secretion – recent advances in the field and limitations of the

method in comparison to the gold standard - liquid chromatography –tandem

mass spectrometry. The review focuses on the application of novel “omics”

strategies in the diagnostics of primary aldosteronism. Steroidomics and

proteomics offer a possibility to simultaneously assess steroids and protein/

peptides on a large scale. This multianalyte approach in comparison to the

selective quantification of a chosen compound has been proved useful in

the diagnostics of primary aldosteronism. It also offers a unique insight into the

individual characteristics, underlying mechanisms and even reflects the genetic

alterations of primary aldosteronism cases. The “omics” techniques are

associated with large amounts of generated data, the interpretation of which

may be troublesome and often necessitates the use of artificial intelligence. The

novel advances in the biochemical diagnostics of primary aldosteronism,

including “omics” techniques, presented in this review may help to address the

most emerging problems, increase the number of diagnosed patients and

facilitate the choice of an optimal treatment.
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1 Introduction

Primary aldosteronism (PA) is caused by autonomous

aldosterone secretion from the zona glomerulosa of adrenal

cortex (1). Aldosterone excess leads to increased sodium and

water resorption in the distal tubule and collecting duct of the

nephron (1, 2). Water and sodium overload suppresses renin release

from the renal juxtaglomerular cells (1). Thus, increased

aldosterone-to-renin ratio, together with hypertension and

hypokalemia, is the hallmark of PA. The aldosterone-to-renin

ratio is widely used in screening for PA.

PA is the most common curable form of secondary

hypertension, yet it remains widely unrecognized, with fewer than

2% of patients at-risk ever tested and half of those patients

diagnosed and treated (1, 3, 4). The reasons why PA is widely

overlooked include lack of awareness among clinicians, absence of

characteristic symptoms and often burdensome multi-step

diagnostics and subtyping process (1). Patients at younger age,

with high systolic and diastolic blood pressure (BP), and

hypokalemia are more likely to be screened for PA than older

patients with relevant comorbidities (5).

The problem of PA underdetection is even more prominent

when taken into consideration that the detrimental effects of

aldosterone excess are partially independent from the influence of

the hypertension caused by PA (1, 6, 7). Patients with PA are more

prone to develop left ventricle hypertrophy, increased aortic

stiffness, dysfunction of endothelium, albuminuria and

hyperfiltration, when compared to BP-matched controls (7–10).

PA is also associated with higher prevalence of metabolic syndrome

and type 2 diabetes mellitus (7). Furthermore, aldosterone excess

contributes to increased urinary calcium loss and hypocalcemia,

which translates into higher prevalence of bone fractures and

osteoporosis in patients with PA (11, 12).

The established diagnostic workup for PA is a costly, complex

process that usually requires multiple visits before the diagnosis is

finally confirmed. Thus, mainly patients with high probability of

PA and unequivocal diagnostic results undergo screening. Further

diagnostics (including confirmatory testing and adrenal venous

sampling (AVS) to differentiate between uni- and bilateral

subtype) is often burdensome and usually limited to large

tertiary centres. As a result, the majority of patients with PA

never receive the correct diagnosis (13). Therefore, novel tools and

techniques are needed to improve diagnostic stratification and

subtyping for PA.

This review provides an overview of recent advances in

biochemical diagnostics of PA, including cutting-edge methods of

steroidomics and proteomics, with a focus on targeted approaches.

These techniques provide “a snapshot” of large numbers of released

steroids, metabolites and proteins/peptides at the given time. The

global analysis of compound group enables a comprehensive

understanding of the underlying mechanisms of PA, but also

unveils novel diagnostic options.
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2 Diagnostics of primary
aldosteronism: current approaches
and challenges

According to the Endocrine Society Guidelines, indications of

PA screening include patients with: (1) BP above 150/100 mmHg

on repeated (at least three) measurements, (2) resistant

hypertension, (3) hypertension controlled on 4 or more

hypertensive agents, (4) hypertension with hypokalemia (both

spontaneous and diuretic-induced), (5) hypertension and adrenal

mass, (6) hypertension and obstructive sleep apnea (OSA), (7)

hypertension and family history of cerebral vascular event (CVA)

or hypertension at the age younger than 40 years, and (8) all

patients with hypertension and a first-degree relative diagnosed

with PA (14). The authors of a position statement and consensus of

the Working Group on Endocrine Hypertension of the European

Society of Hypertension recommend that the screening for PA

should also include patients with hypertension and atrial fibrillation

(AF) not associated with structural heart disease, since the

prevalence of AF among patients with PA is nearly four times

higher than among subjects with resistant hypertension (15, 16).

However, the indication for PA screening in patients with

hypertension and OSA has been questioned based on the results

of the multiethnic, cross-sectional HYPNOS study (Hyperglycemic

Profiles in Obstructive Sleep Apnea) (15, 17).

Recommendations published by the national endocrinology

societies also apply non-uniform criteria for PA screening. French

Endocrinology Society (SFE), French Hypertension Society (SFHTA)

and Francophone Endocrine Surgery Association (AFCE) highlight

the need for PA screening in patients with hypertension and

disproportionate target organ damage (18). The recently published

British and Irish Hypertension Society (BIHS) statement on diagnosis

and management of PA recommends facilitated diagnostic strategy

for screening for PA (19). According to BIHS, clinical situations in

which PA screening should be introduced include resistant

hypertension, hypertension with hypokalemia, hypertension with

adrenal mass, and hypertension in adults below 40 years (19).

However, there are some investigators advocating for screening for

PA of all hypertensive patients (20). The rationale behind this

approach includes considerable health benefits for diagnosed

patients with PA after tailored treatment and the possibility to

avoid the confounding effect of antihypertensive medications on

aldosterone and renin measurements (20).

Alongside the lack of uniform indications for PA screening,

recommended aldosterone-to-renin ratio (ARR) as a screening test

is subject to several limitations (14). Renin may be assessed as plasma

renin activity (PRA) evaluating renin enzymatic activity to generate

angiotensin I from angiotensinogen under controlled conditions over

time, or direct renin concentration (DRC) based on the measurement

of renin and active prorenin concentration in plasma. Measurement

of renin may be challenging, mainly due to low concentration and

instability in refrigerated temperature, which leads to cryoactivation
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of prorenin to renin and falsely elevated results (21, 22). Thus, it is

recommended to transport the probes (usually EDTA plasma sample

collection tubes are used) at room temperature to the laboratory up to

30 min after blood collection, centrifugate before the immediate

automated DRC determination (CLIA, Chemiluminescent

immunoassays) or centrifugate, quickly freeze and store frozen

plasma prior to the postponed manual DRC measurement

(IRMA, Immunoradiometric assay and ELISA, enzyme-linked

immunosorbent assay) (14). For the PRA determination, routinely

EDTA plasma sample collection tubes are used, samples should be

transported on ice to the laboratory within 30 min from the blood

collection, centrifugated (4°C), frozen and stored till the manual PRA

measurement (commonly radioimmunoassay (RIA) or enzyme

immunoassay (EIA, ELISA) methods are used). Immunoassays are

widely used for determination of DRC and PRA. Despite convenience

and short turnaround time, DRC and PRA immunoassays may lack

sensitivity and exhibit low antibody storage stability and cross-

reactivity with multiple structurally similar angiotensin-like

peptides (21, 23). However, angiotensin I for PRA calculation may

also be measured by liquid chromatography–tandem mass

spectrometry (LC-MS/MS), which offers high accuracy of

angiotensin I measurement at low concentrations (often observed

in PA) and allows for determination of metabolites (e.g., angiotensin

II, angiotensin III, angiotensin IV) for the broader assessment of the

renin‐angiotensin‐aldosterone system (RAAS) (21, 23). Aldosterone

can also be measured in serum or plasma. For the serum aldosterone

concentration determination clot activator serum sample collection

tubes are routinely used, while EDTA plasma sample collection tubes

are used when plasma is analysed. Contrary to DRC, the probes for

aldosterone determination are not sensitive to temperature drop.

Moreover, differences depend on the type of biological material

(serum/plasma) used to determine blood aldosterone levels.

Aldosterone concentration can be determined by various

immunoassays or LC-MS/MS technique. However, the results

obtained using LC-MS/MS are 30% lower when compared to

radioimmunoassay aldosterone measurement (24, 25). Since the

results of aldosterone determination differ significantly depending

on the used method (RIA, EIA/ELISA, chemiluminescence

immunoassay (CLIA, ECLIA), LC-MS/MS technique), assay-

specific thresholds should be used when ARR (or ADRR

(aldosterone-to-direct-renin ratio) if DRC is used) is calculated

(25, 26).

Since the advantage of ARR in the screening for PA was shown by

Hiramatsu et al., ARR screening has been used widely (27). Most

commonly used cutoff values are 30 for ARR (ng/dL/ng/mL/h) and 3.7

for ADRR (ng/dL/mU/L) (14). Other proposed screening tests for PA,

e.g., the aldosterone-to-angiotensin II ratio using commercial ELISA

set showed worse diagnostic performance (28). However, the

interpretation of ARR should include various factors and

limitations. Firstly, as presented in the meta-analysis by Hung et al.,

assessing ARR diagnostic performance, no single ARR threshold for

PA screening could be recommended (29). Furthermore, nearly all

commonly used antihypertensive drugs interfere with RAAS, leading

to false positive or false negative results of ARR (14). Not only do

antihypertensive agents influence ARR, but also non-steroidal
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anti-inflammatory drugs (NSAIDs), estrogen-containing

contraceptives, hormone replacement therapy (HRT) and selective

serotonin reuptake inhibitors (SSRIs) may alter the result (14, 30).

False positive results of ARR may also be observed in older age,

impaired kidney function, increased dietary salt intake, luteal phase of

menstrual cycle and in patients with the extremely rare disorder

Gordon syndrome (or pseudohypoaldosteronism type 2) (31). False

negative results may be a consequence of pregnancy, hypokalemia, salt

intake restriction, vomiting, diarrhoea, malignant or renovascular

hypertension (31). In other conditions such as renal

pseudohypoaldosteronism type 1 the ARR can be high with very

high aldosterone concentrations, but renin concentrations are not

suppressed, and the patients do not have hypertension (32).

Bloods for aldosterone and renin measurement should be

drawn in the morning, after 2hr in upright position, then

permitted to settle (sit for 5 to 15 minutes) before the blood

collection (14, 33). Suboptimal screening conditions may, together

with other pre-analytical errors (e.g., during specimen collection,

handling and transportation to the laboratory), markedly influence

the results. Despite measurement in optimal conditions, ARR shows

high within-patient variability (34). Thus, in patients with high

pretest probability of PA and not elevated ARR, it should be

repeated at least twice (34, 35). Suppressed renin concentration

often leads to false positives, even if the aldosterone concentration is

low. Hence, it has been suggested to use a minimum aldosterone

concentration of >15 ng/dL (>415 pmol/L) to be able to interpret a

positive test (14). However, it may lead to underdiagnosing some

individuals with PA, especially patients with PA and bilateral

adrenal hyperplasia (BAH) (14, 21). Thus, some investigators

suggest a cut-off of 5 ng/dL (138.7 pmol/L) for aldosterone

concentration, especially when assessed by LC-MS/MS (36).

Once a positive ARR is confirmed, lack of aldosterone

suppression should be demonstrated in one of four tests (saline

infusion test, oral sodium loading test, fludrocortisone suppression

test or captopril challenge test) (14). All these tests can be done in an

outpatient setting, also fludrocortisone suppression test, even

though the latter in most centres is done as an inpatient test (37).

In patients with suppressed renin concentration, spontaneous

hypokalemia, and plasma/serum aldosterone concentration ≥ 20

ng/dL (≥ 555 pmol/L) confirmatory test is not needed (14).

Similarly to the previous stages of PA diagnostics, there is a

remarkable heterogeneity in confirmatory testing protocols and

interpretation of the results (38). Notably, the use of confirmatory

tests is not evidence-based, since none of the studies advocating

their use in confirmation of PA diagnosis has met state-of-the-art

criteria used for validation of diagnostic tests (19, 39–42).

After the diagnosis of PA, optimal treatment (unilateral

adrenalectomy or pharmacotherapy with mineralocorticoid

receptor antagonist) should be initiated, depending on the source

(unilateral/bilateral) of autonomous aldosterone secretion, surgical

candidacy, and patient preference (14, 43). Unenhanced adrenal

computed tomography (CT) may assist in treatment planning,

although it is associated with substantial number of false positive

(identifying non-functional adrenal adenomas incorrectly linked to

autonomous aldosterone secretion) or false negative results
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(underdetection of small lesions), except in patients below 35 years

old, with spontaneous hypokalemia, aldosterone concentration >30

ng/dL (>831 pmol/L), and unilateral adrenal lesion measuring ≥ 10

mm, in whom diagnostic accuracy of CT is high and AVS is not

necessary (14, 43). Overall, the concordance rate of CT and AVS in

patients with unilateral disease was 50% (44). Thus, the majority of

patients need to undergo AVS for subtyping. Although AVS is

characterized by high sensitivity (95%) and specificity (100%) in

detecting unilateral aldosterone hypersecretion, it is a costly, invasive,

highly specialized procedure that should be performed only in

experienced centres (14, 45). It should be noted that canulating the

right adrenal vein is very difficult with low rate of success in non-

experienced hands.
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Thus, all the listed limitations of routine diagnostics of PA

(Figure 1) indicate the necessity to establish novel, improved

diagnostic strategies.
3 From immunoassays to
mass-spectrometry

For many years, immunoassays, in particular RIA and CLIA,

have been the primary method used for measuring selected steroids

in plasma/serum and urine. Nonetheless, immunoassay, which is

based on the reaction of an antigen with a specific antibody, has

multiple limitations. These include limited sensitivity and
FIGURE 1

The limitations of routine diagnostics of primary aldosteronism. Factors which may influence the result of primary aldosteronism screening were marked
with the lightning sign. Exclamation mark was used to underline the limitations of screening, confirmatory tests and subtyping of primary aldosteronism.
PRA, plasma renin activity; ARR, aldosterone-to-renin ratio; DRC, direct renin concentration; ADRR, aldosterone-to-direct-renin ratio; GFR, glomerular
filtration rate; HT, hypertension; CT, computed tomography; PA, primary aldosteronism. Created in BioRender. BioRender.com/n46h901
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reproducibility, especially at lower concentrations. Currently, mass-

spectrometry based techniques (including gas chromatography –

mass spectrometry (GC/MS) and LC–MS/MS) are considered the

gold standard for quantification of steroids in biological fluids (46,

47). LC–MS/MS combines liquid chromatography separation of the

particles followed by their mass-based detection. Its high sensitivity

and specificity result from minimizing interference from cross-

reactivity and non-specific reactions. Its relevant diagnostic value in

PA has been reported in a meta-analysis (46).

Furthermore, the LC-MS/MS technique allows simultaneous

quantification of multiple compounds and is a time-efficient

analysis. Noh et al. demonstrated successful measurements of

adrenocortical steroids, catecholamines and plasma free

metanephrines in a single run (48). Derivatization with alkyl

chloroformates allowed the protection of polar and hydrophilic

groups of medullary amines and resulted in a satisfactory signal-to-

noise ratio and peak shape, while maintaining effective steroid

quantifications (48).

One of the limitations of the LC-MS/MS technique includes

laborious sample preparation. Over the past few years, this issue

has been addressed in multiple studies and increasingly faster

measurement methods using LC-MS/MS have been developed. By

improving the efficiency of acid hydrolysis, Yin et al. developed an

assay of rapid aldosterone measurement in samples from 24hr

urine collections (49). Ultra-performance liquid chromatography-

tandem mass spectrometry (UPLC-MS/MS) has also been tested

in aldosterone quantification in plasma – this method enables

rapid aldosterone measurement, while maintaining high

accuracy (50).

Nevertheless, given the limited availability of LC-MS/MS in

many centres and countries, there has arisen a need to improve

existing, widely accessible methods to ensure better diagnostics and

the ability to compare research results with those obtained using the

LC-MS/MS technique. A new, two-site sandwich chemiluminescent

enzyme immunoassay (CLEIA) to automatically measure both

plasma/serum aldosterone concentration and active renin

concentration (ARC), using monoclonal antibodies immobilized

onto ferrite particles, has been implemented into clinical practice

(51, 52). Nishikawa et al. compared LC-MS/MS with CLEIA and

conventional RIA immunoassays for aldosterone measurement in

the blood (53). The median aldosterone concentration of the LC-

MS/MS corresponding to RIA established PA criterion was almost

2.5 times lower for LC-MS/MS technique, while CLEIA values were

similar to LC-MS/MS. A study conducted by Kobayashi et al. (54)

showed that the plasma aldosterone concentration measured by

CLEIA was significantly lower than the value obtained with RIA,

and new cut-offs for screening and confirmatory tests using CLEIA

for the diagnosis of PA were suggested. Thus, the good linearity over

a wide range of concentrations and accuracy comparable to LC-MS/

MS may establish CLEIA as an alternative testing method in centres

and countries without access to LC-MS/MS (51).

Despite the undeniable advantages of LC-MS/MS technique, its

application is limited to selected centres and thus the overwhelming

majority of routine diagnostics of PA still relies on the use of

immunoassays. In the future, LC-MS/MS will not likely replace
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immunoassays in the PA diagnostics in many centres, thus ways to

optimize the simultaneous use of both, diagnostic cut-offs,

comparability and reproducibility will be necessary.
4 Targeted steroidomics

The rapidly evolving field of “omics” techniques allows for

characterization of an entire set of chosen compounds produced by

cell, tissue, organ or organism at the same time. Thus, profound

assessment of multiple disorders at a resolution that has never been

possible is now available. One of them, targeted steroidomics (the

terminology was introduced by Sjovall in 2004), involves mass-

spectrometric assessment of predefined steroids on a multianalyte

approach, measured in blood (serum/plasma) or urine (24-hour

urine collection) (55–57). Although the use of steroid profiling in

the diagnostics of adrenocortical diseases has a history of more than

half a century, only a recent development of liquid chromatography

or gas chromatography coupled with mass spectrometry has

transformed the investigation of adrenocortical conditions,

unveiling unknown and underappreciated steroid players (56–60).

The application of steroidomics has proven useful in evaluation

of adrenocortical cancer (ACC) and autonomous cortisol secretion

(CS), but also PA (61–75). In the study of Berke et al., investigating

the profile of 19 plasma steroids in 577 patients with adrenal

incidentaloma, patients with PA were distinguished by high

plasma concentrations of 18-oxocortisol, 18-hydroxycortisol, 18-

hydroxycorticosterone and aldosterone (64). The utility of 18-

hydroxycorticosterone in plasma and urinary “hybrid steroids”

(combining the structural characteristics of aldosterone and

cortisol) : 18-hydroxycortisol and 18-oxocortisol were

demonstrated to differentiate patients with PA from those with

primary hypertension and normotensive subjects (65). A threshold

for 24hr urinary 18-hydroxycortisol excretion greater than 330 mg/d
together with positive ARR confirmed the diagnosis of PA without

the need for further confirmatory/exclusion tests (65). A 24hr

urinary 18-hydroxycortisol excretion greater than 510 mg/d
distinguished the patients with aldosterone producing adenoma

(APA), which together with identification of unilateral adrenal

tumour on a CT scan may allow to proceed directly to unilateral

adrenalectomy without AVS (65). Peripheral plasma 18-oxocortisol

concentration measured by LC-MS/MS was also proved useful in

discrimination of patients with APA from BHA (a cutoff value of 4.7

ng/dL was used with a sensitivity of 83% and specificity of

99%) (66).

The results of one study by Eisenhofer et al. demonstrated that

the use of a 8 steroid panel in plasma (aldosterone, 18-

hydroxycortisol, 18-oxocortisol, 11-deoxycoticosterone, cortisol,

cortisone, dehydroepiandrosterone, and androstenedione)

together with ARR was more effective than ARR alone for

discriminating patients with PA from those with primary

hypertension (67). Among assessed steroids, aldosterone, 18-

oxocortisol, and 18-hydroxycortisol were characterized by the

highest discriminatory power (67). This approach combined with

machine learning also allowed to differentiate the patients with APA
frontiersin.org
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associated with KCNJ5 variants with the sensitivity of 85% and the

specificity of 97% (67). In another study published by Eisenhofer

et al. on 216 patients with PA, concentrations of 18-oxocortisol in

plasma was 8.5 times higher in patients with APA, than in those

with BHA (68). However, the area under the curve (AUC) of 0.659

showed limited utility of that steroid in subtyping PA (68). The

accuracy was remarkably improved to AUC 0.889 by analysing the

whole panel of 15 steroids, emphasizing the potential utility of

mass-spectrometry-based measurement of multiple steroids rather

than analysing them individually (68). The diagnostic application of

the steroid profile of peripheral venous plasma measured by LC-

MS/MS was also the subject of the study by Yang et al. (69). The

investigators targeted distinguishing the patients with BHA from

those with macro-APA (diameter of adrenal lesion ≥ 10 mm) and

micro-APA (diameter < 10 mm), the latter often undetectable on

CT scans (69). The obtained results revealed distinct differences in

steroid profiles between compared groups, with aldosterone, 18-

oxocortisol, 18-hydroxycortisol and dehydroepiandrosterone

sulphate (DHEAS) having the highest differentiating value (69).

Interestingly, the diagnostic performance of steroid probability

score for PA (based on mass-spectrometric assessment of steroids

in plasma integrated by machine-learning tools) was not influenced

significantly by the interfering antihypertensive drugs (AUC 0.848

with the use of antihypertensive medications; AUC 0.893 without

antihypertensive medications with the proven impact on the

RAAS), as it was observed for ARR (AUC 0.765 with and AUC

0.845 without the interfering with RAAS antihypertensive drugs)

(70). Plasma steroids which showed the highest discriminatory

power in primary aldosteronism screening and subtyping are

presented in Figure 2.

Apart from the assessment of plasma steroidomics, quantification

of steroid metabolites excretion in 24hr urine collection was proven

useful in identification and subtyping of PA (71). The choice of urine as

a sample matrix has advantages over plasma/serum: non-invasive

sample collection, not requiring any medical professionals, thus

lower cost, unaffected by alterations in supine vs. seated blood

sampling, and in case of 24hr urine collection: comprehensive

measurement of steroid output, independent from diurnal steroid

differences (56, 67, 71). However, 24hr urine collection can be

inconvenient and difficult for some patients, and in those blood

samples could be preferred. There are also substantial differences in

sample preparation, depending on the matrix used: serum/plasma or

urine. Contrary to blood (plasma), in urine steroids are present as

conjugates (glucuronides and sulphates). Thus, after extraction and

prior to e.g., derivatization and analysis using GC/MS, conjugated

steroids need to be hydrolysed (71). To remove those charged moieties

different strategies are applied resulting in significant alterations in

desired metabolites concentrations varying between the studies (72).

In the study of Prete et al., the assessment of 34 steroids

(including mineralocorticoid, glucocorticoid, androgen, hybrid

steroid metabolites and their precursors) in 24hr urine sample

measured by GC/MS and analysed by machine-learning methods

had an excellent accuracy (AUC 0.970) for the distinguishing of

patients with PA from controls with normotension (73). Among

assessed metabolites, 3a, 5b-tetrahydroaldosterone, tetrahydro-11-
Frontiers in Endocrinology 06
deoxycortisol, and 18-hydroxy-tetrahydro-11-dehydrocorticosterone

had the highest discriminative value (73). Interestingly, their 24hr

urinary output interquartile ranges did not overlap between patients

with PA and controls (73). Conversely, computational analysis of

urine steroidomics showed suboptimal diagnostic performance

(AUC 0.650) in distinguishing patients with APA from those with

BHA, probably due to high heterogeneity of the groups (73).

However, analysis of 34 steroids integrated by machine learning

approach with generalised matrix relevance learning vector

quantization, allowed to distinguish patients with APA harbouring

KCNJ5 variants from other patients with PA with a high diagnostic

accuracy (AUC 0.830) (73).

Multisteroid approach was tested as a tool not only to identify

and subtype PA based on the analysis of serum/plasma or urine, but

also to improve the diagnostic performance of AVS. Cortisol, used

in interpretation of AVS results, has several disadvantages including

longer half-life than aldosterone and fluctuations of cortisol

concentration during AVS (74). Additionally, mild autonomous

cortisol secretion (MACS) is often found in patients with PA which

may influence AVS result (74, 75). In a study by Turcu et al., among

17 measured steroids, 8 steroids showed significantly higher

selectivity index (SI, calculated as adrenal vein/inferior vena cava

steroid concentration) than cortisol, both at baseline and after

adrenocorticotropic hormone (ACTH) simulation (Figure 2) (74).

Importantly, the use of 11ß-hydroxyandrostendione, corticosterone

and 11-deoxycortisol allowed to rescue the majority of unsuccessful

baseline catheterizations (with SI <2 for cortisol) (74). In a study by

Chang et al., the application of steroid profiling measured by LC-

MS/MS rescued 45% unstimulated and 66% ACTH stimulated

unsuccessful cases of AVS based on immunoassay assessment

(76). Furthermore, steroid profiling using LC-MS/MS allowed to

identify 31% more cases of unilateral PA in comparison to widely

used immunoassay (76). Thus, the application of steroid profiling

may significantly improve the number of successful AVS and

diagnostic accuracy of that procedure (77). Nevertheless, the

obtained results should be interpreted cautiously, while the

application of LC/MS-MS is only being tested in context of AVS,

in which the concentrations of steroids are significantly higher than

those measured in the blood.

Overall, mass-spectrometric assessment of steroid profiling has

improved the understanding of the role of steroids in PA, going far

beyond aldosterone. The recently published studies have revisited

the importance of “hybrid steroids” as PA biomarkers. The use of

targeted steroidomics integrated by machine learning tools may

streamline the identification and subtyping of patients with PA. The

application of novel methods such as high-resolution matrix-

assisted laser desorption/ionization mass-spectrometry (MALDI-

MS) was proven useful to integrate metabolomic data with spatial

information obtained from standard histology, resulted in better

understanding of functional anatomy of APA, defining genotype-

phenotype correlations and discovering new biomarkers (78).

Furthermore, the application of untargeted metabolomics may

open a new chapter in understanding the pathophysiology of PA

unveiling alterations in metabolic pathways and defining novel

diagnostic biomarkers (79).
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5 Targeted proteins and peptides
analysis methods, untargeted
proteomics

Simultaneously with the quantification of multiple steroids

using mass spectrometry in the diagnostics of PA, extensive

research has been conducted in the field of proteomics. Targeted

proteomics allows for precise quantification of preselected proteins

and peptides, while untargeted proteomics aims to quantify all

detectable proteins and is associated with laborious work of

identifying them. Proteomics examines the structure and function

of peptides and proteins involved in the physiological and

pathophysiological processes of RAAS, which could be an

alternative to PRA/DRC. Recent studies evaluated RAAS
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equilibrium using LC-MS/MS to quantify the angiotensin

peptidome (including angiotensin I, angiotensin II, angiotensin

III, angiotensin IV, angiotensin (1–7), and angiotensin (1–5))

simultaneously from a single sample (80–82). The main principle

of RAAS equilibrium analysis is based on the incubation of

prestored frozen serum at the temperature of 37°C, controlled pH

7.4 for 1 hour without addition of any substances interfering with

angiotensin production or degradation, which leads to

establishment of equilibrated status of RAAS (82). Thus, the

equilibrium angiotensin II (eqAngII) concentration is the

resultant of the activity of all angiotensin processing enzymes in

the probe, once the equilibrium is established (82). The assessment

of eqAngII and calculation of aldosterone-to-angiotensin II ratio

may be a promising tool in PA diagnostics, allowing to bypass often

cumbersome PRA or DRC determination (82).
FIGURE 2

Plasma steroidomics in diagnostics of primary aldosteronism. Steroids demonstrating the highest discriminatory power in primary aldosteronism
screening and subtyping. *Panel of 8 steroids characterized by higher selectivity index than cortisol both at baseline and after adrenocorticotropic
hormone, which may improve the proportion of successful adrenal venous sampling [70]. DHEAS, dehydroepiandrosterone sulfate; AVS, adrenal
venous sampling. Created in BioRender. BioRender.com/u15i195
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Prorenin, a precursor of renin, has been suggested to be valuable

in the diagnostics of PA. Compared with active renin, prorenin is

characterized by stable release, not affected by multiple stimuli

including change of body position (83). The (pro)renin receptor

((P)RR) levels were found to be positively correlated with aldosterone

synthase (CYP11B2) concentrations in APA tissues, plasma

aldosterone concentrations and urinary aldosterone excretion,

suggesting its role in aldosterone synthesis (84). Nevertheless, in

the same study, serum (P)RR was neither associated with plasma

aldosterone concentration nor adrenal (P)RR expression level (84).

Beyond the direct assessment of RAAS components, other peptides

and proteins, primarily associated with, e.g., inflammation or

transmembrane transport, were investigated as potential biomarkers

of PA. Proteins and peptides from the granin family involved in the

regulated secretory pathway (packaging, storage, and release of peptide

hormones and neurotransmitters) are currently being studied as a

potential biomarkers of PA. The results of the study by Glinicki et al. on

10 patients with PA and 22 patients with non-functional adrenal

adenoma (NFAA) demonstrated that among 10 proteins and peptides

from the granin family, pancreastatin (pancreastatin/chromogranin A

(250-301aa) -amide peptide) and secretoneurin (a small 33aa peptide of

secretogranin II (SgII)/chromogranin C (CgC) (1-617aa)) were

differentiating those two groups (85). Recently, extracellular vesicles

(EVs), biological nanostructures released from all cells, have also

become a compelling subject of interest for researchers worldwide

(86). Given that EVs transport various biomolecules including multiple
Frontiers in Endocrinology 08
proteins, lipids, nucleic acids derived from parent cells, they hold the

potential to serve as a source of biomarkers for various diseases,

including PA (87).

Recent studies investigated the role in PA diagnosis of serum

and urinary alpha-1-acid-glycoprotein (AGP1 or A1G1), also

known as orosomucoid protein 1 (ORM1), an acute-phase

protein associated with inflammation (87–90). The notable

upregulation of AGP1 in urinary extracellular vesicles (uEVs) in

PA was studied by Barros et al., who investigated the proteome of

patients with PA, searching for mediators associated with renal and

extrarenal damage induced by chronic elevated aldosterone

concentration (89). Sequential ultracentrifugation was applied for

isolation of uEVs, then the International Society for Extracellular

Vesicles guidelines were used to describe isolated EVs, using

transmission electron microscopy (TEM), immunoblotting, and

nanoparticle tracking analysis (NTA) (89, 91). A considerable

upregulation of AGP1 in patients with PA (2.43-fold increase)

was observed in the comparison to the control group, however,

the limited size of a study (7 patients with PA and 8 healthy

controls) necessitates interpreting the results with caution (89).

Elevated concentration of serum AGP1 in patients with PA

compared with individuals with essential hypertension and

normotensive controls was also demonstrated by Carvajal et al.

(90). Interestingly, the concentrations of other inflammatory

markers: high sensitive C-reactive protein (hs-CRP), plasminogen

inhibitor activator-1 (PAI-1), matrix metallopeptidase 9 (MMP-9)
FIGURE 3

Proteins and peptides in blood and urinary extracellular vesicles (EVs) – potential biomarkers in diagnostics of primary aldosteronism. AGP1, alpha-1-
acid-glycoprotein; NCC, Na+Cl- cotransporter; pNCC, phosphorylated Na+Cl- cotransporter; ENaC, g-epithelial sodium channel; PGH3P, putative
glutathione hydrolase 3 proenzyme; APN, aminopeptidase N; SPTC3, serine palmitoyltransferase 3; MA1A1, mannosyl-oligosaccharide 1,2-alpha-
mannosidase IA; LYSC, lysozyme C; HSPB1, heat shock protein beta-1; IGLV3-25, immunoglobulin lambda variable 3-25. Created in BioRender.
BioRender.com/e86w482
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and malondialdehyde (MDA), free cystatin-C (CysC), neutrophil

gelatinase associated lipocalin (NGAL or LCN2), and interleukin 6

(IL-6) did not differ between the groups (90).

Regarding the influence of aldosterone on NaCl-transporting

proteins in renal tubules, Ochiai-Homma et al. analysed the

quantitative changes in pendrin, a Cl−/HCO3
– exchanger protein, in

uEVs isolated from patients with PA and from a rat model of

aldosterone excess (92). Pendrin was found in uEVs in humans and

rats (92). In a rodent model, its levels, as well as epithelial Na+ channel

(ENaC) and Na+Cl–cotransporter or thiazide-sensitive sodium chloride

cotransporter (NCC) levels in uEVs, were correlated with renal

abundance (92). Interestingly, pendrin levels in uEVs were reduced

by 49% after adrenalectomy or pharmacological mineral receptor

blockade (92). The role of abovementioned uEVs NCC in PA was

also studied by Kong et al., who aimed to identify biomarkers helping

to distinguish PA subtypes without AVS procedure (92, 93). The

promising use of phosphorylated form of NCC (pNCC) in non-

invasive PA subtyping was noted (93). In this study, spot urine

samples from 50 patients with PA who underwent AVS were

compared within the low lateralization index (l-LI) group and high

lateralization (h-LI) index group (93). NCC and pNCC were more

abundant in the h-LI group (93). Furthermore, somaticKCNJ5 variants

were detected in 65.4% of the APA cases, and carriers of somatic

KCNJ5 variants compared with non-carriers had a higher abundance of

pNCC in uEVs (93). Positive correlation between pNCC abundance

and plasma aldosterone concentration was demonstrated (93).

However, the results should be confirmed in larger studies and

evaluation of NCC as well as pNCC concentrations before and after

treatment of PA would also be beneficial (93). The correlation between

PAC and NCC adjusted by CD9 protein level in uEVs was found by

Hayakawa et al. as well (94). Nevertheless, g-epithelial sodium channel

(ENaC) adjusted by CD9 protein level in uEVs was found to better

correlate with plasma aldosterone concentration in patients with PA

(94). Of note, ENaC decreased during treatment with

mineralocorticoid receptor antagonists and after adrenalectomy,

while plasma aldosterone concentration diminished only after

surgery treatment, indicating that ENaC reflects mineralocorticoid

receptor activity during PA therapy (94).

Ma et al. studied the role of wolframin, a transmembrane protein,

which maintains calcium homeostasis by promoting calcium transport

from endoplasmic reticulum to cytoplasm, in PA (95). The

investigators assessed the proteome and phosphoproteome of tumour

tissues from 15 patients with APA and 10 patients with nonfunctioning

adrenocortical tumours, applying a 4D label-free quantification

approach by high-resolution liquid chromatography-mass

spectrometry (95). The results of this study led to the generation of

proteome and phosphoproteome signalling network maps of APA and

identification of wolframin as a relevant regulatory protein in PA (95).

Another proteomic analysis comparing uEVs derived from

patients with essential hypertension or PA revealed six proteins

(putative glutathione hydrolase 3 proenzyme, aminopeptidase N,

CD63 antigen, aquaporin-1, IST1 homolog and aquaporin-2)

distinguishing these two groups (88). Interestingly, a reduced

abundance of membrane aquaporins involved in water reabsorption

mechanisms in PA was observed, which might be explained by chronic
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water and sodium retention in PA due to the aldosterone excess, when

compared with the patients with essential hypertension (88). The

statistical analysis also showed usefulness of the following markers:

histone H4, serine palmitoyltransferase 3 (SPTC3), mannosyl-

oligosaccharide 1,2-alpha-mannosidase IA (MA1A1), lysozyme C

(LYSC), heat shock protein beta-1 (HSPB1) and immunoglobulin

lambda variable 3-25 (IGLV3-25), in differentiating BPA from APA

(88). Proteins and peptides assessed in blood and in urinary EVs in

diagnostics of PA are presented in Figure 3.

Proteomics research has allowed us to analyze not only a large

number of proteins at the given time, but also their properties,

abundance and structures. In PA, proteomic studies may help to

reliably assess RAAS function, disease subtype, complications and

response to the treatment.
6 Conclusions

Despite huge advances in the diagnosis and treatment of adrenal

disease, PA still lags behind as the most common cause of secondary

hypertension with still only a small percentage of patients diagnosed

and successfully treated. The complex biochemical assessment of PA

may be challenging since it abounds in pitfalls from the screening,

confirmatory testing to disease subtyping. The limitations of routine

diagnostics of PA necessitates establishing novel diagnostic strategies.

Recent development in LC-MS/MS technique and “omics”

techniques, including steroidomics and proteomics, offers unique

insights into PA mechanism, subtype, molecular background, and

even complications. However, these techniques have limitations to be

regarded such as limited availability, high cost, often laborious sample

preparation and large amount of generated data that must be

interpreted cautiously.
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