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Frontiers in Endocrinology 
Evaluating the impact of lipids 
in isolated islet research 
Emelien M. Jentz and Jamie W. Joseph* 

School of Pharmacy, University of Waterloo, Kitchener, ON, Canada 
Pancreatic b-cells secrete insulin in response to nutrient stimulation. Glucose, 
amino acids and free fatty acids (FFA) have all been shown to stimulate insulin 
release in vivo. In vitro, isolated islet studies have also demonstrated similar 
results to those seen in vivo. It has also been shown that high-fat diet-fed mice or 
chronic treatment of isolated islets to high glucose and FFA can lead to 
glucolipotoxicity and impaired b-cell function. Isolated islet studies are a 
standard assay for preliminary testing of novel ideas and drugs related to islet 
function. Interpreting and comparing in vitro islet results from acute and chronic 
treatment of nutrients can be difficult since a wide variety of methods are used to 
isolate and culture islets and assess islet function. In this review, we compare in 
vivo and in vitro FFA absorption, transport and metabolism and discuss in vitro 
methods and concepts related to islet responses to nutrients, focusing on the 
effects of fatty acids on insulin secretion and b-cell function. This review also 
discusses FFA levels and transport seen in type 2 diabetes and compares them to 
how isolated islets are treated with FFA in vitro. 
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Introduction 

Type 2 diabetes occurs when the pancreas does not secrete enough insulin, and the 
body’s cells do not effectively respond to the insulin secreted. In order for glucose to 
stimulate insulin secretion, it must be metabolized by the pancreatic b-cell. Glucose enters 
the b-cell through glucose transporter 2 (GLUT2) in rodents and GLUT1 and GLUT3 in 
humans and is metabolized by glycolysis and the tricarboxylic acid cycle, leading to the 
production of adenosine triphosphate (ATP) via oxidative phosphorylation (1–5). The 
increased ATP causes a rise in the ATP/ADP ratio, leading to the closure of ATP-sensitive 
K+-channels and plasma membrane depolarization (6). This depolarization opens the 
voltage-dependent Ca2+ channels, resulting in an influx of calcium. A high concentration of 
calcium leads to the exocytosis of insulin-containing granules (7). In addition to the above-
described triggering pathway of insulin secretion, there is an amplifying pathway involving 
other metabolites. The mechanisms by which these metabolites potentiate insulin secretion 
are still under debate (2–5). 
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In addition to glucose, lipids and amino acids can also regulate 
insulin release from b-cells. It has been shown that acute 
stimulation with exogenous non-esterified fatty acids (NEFA) or 
free fatty acids (FFA) potentiates glucose-stimulated insulin 
secretion (GSIS) (8, 9). Most of the free unbound forms of these 
fatty acids have been shown to potentiate GSIS; however, palmitic 
acid is the most potent (10). In contrast, chronic stimulation with 
exogenous FFA reduces GSIS (11, 12). Inside pancreatic b-cells, the 
esterification of FFAs to long-chain acyl-CoA derivative of the FFA 
is a key step, and they can have direct and indirect effects on insulin 
secretion (13). There is increasing interest in understanding the role 
of FFA in the development of b-cell dysfunction in type 2 diabetes, 
and isolated islets are a key early model to assess the effects of FFA. 

One difficulty in performing FFA studies in islets is interpreting 
and comparing experiments between research groups. Looking at 
the effects of lipids on b-cell function is complicated since there are 
numerous types of fatty acids, each with a unique chain length and 
degree of saturation. Also, how the FFA are prepared and 
conjugated to albumin can make interpreting and comparing 
results from different studies difficult. In this review, we will 
discuss FFA solubility and transport in the blood and the changes 
in FFA seen in type 2 diabetes and compare this to how lipid studies 
are done in isolated islets. This review will also discuss some of the 
methodological variability in the literature that makes comparing 
studies difficult and make suggestions for future islet studies. 
Solubility of plasma FFA 

The five main plasma FFAs (palmitate, oleate, stearate, linoleic 
acid and arachidonic acid) are part of a group of FFA, also referred 
to as Long-chain FFAs, that have a carbon length of 13–20 C. Long-
chain FFAs are only water-soluble at very high pH values (>10) (14– 
16). The concentration of FFAs in an aqueous solution is difficult to 
measure and can only be measured indirectly (17). The solubility is 
also dependent on pH, temperature and type of fat. For example, 
without any stabilizers such as albumin, palmitate solubility is 
between 4-16 µmol/L (18, 19). Because of the low solubility, most 
of the triglycerides (TG), phospholipids and cholesterol in blood 
plasma are carried by lipoproteins, whereas most of the FFAs are 
bound to albumin, and only a small fraction of circulating lipids are 
unbound to a carrier protein. FFAs are transported primarily by 
albumin to increase the solubility in blood plasma (20). Albumin is 
required to stabilize FFAs in blood and the interstitial compartment 
(Figure 1) (21, 22). Albumin can bind up to 7 FFAs per molecule, 
but typically, human albumin has, on average, 2 FFAs bound in 
human plasma (23). Of the 7 FFA binding sites of albumin, three 
are high affinity binding sites, and albumin is an effective 
transporter of FFA as long as its concentration is above 0.5 mM 
(24). In healthy human plasma, the molar ratio of FFAs to albumin 
ranges from 0.7:1 to 3:1 and can rise to 6:1 in some rare pathological 
conditions (25, 26). The transport and delivery of FFAs to cells 
depend on the FFA/albumin interaction in both plasma and the 
interstitial compartment between tissue cells (21, 22). 
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Bound vs. unbound FFA 

When blood plasma FFAs (or NEFAs) are measured in humans, 
they represent unbound and bound FFA. The total unbound FFA 
concentrations in human plasma are estimated to be between 5 nM 
and 50 nM; however, the concentration of unbound fatty acids near 
b-cells is unknown (27, 28). Most in vitro islet studies use bovine 
serum albumin (BSA) for insulin secretion assays to improve 
solubility and control unbound fatty acid concentrations when FFA 
is used as a stimulus. Commercial BSA may contain FFAs, and the 
concentration of individual fatty species is likely different in 
preparations for BSA (29). In addition, purified albumin may 
contain variable amounts of other contaminants, which can affect 
FFA binding and the results of any experiments being performed 
(29). FFAs are often removed from the BSA before conjugating with a 
predetermined concentration of FFAs to control the exact lipid 
composition for treating cells (11). FFAs are commonly conjugated 
to FFA-free BSA prepared by a company such as SIGMA or charcoal-
treated BSA for islet experiments. Charcoal treatment of BSA allows 
the removal of some contaminants, including lipids (29–34). FFA-
free albumins that can be purchased commercially typically have a 
higher purity. Commercially purchased FFA-free BSA also has less 
residual fatty acids than charcoal-absorbed BSA (29–34). 

The unbound FFA concentrations can be calculated using a 
multiple-stepwise equilibrium model (21, 30), or they can be 
measured using a fluorescent probe ADIFAB2, which is an 
acrylodan-derivatized intestinal fatty acid binding protein (24, 
FIGURE 1 

Transport of plasma FFA to islet b-cells in vivo. Chylomicrons 
(purple), VLDL (green) and albumin (blue) can all deliver FFA to 
b-cells. Albumin controls free unbound FFA found in circulation. 
Unbound FFA can be transported through the blood vessel wall into 
the interstitial space, where it can bind to interstitial albumin or 
enter b-cells. FFA can also be released from triglycerides (red) found 
in chylomicron and VLDL particles by lipoprotein lipase (LPL) found 
on endothelial cells (green). 
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35–38). Calculating unbound FFAs is not always the best way to go 
since the method used to complex FFAs to albumin can also affect 
unbound FFAs. For example, it has been shown that FFAs used in 
the presence of 1% charcoal-absorbed BSA, 0.75% commercial FFA-
free BSA or pre-complexed FFAs used in the presence of 0.67% 
FFA-free BSA result in similar measured unbound FFA 
concentrations even though the BSA concentration was different 
between these preparations (36). Albumin also has different 
affinities for FFAs that depend on the carbon length and degrees 
of saturation. Palmitate, oleate, stearate and arachidonate all have 
different affinities for albumin, which will affect unbound FFAs and 
have an impact on experiments comparing the effects of these lipids 
(21). It has also been shown that the molar ratio of BSA to FFAs 
may be used to estimate the final concentration of bound and 
unbound FFAs. For example, a 0.5 mM sodium palmitate solution 
with an FFA/albumin molar ratio of 3.3:1 has a theoretical unbound 
palmitate concentration of 27 nM, and for a similar solution of 0.5 
mM sodium oleate with the same molar ratio of FFA/BSA will have 
an unbound concentration of 47 nM (30). For these reasons and the 
effects of the method of preparation and batch-to-batch variability, 
it has been suggested that unbound FFAs should be measured 
instead of estimated (11). For example, using ADIFAB2, the 
unbound FFA was about 26 nM for palmitate and 35 nM for 
oleate in a 1% charcoal-absorbed BSA at an FFA/albumin molar 
ratio of 3.3:1 which is different from the estimated unbound FFAs 
for these lipids (36). 
Human fasting plasma lipids 

What concentrations of FFAs should be used in in vitro 
experiments with islet b-cells? The answer to this question is not 
an easy one to determine. For example, when non-fasted or short-
term fasting total FFA (e.g., a morning fast) is measured using 
standard clinical procedures, a typical concentration of about 475 
mmol/L in human blood plasma is found (39). Fasting for longer 
durations can have an impact on the total plasma FFA 
concentration, rising to about 1000 mmol/L after 24 hours and 
2000 mmol/L after 48 hours (40, 41). Since individuals usually only 
fast overnight before having their first meal of the day, which is 
followed by another few meals throughout the day, this might 
suggest that control experiments in islets should be done using a 
total FFA concentration of around 475 mmol/L. One must also take 
into consideration the type of fat being used. For example, control 
islet palmitate experiments should be done at around 109 mmol/L 
since palmitate accounts for only around 23% of the total FFA 
concentration in healthy human plasma (39, 42–45). However, 
most control islet experiments are done without FFA (41, 46–58). 
It has been shown that circulating plasma FFA are essential for 
insulin secretion in response to nutrient secretagogues (59, 60). 
Thus, a lack of FFA in control islet experiments may have its own 
effects on insulin secretion. 

Interestingly, when individual FFA are measured, the non-
fasted or short-term fasting total FFA concentrations in healthy 
human plasma are between 269-5556 mmol/L, with most values 
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falling around 2400 mmol/L, which is only slightly higher than what 
is measured clinically (43, 44, 61–63). The five main FFA in plasma 
account for ~85% of the total FFA and include palmitate (16:0, 
~23% of total FFA, ~585 mmol/L), oleate (18:1, ~19% of total FFA, 
~450 mmol/L), stearate (18:0, ~8% of total FFA, ~159 mmol/L), 
linoleic acid (18:2, ~31% of total FFA, ~744 mmol/L) and 
arachidonic acid (20:4, ~8% of total FFA, ~222 mmol/L) (43, 44, 
61–63). These studies suggest that standard clinical procedures for 
measuring the concentration of FFA may slightly underestimate the 
concentration of FFAs in human plasma. Which concentration of 
FFA should be used for islet studies? For example, for palmitate, 
should we use 109 mmol/L calculated from clinical values based on 
palmitate accounting for ~23% of the total FFA or ~585 mmol/L 
based on what is measured when individual FFA are measured? A 
good starting point would be to use a value between these two 
measurements of ~250-300 mmol/L. 

In addition to FFAs, there are other sources of lipids in human 
plasma, including triglycerides (TG, ~900-1400 mmol/L) which are 
primarily bound to chylomicrons and very-low density lipoproteins 
(VLDL), total cholesterol (~3700-5900 mmol/L) with most of the 
cholesterol bound to high-density lipoproteins (HDL)-cholesterol 
(~1200-1500 mmol/L) and low-density lipoproteins (LDL)­

cholesterol (~2300-3800 mmol/L) (43, 44, 63–68). All of these 
sources of lipids can be used in the body to form essential cellular 
structures and signaling molecules or used as an energy source, 
accounting for about 27% of total dietary energy (39). 
Chylomicrons and VLDLs can also release FFA from TG in a 
tissue-specific manner, depending on the body’s needs. Mice are an 
important animal model for human obesity and diabetes, and their 
concentration of plasma lipids is similar in mice but not the same. 
For example, average overnight fasted plasma values from control 
mice from several papers are FFA 531 mmol/L, triglycerides 
1004 mmol/L, total cholesterol 3077 mmol/L, very low-density 
lipoproteins (VLDL)-cholesterol 422 mmol/L, LDL-cholesterol 
379 mmol/L, and HDL-cholesterol 1552 mmol/L (69–74). The 
differences in plasma lipids between mice and humans may be 
due to different diets or other physiological factors. 
Postprandial lipid dynamics 

An important concept in FFA-stimulated insulin secretion from 
isolated islets is a rise in FFA after a meal. However, does plasma 
FFA increase after a meal? The switch from the fasted to fed state 
inhibits lipolysis from adipocytes and leads to reduced plasma lipid 
metabolites such as glycerol, FFA and acylcarnitine by about 50­
70% postprandially (75). However, it is sometimes assumed when 
performing in vitro islet studies that postprandial plasma FFA rises 
due to gut absorption, but the opposite is true. The drop in 
postprandial plasma FFA levels is primarily due to the inhibition 
of adipocyte lipolysis rather than changes in the absorption of FFA 
directly into the bloodstream (76). Most FFA absorbed in the 
gastrointestinal tract are packaged as TGs inside of chylomicrons, 
and any changes in plasma FFA postprandially are likely due to 
spill-over during transport (40). The single meal response using a 
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mixed test meal designed after a standard Western diet or other 
meal types typically results in a slow drop in human plasma FFA 
going from about 500 mmol/L to 200 mmol/L after about 90 minutes 
postprandial, followed by a slow rise to 800 mmol/L after 360 
minutes (65, 77–86). Total plasma TGs, on the other hand, go 
from about 1000 mmol/L to a peak of 2000 mmol/L after about 180 
minutes. The slow drop in FFA after a meal is likely due to the rapid 
rise in glucose-induced insulin release that stimulates FFA uptake 
into tissue cells and inhibition of lipolysis in adipose tissue (85, 86). 
The subsequent elevation of plasma FFA after about 360 minutes 
postprandially has been suggested to be part of the switch back to a 
fasting state (85, 86). The five main FFA found in human plasma 
also showed similar trends to what is seen with the total changes in 
plasma lipid profiles postprandially (68, 75, 87). 

These studies raise questions about how FFA studies are done in 
isolated islets. Do these plasma FFA levels represent what the islets 
see postprandially? If these FFA plasma changes are representative 
of what islets see after a meal, should isolated islet lipid studies be 
done similarly if FFA levels drop after a meal? For example, do we 
pretreat islets with a higher FFA level followed by dropping the FFA 
when stimulated with high glucose? Another consideration is that 
since the changes in lipid profiles after a meal showed a slow 
response, taking hours instead of minutes, should islet lipid studies 
be performed similarly? Although these questions should be 
addressed, changes in plasma FFA are unlikely to represent what 
islets see postprandially. It is important to point out that plasma 
FFA levels discussed above are for average plasma FFA levels and do 
not consider local islet lipoprotein lipase release of FFA from other 
sources such as chylomicrons and VLDL and do not consider 
changes in local capillary blood flow. Overall, although FFA plays 
a critical role in regulating in vivo islet function, islet exposure and 
the source of FFA postprandially are unknown. 
Plasma lipid profiles in type 2 diabetes 

Type 2 diabetes is a complex metabolic disease that does not 
have just one underlying cause and involves both genetic and 
environmental factors. One of the strongest risk factors for type 2 
diabetes is obesity (88–90). However, not every obese person gets 
type 2 diabetes, suggesting other factors must be involved. Changes 
in diet and plasma FFA are essential players in the obesity-linked 
development of type 2 diabetes; however, the evidence supporting 
this link can sometimes be unclear. Several studies, including 
systematic reviews and meta-analyses, have shown less than 
strong evidence supporting a possible link between plasma FFA 
and type 2 diabetes (90–97). The problem with earlier studies is that 
they focused on total dietary and plasma lipids, which may mask 
any real effect due to individual lipids that may be involved in the 
development of type 2 diabetes (40, 76, 98). However, a number of 
more recent metabolomics studies have not provided any more 
clarity (43–45, 61–63, 99, 100). 

What are the changes in the five main FFAs in type 2 diabetes 
(T2D) patients? When non-fasted or short-term fasted individual 
blood lipids are measured, and total FFAs are calculated, it gives 
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values between 269-5556 mmol/L in control patients, whereas in 
T2D patients, it was between 621-9582 mmol/L (43, 44, 61–63). The 
five main FFA in plasma accounted for ~85% of matched control 
patients, and ~86% of T2D patients total FFA when measured and 
include palmitate (16:0, ~23% of the total lipids, ~585 mmol/L 
controls vs. T2D ~24% of the total lipids, ~801 mmol/L), oleate 
(18:1, ~19% of the total lipids, ~450 mmol/L controls vs. T2D ~21% 
of the total lipids, ~688 mmol/L), stearate (18:0, ~7% of the total 
lipids, ~159 mmol/L controls vs. T2D ~7% of the total lipids, ~227 
mmol/L), linoleic acid (18:2, ~31% of the total lipids, ~744 mmol/L 
controls vs. T2D ~31% of the total lipids, ~1036 mmol/L) and 
arachidonic acid (20:4, ~9% of the total lipids, ~222 mmol/L 
controls vs. T2D ~8% of the total lipids, ~284 mmol/L) (43, 44, 
61–63). This data suggests that there is about a 40% increase in total 
and the five main FFAs found in plasma in T2D patients, which is 
consistent with previous publications (66, 68, 101–103). These 
values also give us a good starting point for planning chronic in 
vitro studies with isolated islets. For example, it suggests control 
islets should be treated with FFA, as discussed above, as well as the 
high-fat treated islets, but the difference between control and high-
fat treated islets should be around 40%. This idea goes against what 
is usually done where control islets are typically treated with FFA-
free BSA, which results in a non-physiological concentration of 
FFA, but also, the FFA-free BSA can pull FFA and other 
hydrophobic  molecules  from  is lets ,  complicat ing  the  
interpretation of the results. Another problem with chronically 
treating islets with FFA is that we cannot perform long-term 
studies. What is typically done is to treat islets in vitro with high 
levels of FFA for 48–72 hrs to mimic what is happening in type 2 
diabetes. However, type 2 diabetic islets in vivo are exposed to lower 
levels of elevated FFA over years and not days. Thus, in vitro 
comparisons to what is happening in vivo are challenging to 
interpret and may represent two different mechanisms in the 
development of lipotoxicity. 

In addition to plasma FFA, there are changes in some of the 
other lipids found in non-fasted or overnight-fasted human plasma 
in type 2 diabetes. For example, the average TG levels are 1.13 µmol/ 
Lin healthy matched control patients vs. 1.78 µmol/L in T2Ds. Total 
cholesterol is 4.76 µmol/L in healthy patients vs. 5.05 µmol/L in 
T2Ds. HDL-cholesterol is 1.34 µmol/L in healthy patients vs. 1.19 
µmol/L in T2Ds. LDL-cholesterol is 2.97 µmol/L in healthy patients 
vs. 3.21 µmol/L in T2Ds. The TG, total cholesterol, HDL-cholesterol 
and LDL-cholesterol levels described were averaged from several 
papers (43, 44, 63–68). Although these differences are not large, as a 
whole, T2Ds have abnormal plasma lipid levels, which is consistent 
with previously published studies. The use of lipids should be 
comparable and carefully considered when planning in vitro islet 
studies so that they more closely match what is going on in vivo. 

Most lipid studies have focused on non-fasted or short-term 
fasting plasma lipid levels, and the role of lipids in the development 
of T2Ds may be more complex than what is seen in the fasting state. 
T2Ds have been found to have higher intakes of total and saturated 
fat than healthy controls (91, 104), although this is not always the 
case in all studies (92, 105, 106). In addition, low-fat diets may not 
be as beneficial for avoiding T2Ds as researchers hoped (90, 92, 105, 
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107–109). There have also been limited studies looking at what 
happens to lipids postprandially in T2Ds, partly due to the 
complexity of planning such studies. Postprandial lipid 
absorption, transport and metabolism may be altered in T2Ds, 
and more clinical studies are needed to assess this possibility. 

When treating islets with FFA, one should consider the in vivo 
changes in lipids. Researchers should ask whether there is a need to 
balance the total FFA levels when assessing the effects of a single 
FFA, such as palmitate. For example, if we only use palmitate at its 
physiological concentration discussed above and conjugate it to 
albumin, do we use a lower albumin concentration to be sure we 
have an appropriate level of unbound palmitate, or do we conjugate 
palmitate to a physiological concentration of albumin and use other 
lipid(s) to balance the total FFA in the preparation? Using a lower 
albumin concentration or adding another lipid will complicate the 
interpretation of the results. Also, what controls should be used for 
these experiments? The answer to these questions is not 
straightforward since untreated albumin may have lipids and 
other impurities, and using FFA-free albumin may pull 
endogenous FFAs and other lipid-soluble metabolites out of the 
cells you are trying to treat. FFA-free albumin will also impact 
experiments using lipid-soluble drugs since albumin can bind these 
as well (20). 
FFA, albumin and isolated islet studies 

The difficulty in comparing many in vitro islet studies is that the 
type and final concentration of BSA is variable between studies and is 
typically between 0.1-1% (a 1% BSA solution is equivalent to 1 g/dl or 
151 µM BSA solution). Interestingly, the albumin concentration of 
in vivo plasma is about 3.5–5 g/dl (or 3.5-5%, 530-758 µM), which is 
far higher than that used for in vitro islet studies (110). The interstitial 
concentration of albumin in the space around islet cells and whether 
interstitial albumin plays an important role in the exposure of islet 
cells to FFAs is unknown. The estimated interstitial albumin 
concentration in the space around cells is challenging to determine 
experimentally. In one study, it was estimated to be 0.73 g/dl (111 µM) 
in  adipose and  1.3 g/dl (197 µM)  in  skeletal  muscle  (111). These 
studies suggest a reasonable estimate for the interstitial albumin 
concentration around islets is about 151 µM (or 1%); however, this 
should be determined experimentally. 

Another question is whether interstitial albumin is more 
important than the plasma concentration of albumin in 
controlling the exposure of islets to unbound FFAs. The delivery 
of FFAs to islets is challenging to estimate because they are not 
solely dependent on total circulating FFAs and albumin but also on 
local delivery of FFA. Islet lipoprotein lipase on or near islets can 
increase local FFA levels from TG stores in chylomicrons and 
VLDLs. Also, FFAs released by islets from internal stores may 
play a role in local FFA delivery to islets (Figure 1) (112, 113). The 
local unbound concentration of FFA is important in controlling 
cellular uptake (23), and only the FFAs that remain unbound can 
potentiate glucose-stimulated insulin secretion (GSIS) (10). 
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Therefore, understanding the above questions is essential in 
effectively planning in vitro islet experiments. 

After complexing albumin and FFAs, one must also consider 
which media is used to treat cells (Figure 2). For example, it is 
common to use fetal bovine serum (FBS) to culture islets that are 
being treated with chronic high fat. FBS has a concentration of 
albumin around 2-4% (on average 2.5 g/100 ml) and has FFAs, 
cholesterol, chylomicrons, VLDL, LDLs, HDLs and other impurities 
(11, 114). For example, a typical value of 10% FBS in the islet culture 
media will increase the albumin concentration by ~0.25%. FBS also 
has around 190 µM of total FFAs, which, when diluted to 10% FBS, 
will add 19 µmol/L of FFAs to the experimental media (114). Islet 
cells also express lipoprotein lipase that can release FFA from TGs 
stored in chylomicrons and VLDL found in FBS (112, 115, 116). 
These variables must be carefully controlled for when planning in 
vitro islet studies. 

Overall, interpreting lipid-based experiments in islets and 
comparing different studies is complicated by a number of 
variables. In a scan of several lipid studies in islets, there is 
sometimes incomplete information on the methods of lipid 
preparation, storage time, or the molar ratio of FFA: albumin 
(117–121). For future studies, it is essential to report the method 
of preparation, whether a concentrated stock of FFA was used, the 
time from preparation to use in experiments, was FBS used, what 
media/buffer was used for the experiments, what controls are used, 
FFA/albumin molar ratio, and unbound FFA concentrations should 
be measured for in vitro experiments (Figure 2). There is also a need 
to understand better how lipids are delivered to islet cells across 
blood vessels and through the interstitial space to better plan in vitro 
islet experiments. Since albumin plays such an important role in 
solubilizing FFA, it is important to determine the interstitial 
albumin concentrations near islets to allow us to create a more 
accurate physiological model of what is happening in vivo. 
FFA transport into cells 

Transport of FFA from blood vessel capillaries into cells is not 
trivial. The movement of FFA from blood plasma to cells is limited 
by dissociation of FFA from albumin, transport across or in 
between capillary endothelial cells, binding and release from 
interstitial albumin, binding of FFA to the outer leaflet of the cell 
plasma membrane, transport across the plasma membrane into the 
inner leaflet of the plasma membrane and final binding to 
intracellular fatty acid binding proteins (FABP) and lipid 
activation (17) (Figure 1). FABP has a lower binding affinity as 
compared to albumin, and its expression changes depending on the 
nutrition state of the cell (122, 123). To complicate matters further, 
the expression of lipoprotein lipase on capillary endothelial cells 
(124) or on islet b-cells (112, 115, 116) has been shown to release 
FFA from TG in chylomicrons and VLDL, which can increase the 
local concentration of FFA around islet cells in vivo. The expression 
of lipoprotein lipases is also affected by the nutritional state of islet 
cells (125). For in vitro islet studies, some of these barriers are 
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bypassed, but new obstacles are introduced. For example, transport 
of FFA to the core of an islet is limited without blood transport of 
FFA via islet core capillaries. Also, the expression and activity of 
lipoprotein lipase in islets should be considered when performing in 
vitro islet lipid studies. 
FFA activation and metabolism in cells 

Once inside islet cells, FFA is important in regulating insulin 
secretion (Figure 3). Most lipid metabolism pathways require lipids 
to be first activated by thioesterification to acyl-CoA. Exogenous 
and endogenous FFA are trapped in cells by converting them into 
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acyl-CoAs (126). Long-chain acyl-CoA synthetases (ACSL) and FA 
transport proteins (FATP) have acyl-CoA synthase activity and 
enhance FA uptake (127). FAs of 14–26 carbons are activated by 
one of 13 long-chain or very-long-chain acyl-CoA synthetases 
(ACSL, ACSVL/FATP, ACS bubblegum (ACSBg)) (128). Once 
activated, acyl-CoA can be metabolized by one of six major 
enzyme families: elongases and desaturases (129), dehydrogenases 
(130, 131), acyl-CoA thioesterases (132, 133), carnitine 
palmitoyltransferases (CPT) (134), and lipid and protein 
acyltransferases (135). In addition, acyl-CoA can be used for cell 
signaling, vesicle fusion, and protein acylation at the plasma 
membrane, endoplasmic reticulum, and Golgi (136–145). Acyl-
CoA are not freely moving in cells but are directed into specific 
FIGURE 2 

The concentration of FFAs in islet culture media depends on whether FFA-free albumin is used, if the FFAs are bound or unbound, and if FBS is 
included in the media. Top: Control islet experiments are typically incubated with FFA-free albumin (yellow). For long-term islet studies, fetal bovine 
serum (FBS) is also included in the culture media. FBS contains albumin (green) with bound FFAs (green FFA), chylomicrons (grey) and VLDLs 
(purple). Lipoprotein lipase (LPL, orange) on islets can release FFAs (red FFA) from TG stored in chylomicrons and VLDLs. FFA can also be released 
from internal stores of islets (blue FFA). Overall, there are two sources of unbound FFAs in control experiments: FFAs from islets and FFAs from FBS 
(chylomicrons, VLDL, and albumin). These unbound FFAs can bind to FFA-free albumin (indicated by red arrow) in islet culture media, which will 
reduce the unbound concentration of FFAs and potentially pull FFA (blue FFA) from islets and FBS (green FFA and red FFA). Bottom: FFA-treated islet 
experiments are typically incubated with FFA-free albumin pre-conjugated with FFA (yellow FFA) and sometimes FBS. In this experimental setup, 
there are three possible sources of FFAs that contribute to the unbound FFA concentration. These include 1) FFAs from albumin, Chylomicrons, and 
VLDL from FBS, 2) FFAs from islets, and 3) the FFA prepared with FFA-free albumin pre-conjugated with FFAs. The combination of all three sources 
of unbound FFA may increase the final unbound FFA above what was wanted experimentally. 
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pathways, and their metabolism is highly controlled, and the 
movement  of  the  acyl-CoAs  themselves  seems  to  be  
compartmentalized, but how is unknown. 

There are five mammalian isoforms of ACSL (ACSL1, 3-6), 
which can be further subdivided into two subfamilies depending on 
their substrates and amino acid sequence (146–148). Although all 
five ACSLs use saturated and unsaturated fatty acids of chain 
lengths of 8–22 carbons, ACSL1 has a marked preference for 
oleate and linoleate (147–149). The preferred substrates of ACSL3 
are myristate, palmitate, arachidonate, and eicosapentaenoate (128, 
150–152). ACSL4 has a marked preference for arachidonic acid 
(20:4) and eicosapentaenoic acid (20:5) (150–154). ACSL5 preferred 
substrates are palmitate, palmitoleate, oleate, and linoleate (147, 
148, 154). ACSL6 is reported to have an equal preference for 
saturated and polyunsaturated FA with a backbone of C16-C20 
(147, 148, 155). ACSLs play a role in directing fatty acids to various 
lipid metabolic pathways, including complex lipid synthesis, lipid 
storage or lipid b-oxidation (156). It has been shown that ACSL1 
may shunt acyl-CoAs towards TG synthesis, whereas ACSL5 may 
shunt acyl-CoAs towards mitochondrial b-oxidation. ACSL4 may 
provide acyl-CoA to peroxisomes for lipid synthesis and oxidation. 
However, more work is needed to examine the role of ACSLs in 
shunting acyl-CoAs to various pathways (156). In b-cells, ACSL3 
and ACSL4 are expressed in human and rat islets and are required 
for optimal glucose-stimulated insulin secretion (157, 158). ACSL3 
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and ACSL4 are concentrated on insulin granules and less so 
in mitochondria. 

Support for the compartmentalization of ACSL proteins comes 
from several studies. Compartmentalized production of acyl-CoA is 
supported by studies showing that ACSL1 knockout in the liver, 
which is equally distributed on the ER and the mitochondrial outer 
membrane and accounts for only 50% of the total ACSL activity, 
leads to minimal loss of TG synthesis and b-oxidation (159, 160). 
Whereas the loss of ACSL1 in skeletal muscle, brown fat and cardiac 
tissue, where ACSL1 accounts for 90% of total activity, leads to a 
decrease in b-oxidation, but the remaining ACSL isoforms are 
sufficient  for  normal  TG  and  membrane  phospholipid  
biosynthesis (161–163). However, the problem with most studies 
looking at acyl-CoA partitioning by ACSL isoforms is that these 
studies have been done using subcellular fractionation that can 
result in contamination from other cellular compartments (164). 
Using confocal imaging is a better choice; however, these studies 
require fixed cells and highly specific antibodies. Overexpression 
studies have also been performed with tagged ACSL proteins with 
fluorescent proteins; however, abnormally high protein levels 
complicate these studies, and these studies may lead to ER 
retention and not reflect the true endogenous protein localization 
(165–167). Also, localization may depend on the type of cell or the 
cell’s physiological state and how the cells have been treated. For 
example, exogenous FA causes tagged ACSL3 to move from the ER 
FIGURE 3 

The role of FFAs in the potentiation of glucose-stimulated insulin secretion from islet b-cells. FFA can either activate GPR40 or be transported into 
b-cells, followed by activation by ACSL to acyl-CoA. GPR40 requires elevated glucose levels to stimulate insulin secretion. In addition to external 
sources of FFA, FFA can be generated from glucose, involving the de novo lipogenesis (DNL) pathway. Glucose can also be converted to malonyl-
CoA, which can inhibit b-oxidation in mitochondria. Acyl-CoA and glycerol-3-phosphate can enter the GL/FFA cycle, which cycles between TG 
synthesis and lipolysis, generating 1-monoacylglycerol (1-MAG). 1-MAG can interact with MUNC13-1 and promote insulin secretion. 1-MAG is 
hydrolyzed by ABHD6 to FFA and glycerol-3-phosphate. 
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to newly forming lipid droplets (168), and knockdown of ACSL3 
reduces de novo lipogenesis (DNL) (169, 170). ACSL1 and ACSL5 
have been localized to mitochondria and ER and likely play a role in 
shunting lipids towards b-oxidation and TAG synthesis (171–173). 
Gaining a better understanding of the role of lipid transport and 
activation in b-cells and the changes that occur during different 
nutritional states is essential to interpreting the effects of treating 
islets with acute and chronic elevation of lipids. 
Acute effects of FFA on insulin 
secretion 

Lipids are required for glucose-stimulated insulin release in vivo 
(60) and ex vivo (8), and if islets are deprived of FFA, their response 
to glucose is impaired (174). There are three possible sources of islet 
FFAs: 1) exogenously derived FFAs (dietary and circulating), 2) 
endogenously synthesized FFAs, and 3) release from internal stores. 
FFA can potentiate glucose-stimulated insulin secretion by a 
receptor-based mechanism involving the G-protein-coupled 
receptor 40 (GPR40) and through lipid metabolism that generates 
insulin secretory signalling molecules (5, 175, 176). Several lipid 
metabolism pathways have been shown to play a role in regulating 
insulin secretion, including the ATP citrate lyase (ACL)/acetyl-CoA 
carboxylase (ACC)/malonyl-CoA/carnitine palmitoyltransferase-1 
(CPT-1) axis and the glycerolipid (GL)/FFA cycling pathway 
(177) (Figure 3). 

FFA activation of GPR40 (or FFAR1) has been shown to 
potentiate glucose-stimulated insulin secretion at high glucose but 
not at low glucose concentrations in clonal cell lines (INS-1 and 
MIN6 cells) and mouse and human islets (176, 178–181). Using 
GPR40 knockout mice, it has been suggested that about 50% of the 
insulin secretion response to FFA is due to activation of GPR40 
(182). GPR40 activation leads to the activation of phospholipase C 
via the Gaq/11 subunit and an increase in intracellular calcium 
concentrations (178). It has also been suggested that GPR40 may be 
coupled to the Gas subunit, activating adenylyl cyclase and 
mediating changes in ion channel activities (183). 

Deletion of GPR40 in mice does not affect in vivo glucose 
metabolism under normal physiological conditions (175, 182, 184). 
Feeding GPR40 knockout mice a high-fat diet leads to the 
development of fasting hyperglycemia and lower insulin secretion 
(176). In addition to GPR40, GPR120 (FFAR4) has also been 
suggested to regulate insulin secretion. Like GPR40, GPR120 can 
potentiate islet glucose-stimulated insulin secretion (185). However, 
GPR120 knockout has been shown to have normal b-cell function 
(186, 187). Using GPR40 and GPR120 knockout mice and double 
knockout mice, it has been demonstrated that activation of both 
GPR120 and GPR40 enhances insulin secretion ex vivo. However, 
the combined deletion of these two receptors only minimally affects 
glucose homeostasis in vivo in mice (188). 

Although studies in mice do not always show an essential role 
for GPR40 in regulating glucose homeostasis, this may not be the 
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case in humans. Since GPR40’s effects on insulin are glucose-
dependent, it suggests that it could be a target for treating type 2 
diabetes. The GPR40 agonist, TAK-875 (Fasiglifam), has been 
shown to reduce fasting and postprandial blood glucose levels 
and HbA1c in clinical trials (189). However, phase III trials were 
terminated due to safety concerns. Although unsuccessful, these 
clinical trials have demonstrated the potential for targeting GPR40 
in treating type 2 diabetes, and newer compounds with fewer side 
effects are being developed (189, 190). 

Lipid-regulated insulin secretion in b-cells involves the GL/FFA 
cycling pathway. This pathway involves both glucose-driven DNL 
production of malonyl CoA, FFA, and acyl-CoA and the release of 
lipids from internal stores (4, 191, 192). b-cells are capable of 
lipogenesis and contain enzymes required for lipid synthesis, 
including pyruvate carboxylase (PC) (193, 194), fatty acid 
synthase (FASN) (194, 195) and acetyl-CoA carboxylase (ACC) 
(195). Glucose-driven DNL in b-cells has been proposed to generate 
metabolic signalling molecules important for regulating insulin 
exocytosis (4). A key step in the DNL pathway is the export of 
mitochondrial citrate into the cytosol, which is then converted to 
acetyl CoA and oxaloacetate by citrate lyase (CL) (196). Acetyl CoA 
can be converted to malonyl-CoA by ACC (5, 192, 197). The 
generated malonyl CoA can inhibit carnitine palmitoyltransferase 
1 (CPT-1) and b-oxidation, which is an essential step in regulating 
insulin release (198). FASN synthesizes long-chain fatty acids by 
using acetyl-CoA as a primer, malonyl-CoA, and NADPH as a 
reducing equivalent. FASN predominately produces the 16-carbon 
non-esterified fatty acid palmitate, which can be modified into other 
types of FFAs. Interestingly, FFAs cannot stimulate insulin 
secretion in the absence of elevated glucose (192, 199). FFA 
activation to acyl-CoA by ACSL is also an essential part of the 
ability of lipids to potentiate glucose-stimulated insulin secretion 
(12, 157, 158, 192). 

The lipolysis arm of the GL/FFA cycle consists of the 
breakdown of triglycerides and phospholipids to give rise to 
glycerol and FFA (192). Four GL/FFA cycle enzymes, hormone-

sensitive lipase (HSL), adipose triglyceride lipase (ATGL), glycerol 
3-phosphate phosphatase (G3PP) and a/-b-hydrolase domain 6 
(ABHD6), have been shown to play a vital role in b-cell insulin 
secretion (200–203). G3PP hydrolyses glucose-derived glycerol-3­
phosphate (204), and ABHD6 controls the last step of lipolysis by 
hydrolyzing 1-monoacylglycerol (1-MAG) (202). G3PP controls the 
availability of glucose-derived glycerol 3-phosphate, the precursor 
for generating triglycerides (204) whereas ABHD6 hydrolyzes 1­
MAG, which has been suggested to be a key signalling molecule 
involved in regulating glucose-stimulated insulin release by 
activating Munc13-1, an exocytosis-facilitating protein (202). 
Since 2-arachidonoylglycerol (2-AG) is the main 1-MAG species 
hydrolyzed by ABHD6, it suggests that 2-AG can activate Munc13– 
1 to promote insulin secretion. These studies show that ABHD6 
plays an essential role in regulating FFA-stimulated insulin 
secretion. Glucose can increase lipolysis from lipid droplets in 
human islets, and this process is defective in type 2 diabetic islets 
(203). Both ATGL and HSL play important roles in the mobilization 
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of lipid droplets from b-cells, and their loss can lead to defective 
insulin secretion (200, 203, 205). 

Another critical step in regulating lipid metabolism in b-cells is 
inhibiting lipid metabolism via b-oxidation. Several studies have 
shown that promoting b-oxidation either by overexpressing CPT1 
or expressing a malonyl CoA insensitive CPT1 leads to inhibition of 
insulin secretion and suggests that malonyl CoA, ACC, and CPT1 are 
essential players in regulating insulin secretion (4, 198, 206). 
Although somewhat controversial, b-cells express both ACC1 and 
ACC2. At the single-cell level, human b-cell ACC1 mRNA is 
expressed about 21-fold higher than ACC2, and ACC1 is expressed 
about 13-fold higher than ACC2 in mouse b-cells (207). Additional 
studies have also shown that ACC2 is expressed in mice, rat islets and 
clonal b-cells (832/13 cells) (197, 208, 209) and human b-cells (207, 
210, 211). We have also published three papers (208, 209, 212) 
showing that ACC2 is expressed in mice, rat islets and clonal b-cells 
(832/13 cells). The loss of PHD3 in b-cells may increase the risk of 
developing diabetes and may be related to the loss of PHD3-mediated 
proline hydroxylation of ACC2 (208, 209, 213, 214). 

Although ACC2 expression in b-cells has been debated, a number 
of studies have shown that ACC2 is required for the inhibition of b-
oxidation of lipids and plays a role in regulating insulin secretion (4, 
57, 198, 206, 207, 210, 211, 215–224). The protein expression of ACC2 
has been shown in clonal b-cells and islets in several papers (225–229), 
although a few papers have suggested ACC2 is not expressed at the 
protein level (195, 230). ACC2 is embedded in the mitochondrial 
outer membrane and regulates b-oxidation of fatty acids by generating 
malonyl CoA, inhibiting CPT1 and lipid transport into mitochondria 
(231). The inhibition of b-oxidation requires malonyl CoA generated 
by ACC2, whereas the malonyl CoA generated by ACC1 is used for 
DNL (reviewed in (232)). Strong support for the role of ACC2 in the 
regulation of CPT1 and b-oxidation in b-cells was shown in several 
papers (197, 233). These papers showed that the knockdown of ACC1 
in clonal cells and b-cell-specific ACC1 knockout islets inhibits DNL, 
but these cells maintain the ability of glucose to inhibit b-oxidation, 
which is consistent with a key role for ACC1 in controlling DNL and 
ACC2 regulating b-oxidation in b-cells. Defects in the ability to 
regulate lipid b-oxidation in b-cells are known to lead to an 
inhibition of insulin secretion (209, 215). 
Chronic effects of FFA on b-cell 
function 

In vitro islet studies looking at the effects of chronic lipid 
treatment use different types of fatty acids and forms at various 
concentrations (e.g., palmitate or palmitic acid, oleate or oleic acid). 
In studies investigating lipotoxicity, variable and sometimes high 
non-physiologically molar ratios of FFA/BSA are used (46, 47, 49, 
51, 53–56, 234, 235). If we compare the molar ratios used in vitro to 
what is seen in people with T2Ds, non-diabetic plasma FFA levels 
are typically between 278-580 µmol/L, and T2Ds are between 370­
830 µmole/l (62, 64, 65, 68, 103). Albumin concentrations in human 
plasma are between 3.5–5 g/dl (or 3.5-5%, 530-758 µM) (110). Thus, 
using an albumin concentration of 650 µM and the highest 
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measured plasma FFA levels, the ratio of FFA: albumin for non-
diabetics is ~0.89 and T2Ds ~1.27. The molar ratio of FFAs: 
albumin provides information on the unbound concentration of 
FFAs. To compare studies, it is important to know the method of 
lipid preparation, BSA concentration and FFA/albumin molar ratio, 
unfortunately, this information is not always clearly stated or 
provided (117–121). In well-controlled in vitro islet studies that 
provide detailed methods of lipid preparation, a typical FFA: 
albumin ratio is between 3:1 and 6:1 (36, 37, 56, 234–236). One 
of the common explanations for using higher molar ratios is to 
overcome the experimental time barriers since the development of 
type 2 diabetes takes years vs. our ability to culture islets for long 
periods. However, changing the FFA: albumin molar ratio and the 
incubation time may significantly impact the biological effects and 
mechanism of impairment of islet function (36, 236). It has also 
been suggested that molar ratios greater than 6:1 should be avoided 
as they are unphysiological and may exceed FFA solubility, which 
may produce artifacts (36, 237). 

The method of conjugating lipids to BSA, whether stock solutions 
are used, and the length of storage before use  can also complicate

matters further. For example, treating INS-1E cells with 0.5 mM 
palmitate conjugated with 0.75% FFA-free commercially purchased 
BSA solution (FFA/albumin molar ratio of 4.4) for 16 hours resulted in 
a similar level of apoptosis as seen with a solution made with 1% 
charcoal-absorbed BSA (FFA/albumin molar ratio of 3.3) (36). 
Interestingly, if FFAs are precomplexed with FFA-free BSA at a 
higher concentration and then diluted to a similar degree as a 
solution made without diluting the FFAs, led to less apoptosis, 
suggesting stock solution storage affects FFA/BSA solution (36). This 
may be related to some of the FFA forming aggregates in the pre­
complexed FFA/BSA solution, which would lower the available 
unbound FFAs (36). Also, when oleate is prepared and used at a 
similar final concentration to palmitate, it leads to a comparable level of 
apoptosis (36). However, when unbound FFA was set at 24 nM for both 
palmitate and oleate, palmitate led to more apoptosis than oleate (36). 
These studies suggest that the type of FFA-free BSA and preparation 
method can significantly impact the results when treated with lipids. 
Conclusions 

Overall, lipids play a key role in regulating b-cell function; however, 
understanding how they regulate insulin secretion is complicated by a 
number of factors. Variability in in vitro islet experimental methods 
include the type of lipid, the form of the lipid, concentration and type 
BSA, method of preparation, delivery to cells, and the concentration of 
unbound FFA. Additionally, how islet lipid experiments are performed 
should be carefully planned to use a more physiological approach to 
assessing the role of FFA on insulin secretion. For example, controls 
should have physiological levels of FFA, and the molar ratio of FFA/BSA 
should be less than 3:1 since FFA levels don’t change more than that in 
most disease states, including type 2 diabetes. It is well accepted that 
FFA plays a role in regulating insulin secretion in response to a meal, in 
the development of type 2 diabetes, and chronic exposure to FFA can 
result in b-cell dysfunction. However, how FFA are delivered to islets is 
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incompletely understood. One key source of local FFA delivery to islets 
in vivo may be lipoprotein lipase release of FFA from chylomicrons and 
VLDL. Overall, to allow for comparison of different islet lipid studies, it 
is recommended that isolated islet studies using FFA should: 
Fron
1. Report the type, source and order information of albumin 
and FFA. 

2. Report the method of lipid preparation and the amount of 
time the lipids are stored. 

3. Consider the potential effects of using different albumin 
concentrations and FFA-free BSA. 

4. Report the FBS concentration in the islet culture media and 
consider the potential release of FFA from chylomicrons 
and VLDLs in FBS from islet lipoprotein lipases. 

5. Measure	 the final concentration of FFA and unbound 
concentration of FFA. 

6. Report the final concentration of albumin, FFAs, unbound 
FFA concentration, and the molar ratio of FFA: albumin. 

7. Avoid molar ratios of FFA: albumin greater than 3:1. 
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