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Objective: This study explores the value of combining intratumoral and

peritumoral radiomics features from ultrasound imaging with clinical

characteristics to assess axillary lymph node burden in breast cancer patients.

Methods: A total of 131 breast cancer patients with axillary lymph node

metastasis (ALNM) were enrolled between June 2019 and September 2024.

Patients were divided into low (n=79) and high (n=52) axillary lymph node burden

(ALNB) groups. They were further split into training (n=92) and validation (n=39)

cohorts. Intratumoral and peritumoral features were analyzed using the

maximum relevance minimum redundancy (MRMR) and least absolute

shrinkage and selection operator (LASSO) methods. Six machine learning

models were evaluated, and a combined clinical-radiomics model was built.

Results: The combined logistic regression model exhibited superior diagnostic

performance for high axillary lymph node burden, with areas under the ROC

curve (AUC) of 0.857 in the training cohort and 0.820 in the validation cohort,

outperforming individual models. The model balanced sensitivity and specificity

well at a 52% cutoff value. A nomogram provided a practical risk assessment tool

for clinicians.

Conclusion: The combined clinical-radiomics model showed excellent

predictive ability and may aid in optimizing management and treatment

decisions for breast cancer patients.
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1 Introduction

The status and extent of axillary lymph node (ALN) metastasis

are critical prognostic factors for the recurrence and survival of

breast cancer patients (1). Early and accurate assessment of lymph

node involvement is essential for axillary staging and the

development of an appropriate treatment strategy. Currently, it is

widely accepted that tumor cells typically first spread from the

primary site to nearby regional lymph nodes and then metastasize

to distant organs. Thus, axillary lymph node dissection (ALND) (2)

is considered the standard treatment for early breast cancer patients

with positive ALNs. However, as an invasive procedure, ALND is

associated with complications such as lymphedema, infection,

restricted shoulder movement, and neurovascular injury, all of

which negatively impact the quality of life for patients.

With advances in breast cancer treatment, sentinel lymph node

biopsy (SLNB) has emerged as a safer, less invasive, and

diagnostically accurate alternative (3). By selectively detecting the

first group of lymph nodes that drain from the primary tumor,

SLNB effectively monitors whether axillary lymph node metastasis

(ALNM) has occurred, thereby avoiding the need for extensive

dissection. SLNB not only provides an accurate assessment of ALN

status but also significantly reduces surgery-related complications.

Today, SLNB has become the standard method for axillary lymph

node staging in breast cancer patients (4). However, there remains

clinical controversy over whether patients with positive sentinel

lymph nodes require axillary clearance. Some studies have shown

that in patients with preoperative lymph node biopsies showing

positivity, only 1-2 metastatic lymph nodes were found in the

ALND specimens (5, 6). According to guidelines from the

American Society for Clinical Oncology (ASCO) (7), early-stage

breast cancer patients with T1-T2 disease and 1-2 positive sentinel

lymph nodes can forgo ALND in favor of breast-conserving surgery

combined with whole-breast irradiation. The long-term follow-up

data from the Z0011 trial revealed that the 5-year incidence of

postoperative lymphedema in the SLNB group was only 6%,

significantly lower than the 25% observed in the ALND group.

Additionally, patients in the SLNB group experienced faster

recovery of shoulder joint function and lower postoperative pain

scores (8, 9). This demonstrates that for patients with low axillary

lymph node metastatic burden, SLNB not only avoids unnecessary

trauma but also significantly improves postoperative quality of

life. Therefore, for T1-T2 breast cancer patients with low axillary

lymph node metastasis burden, routine ALND may not be

necessary for postoperative treatment. Despite its high diagnostic

accuracy, Studies indicate that the false-negative rate of SLNB

is approximately 5–10%, particularly in cases involving small

metastatic foci (<2 mm) or skip metastases. Such missed

diagnoses may lead to inaccurate staging in patients with high

lymph node burden, thereby affecting adjuvant treatment decisions.

To address this challenge, clinical guidelines currently recommend

the use of dual tracers (e.g., blue dye combined with radioactive

colloid) to improve SLN detection rates but use of dual tracers for

lymph node tracing may cause allergic reactions in some patients.
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Consequently, there is a pressing need to develop a safe and effective

non-invasive technique that can accurately assess the ALNM

burden preoperatively, offering a potential alternative to SLNB

and reducing postoperative complications from ALND.

Ultrasound, with its advantages of being simple, fast, and non-

invasive, has been widely used in the detection of breast tumors. The

introduction of the Breast Imaging-Reporting and Data System (BI-

RADS) has further standardized the description of breast masses for

malignancy. However, ultrasound has limitations in detecting

ALNM (10). Studies have shown that when the number of

metastatic lymph nodes is fewer than three, ultrasound sensitivity

and specificity significantly decrease, leading to potential missed or

inaccurate diagnoses. Moreover, diagnostic accuracy among

ultrasound physicians can vary considerably due to differences in

experience and scanning habits. Results from Cui et al. (11)

indicated that the diagnostic efficiency of less-experienced

ultrasound physicians was 20% lower compared to that of more

experienced physicians.

Radiomics, a rapidly evolving imaging analysis technique, has

been widely applied in disease diagnosis, prognosis, and treatment

efficacy prediction. This technique extracts a large number of

quantitative imaging features, selects and reduces dimensionality,

and reveals characteristics that make non-invasive precision

medicine possible. Using automated data characterization

algorithms, radiomics can extract and select optimal features from

regions of interest (ROIs) that often have high diagnostic value in

breast cancer masses, including features based on grayscale, texture,

and shape, which are then quantified. These features reflect

biological information about the tumor and are highly correlated

with disease status (12, 13). Recent studies have demonstrated (14,

15) that machine learning models based on ultrasound radiomics

exhibit significant advantages in predicting high axillary lymph

node burden(AHNB) (defined as more than two metastatic lymph

nodes), with sensitivity and specificity substantially higher than

those of conventional ultrasound. By extracting features such as

gray-level co-occurrence matrix (GLCM) and wavelet transform

characteristics from tumor regions, these models can reveal spatial

heterogeneity in the tumor microenvironment, capturing potential

biological behaviors associated with lymph node metastasis.

Although further external validation is required to confirm their

generalizability, the non-invasive nature and real-time analysis

potential of these models position them as promising auxiliary

tools for preoperative assessment.

This study preliminarily screened clinical-pathological features

and radiomics features associated with high lymph node burden

through univariate analysis. Independent risk factors were

subsequently identified using LASSO regression and multivariate

logistic regression. Model performance was evaluated via 5-fold

cross-validation and independent external cohort validation, with

discrimination ability assessed using AUC, sensitivity, and

specificity. Clinical utility was further validated through

calibration curves and decision curve analysis (DCA). The final

integrated model combines key independent risk factors to enable

personalized prediction.
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2 Methods

2.1 Study population

This study prospectively and retrospectively collected 131 cases

of T1-T2 stage primary unifocal breast cancer with axillary lymph

node metastasis (ALNM) from June 2019 to September 2024 at the

First Affiliated Hospital of Shihezi University. Among them, 79

patients were confirmed with low axillary lymph node burden

(ALNB) (≤2 metastatic lymph nodes), with an average age of

55.99 ± 11.05 years (Table 1), 52patients were confirmed with

AHNB (>2 metastatic lymph nodes), with an average age of 54.10 ±

9.56 years. All patients had not received any treatment before

surgical resection and had complete preoperative ultrasound

images and clinicopathological data. The cases were randomly

divided into a training group (n=92) and a validation group

(n=39) in a 7:3 ratio. This study was approved by the Medical

Ethics Committee of the hospital (KJ2023-412-01), and all patients

provided written informed consent before surgery.

1) Inclusion Criteria:

a. Female patients aged 18-90 years.

b. All patients diagnosed with breast cancer via postoperative

pathology or core needle biopsy, with clear lymph node

pathology diagnosis.

c. Availability of clear and complete preoperative ultrasound

images of the breast mass.

d. Patients consented to participate in the study.

2) Exclusion Criteria:

a. Patients who underwent core needle biopsy or interventional

treatment before ultrasound examination.

b. Breast masses with unclear boundaries on ultrasound or with

a diameter greater than 5 cm.

c. Patients with multifocal or multicentric breast cancer

confirmed by pathology.

d. Incomplete clinical information (either clinical data or

ultrasound images) or without a clear pathological diagnosis.

e. Patients with other tumors or a history of recurrent

breast cancer.
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2.2 Equipment and methods

2.2.1 Ultrasound equipment
Ultrasound machines used in this study included Siemens

S3000 (Germany), SAMSUNG RS85, SAMSUNG RS80, and

SAMSUNG R10 (South Korea) color Doppler ultrasound

diagnostic systems, equipped with 9L4 (4-9 MHz) and L3-12a (3-

12 MHz) linear probes. All ultrasound examinations were

performed by uniformly trained physicians using standardized

device parameters (gain: 50–60 dB, depth: 4–6 cm, frequency: 8–

12 MHz). Image quality was independently assessed by two senior

physicians, excluding low-quality images with motion artifacts or

uneven probe pressure (e.g., blurred boundaries or absent blood

flow signals).

2.2.2 Ultrasound examination
Patients were positioned supine with their hands above their

heads to fully expose both breasts and axillary regions. They were

instructed to breathe calmly. Scanning was conducted in a

counterclockwise direction, starting from the upper outer

quadrant, lower outer quadrant, lower inner quadrant, and upper

inner quadrant, covering the entire breast in an overlapping pattern.

2.2.3 Ultrasound image feature extraction
The ultrasound images were independently assessed by two

ultrasound physicians, each with over ten years of experience, using

a double-blind method. The ultrasound image characteristics of

breast masses in enrolled patients included maximum lesion

diameter (≤2 or >2 cm), tumor location (upper inner quadrant,

lower inner quadrant, upper outer quadrant, lower outer quadrant,

or periareolar region), aspect ratio (≤1 or >1), internal echo

(homogeneous or heterogeneous), posterior acoustic attenuation

(absent or present), margin clarity (clear or unclear), margin

angulation (absent or present), morphology (regular or irregular),

microcalcifications (absent or present), Adler blood flow grading

(Grade 0, I, II, or III), and blood flow resistance index (RI). In cases

of disagreement between the two physicians, the final result was

determined through consultation or referral to a senior physician.
2.3 Image segmentation and
feature selection

An ultrasound physician with over 10 years of experience in

diagnosing breast diseases used 3D-Slicer software to outline the

region of interest (ROI) of the tumor (intra-tumoral) on

conventional ultrasound images (Appendix Figures 1-1A, 1-1B).

Using morphological dilation techniques, the tumor perimeter was

radially expanded by 1 to 5 mm according to pixel size to obtain the

expanded peri-tumoral ROI (Appendix Figures 1-2A, 1-2B).

Features from the conventional ultrasound intra-tumoral and

peri-tumoral ROIs were extracted and filtered. Feature selection

involved two steps: (1) MRMR (Maximum Relevance Minimum

Redundancy) for initial screening of high-correlation, low-

redundancy features, followed by (2) LASSO regression with 10-

fold cross-validation for further dimensionality reduction. The area
TABLE 1 Pathological types of patients with axillary lymph node
metastases from breast cancer included.

Pathology
No. (%) of patients

ALNB AHNB

Ductal Carcinoma in Situ 4 (5.1%) 7 (13.5%)

Intraductal Papillary Carcinoma 0 (0%) 1 (1.9%)

Invasive Ductal Carcinoma 72 (91.1%) 41 (78.8%)

Invasive Lobular Carcinoma 1 (1.3%) 0 (0%)

Mucinous Carcinoma 0 (0%) 0 (0%)

Medullary Carcinoma 0 (0%) 0 (0%)

Mixed Breast Carcinoma 2 (2.5%) 3 (5.8%)

Total 79 52
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under the ROC curve (AUC) of six models from the intra-tumoral

and peri-tumoral (1 to 5 mm) regions was compared to identify the

optimal intra-tumoral + peri-tumoral model, and the DeLong test

was used to compare AUC differences among the six models. The

optimal model was selected based on sensitivity, specificity, and

clinical net benefit (decision curve analysis). The final model

required a significantly higher AUC (p<0.05) than other models,

which was used to construct the Rad-score for the model.
2.4 Prediction model construction

Based on the pathology results, correlation analyses, univariate

analysis, and LASSO regression were conducted to identify

independent risk factors of AHNB from conventional ultrasound

features and immunohistochemical markers. A clinical feature model

for AHNB was then constructed. Subsequently, LASSO regression

with 10-fold cross-validation was applied to further refine feature

selection and identify independent risk factors from conventional

ultrasound characteristics and immune-histochemical markers.

These selected features were then integrated to construct a clinical

feature model. To enhance predictive performance, the Rad-Score

derived from the optimal intra-tumoral + peri-tumoral radiomics

model was combined with the clinical features. Six machine learning

algorithms—support vector machine (SVM), extreme gradient

boosting (XGBoost), random forest (RF), logistic regression (LR),

k-nearest neighbors (KNN), and decision tree (DT)—were trained

and optimized using a nested 10-fold cross-validation framework.

Hyperparameter tuning was implemented via grid search, with key

parameters including SVM’s regularization term C (0.1, 1, 10),

XGBoost’s maximum tree depth (3, 5, 7), and RF’s number of

estimators (50, 100, 200). The diagnostic performance of the six

algorithms was evaluated based on Average-AUC, Average-Accuracy,

and Average-Kappa metrics from the 10-fold cross-validation, and

the best machine learning method was selected using the area under

the ROC curve. Additionally, calibration curves were used to assess

model consistency, and the model was visualized based on the

optimal algorithm to improve interpretability.
2.5 Feature consistency evaluation

In this study, conventional ultrasound images from 30

randomly selected breast cancer patients were used. Two

physicians independently outlined the ROIs, and the intraclass

correlation coefficient (ICC) was calculated to assess the

reproducibility of radiomics feature extraction. The results

showed good consistency (ICC > 0.8). For discordant cases

(delineation difference >10%), a third senior physician arbitrated

to determine the final ROI.
2.6 Clinical features

The positive reaction of estrogen receptors (ER) and

progesterone receptors (PR) in the cell nucleus was indicated by
Frontiers in Endocrinology 04
brownish-yellow granules. A sample was considered positive if the

proportion of positive cells exceeded 21%; otherwise, it was

negative. For human epidermal growth factor receptor 2 (HER-2),

positive cells on the cell membrane were indicated by brown

granules. HER-2 was graded as 0, 1+, 2+, or 3+, with 3+

considered positive and 0 or 1+ negative. Samples graded as 2+

required further analysis using fluorescence in situ hybridization

(FISH) to determine HER-2 gene amplification and confirm

positive or negative status. Additionally, the Ki-67 proliferation

index was considered low if the proportion of positive cells was less

than 14% and high if it was 14% or greater.

The widely used Nottingham histological grading system for

breast cancer was employed, which includes three components: ①

the proportion of gland formation, ② nuclear pleomorphism, and ③

mitotic count. Each component was scored from 1 to 3, with the

total score ranging from 3 to 9. A score of 3-5 indicated Grade 1

(G1), 6-7 was Grade 2 (G2), and 8-9 was Grade 3 (G3).

Lymphovascular invasion was defined as the presence of breast

cancer cells within lymphatic vessels or blood vessels stained

positive for D2-40 and CD34 in the peri-tumoral area.
2.7 Statistical analysis

Data were analyzed using SPSS 22.0, R Studio 4.2.2, and Python

(version 3.8) software, including clinical feature summary,

radiomics feature selection, and generation of visualizations.

Continuous variables were presented as mean ± standard

deviation (x̅ ± s) or median (P25, P75), while categorical variables

were expressed as frequencies (percentages). Differences between

continuous variables were assessed using independent sample t-

tests or the Wilcoxon rank-sum test. Differences between

categorical variables were analyzed using the chi-square test or

Fisher’s exact test, depending on the data distribution. The machine

learning model analysis and construction were carried out using R

language packages “e1071,” “xgboost,” “randomForest,” “stats,”

“kknn,” and “rpart”.
3 Results

3.1 Clinical characteristics of patients

A total of 131 breast cancer patients with axillary lymph node

metastasis (ALNM) were included in this study. This cohort

comprised 11 cases of ductal carcinoma in situ, 1 case of

intraductal papillary carcinoma, 113 cases of invasive ductal

carcinoma, 1 case of invasive lobular carcinoma, and 5 cases of

mixed-type breast cancer (Table 1). Among them, 79 patients

(60.3%) were in the ALNB group, with an average age of 55.99 ±

11.05 years, while 52 patients (39.7%) were in the AHNB group,

with an average age of 54.10 ± 9.56 years. Patients were randomly

divided into a training group and a validation group at a 7:3 ratio.

The training group included 92 patients (54 in the ALNB group

(58.7%) and 38 in the AHNB group (41.3%)), while the validation
frontiersin.org

https://doi.org/10.3389/fendo.2025.1548888
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2025.1548888
group included 39 patients (25 in the ALNB group (48.7%) and 14

in the AHNB group (51.3%)).

Table 2 presents the baseline ultrasound and clinicopathological

characteristics of all enrolled patients. Univariate analysis revealed

that Adler blood flow grading, RI, histological grade, and

lymphovascular invasion were independent risk factors for AHNB

(P < 0.05). Further correlation analysis demonstrated the

relationships between these risk factors and other ultrasound and

clinicopathological features (Appendix Figure 2). The correlation

analysis highlighted moderate positive correlations between

variables such as Adler blood flow grading, and these factors

played significant roles in predicting AHNB. No statistically

significant differences were observed between other ultrasound

and clinicopathological features and AHNB (P > 0.05).
3.2 Construction of clinical feature
prediction models

Multivariate logistic regression analysis was performed following a

rigorous feature selection process. First, univariate analysis (P<0.1)

identified eight potential predictors, including Adler blood flow

grading, RI, histological grade, and lymphovascular invasion. To

address multicollinearity, variance inflation factors (VIF) were

calculated, leading to the exclusion of RI (VIF=6.2) due to its strong

correlation with Adler grading. The remaining variables were further

refined using LASSO regression with 10-fold cross-validation,

ultimately retaining three independent risk factors: lymphovascular

invasion (OR 1.82 [95% CI: 1.10–3.49]), maximum lesion diameter

(OR 2.28 [95% CI: 1.03–4.34]), and Adler blood flow grading (OR 1.74

[95% CI: 1.17–2.58]). The model was optimized via the Akaike

Information Criterion (AIC), with the final selected model

demonstrating the lowest AIC value (112.6). Internal validation using

10-fold cross-validation showed stable performance (mean

AUC=0.789, 95% CI: 0.730–0.848). The diagnostic performance

remained robust in both the training group (AUC=0.807 [95% CI:

0.754–0.860]) and validation group (AUC=0.763 [95% CI: 0.684–

0.843]), confirming its generalizability (Appendix Figure 3).
3.3 Construction and evaluation of
radiomics models

Radiomics features were extracted from six groups of ROI

regions within the intra-tumoral area and 1-5 mm around the

tumor in conventional ultrasound images. A total of 107 radiomics

features were extracted from each ROI region, and LASSO

regression was used to identify radiomics features closely

associated with breast cancer ALNB. Feature weight maps were

then drawn (Appendix Figures 4A, F). Subsequently, six radiomics

models were constructed based on different ROI ranges: intra-

tumoral + peri-tumoral 1 mm, intra-tumoral + peri-tumoral 2

mm, intra-tumoral + peri-tumoral 3 mm, intra-tumoral + peri-

tumoral 4 mm, and intra-tumoral + peri-tumoral 5 mm (Appendix

Figure 5). The AUCs of the six models in the training set were 0.650,

0.683, 0.722, 0.788, 0.673, and 0.660, while the AUCs in the
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validation set were 0.653, 0.699, 0.666, 0.771, 0.671, and 0.657,

respectively. Among these, the intra-tumoral + peri-tumoral 3 mm

model demonstrated the best diagnostic performance in both the

training and validation groups.

By combining the clinical feature model with the optimal

intratumoral and peritumoral radiomics model, we developed a

clinical-radiomics combined model. The predictive performance of

this combined model was evaluated using six different machine

learning algorithms (LR, DT, SVM, XGBoost, RF, KNN), and ROC

curves with AUC values were generated for both the training and

validation cohorts (Appendix Figures 6A, B). The results

demonstrated that among all the algorithms (Table 3), the LR

model exhibited the best diagnostic performance, with an Average-

AUC of 0.825, Average-Kappa of 0.684, and Average-Accuracy of

0.795, further highlighting the LR model’s strong advantages in

clinical applications.
3.4 Comparison of performance among
the three predictive models

This study systematically evaluated the performance of the

clinical feature model, the optimal intra-tumoral + peri-tumoral

radiomics model, and the combined clinical-radiomics model in

both the training and validation cohorts. By plotting the ROC

curves and calculating the AUC for each model (Appendix

Figures 7A, B), we found that the combined clinical-radiomics

model achieved an AUC of 0.845 (95% CI: 0.795-0.896) in the

training group and 0.806 (95% CI: 0.732-0.880) in the validation

group, significantly outperforming the models using clinical features

alone or radiomics alone. Furthermore, diagnostic performance

metrics (Table 4) showed that the combined model exhibited the

best performance across accuracy, sensitivity, specificity, positive

predictive value (PPV), negative predictive value (NPV), Youden

index, and F1 score in both the training and validation groups. In the

training group, these metrics were 0.897, 0.914, 0.602, 0.904, 0.794,

0.516, and 0.866; in the validation group, they were 0.897, 0.879,

0.663, 0.860, 0.692, 0.542, and 0.835, indicating the strong predictive

value of the combined model for AHNB.

Statistical analysis using DeLong’s test revealed significant

differences between the models (Table 5). In the training group,

the differences between the clinical feature model and the combined

model, the optimal intra-tumoral + peri-tumoral radiomics model

and the combined model, and the clinical feature model and the

optimal radiomics model were statistically significant (P<0.05). In

the validation group, the differences between the clinical feature

model and the combined model, as well as the radiomics model and

the combined model, also reached statistical significance (P<0.05),

while no significant difference was observed between the clinical

feature model and the optimal radiomics model (P=0.89).

Bootstrap internal validation of the combined clinical-

radiomics model in both the training and validation cohorts

yielded the following results: in the training cohort, the calibrated

C-index was 0.812 and the Brier score was 0.152, which was better

than the threshold of 0.250; in the validation cohort, the calibrated

C-index was 0.794 and the Brier score was 0.214, also below the
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TABLE 2 Univariate analysis for predicting axillary lymph node load in breast cancer (overall group, training group and validation group).

Characteristics

Total
(n=131) P

Value
t/
X2

Training set
(n=92) P

Value
t/
X2

Validation set
(n=39) P

Value
t/
X2

ALNB
(n=79)

AHNB
(n=52)

ALNB
(n=54)

AHNB
(n=38)

ALNB
(n=25)

AHNB
(n=14)

Age
55.99
±11.05

54.10
±9.56

0.31 1.01
57.24
±10.29

54.82
±9.54

0.26 1.12
53.28
±11.76

52.14
±9.66

0.76 0.37

Histological Grade 0.52 0.42 0.42 0.66 0.79 0.07

G1/G2 38(48.1%)
22

(42.3%)
23(42.6%)

13
(34.2%)

15(60.0%) 9(64.3%)

G3 41(51.9%)
30

(57.7%)
31(57.4%)

25
(65.8%)

10(40.0%) 5(35.7%)

Lymphovascular
invasion

<0.01 12.9 <0.01 9.07 0.04 3.92

No 30(38.0%) 5(9.6%) 21(38.9%) 4(10.5%) 9(36.0%) 1(7.1%)

Yes 49(62.0%)
47

(90.4%)
33(61.1%)

34
(89.5%)

16(64.0%) 13(%)

ER 0.89 0.60 0.67 1.56 0.45 2.63

0%-10% 13(16.5%)
10

(19.2%)
9(16.7%) 9(23.7%) 4(16.0%) 1(7.1%)

11%-40% 26(32.9%)
14

(26.9%)
21(38.9%)

13
(34.2%)

5(20.0%) 1(7.1%)

41%-70% 21(26.6%)
14

(26.9%)
11(20.4%) 5(13.2%) 10(40.0%) 9(64.3%)

71%-100% 19(24.1%)
14

(26.9%)
13(24.1%)

11
(28.9%)

6(24.0%) 3(21.4%)

PR 0.7 1.37 0.97 0.85 0.23 4.30

0%-10% 30(38.0%)
21

(40.4%)
24(44.4%)

17
(44.7%)

6(24.0%) 4(28.0%)

11%-40% 12(15.2%) 5(9.6%) 8(14.8%) 5(13.2%) 4(16.0%) 0(0.0%)

41%-70% 18(22.8%)
15

(28.8%)
13(24.1%) 9(23.7%) 5(20.0%) 6(42.9%)

71%-100% 19(24.1%)
11

(21.2%)
9(16.7%) 7(18.4%) 10(40.0%) 4(28.6%)

HER-2 0.68 0.12 0.77 0.10 0.58 0.30

-/+ 35(44.3%)
23

(44.2%)
23(42.6%)

15
(39.5%)

12(48.0%) 8(57.1%)

2+/3+ 44(55.7%)
29

(55.8%)
31(57.4%)

23
(60.5%)

13(52.0%) 6(42.9%)

Ki-67 0.69 0.16 0.31 1.02 0.43 0.61

≤14% 11(13.9%) 6(11.5%) 8(14.8%) 3(7.9%) 3(12.0%) 3(21.4%)

>14% 68(86.1%)
46

(88.5%)
46(85.2%)

35
(92.1%)

22(88.0%)
11

(78.6%)

Maximum
lesion diameter

0.01 6.38 0.04 4.42 0.04 4.73

≤2 42(533%)
16

(30.8%)
29(53.7%)

12
(31.6%)

13(52.0%) 4(28.6%)

>2 37(46.8%)
36

(69.2%)
25(46.3%)

26
(68.4%)

12(48.0%)
10

(71.4%)

(Continued)
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TABLE 2 Continued

Characteristics

Total
(n=131) P

Value
t/
X2

Training set
(n=92) P

Value
t/
X2

Validation set
(n=39) P

Value
t/
X2

ALNB
(n=79)

AHNB
(n=52)

ALNB
(n=54)

AHNB
(n=38)

ALNB
(n=25)

AHNB
(n=14)

Location 0.56 2.99 0.40 4.06 0.57 2.91

Areola area 7(8.9%) 7(13.5%) 1(1.9%) 1(2.6%) 6(24.0%) 6(42.9%)

Inner upper 14(17.7%) 9(17.3%) 11(20.4%) 9(23.7%) 3(12.0%) 0(0.0%)

Inner lower 4(5.1%) 5(9.6%) 2(3.7%) 4(10.5%) 2(8.0%) 1(7.1%)

Outer upper 40(50.6%)
26

(50.0%)
29(53.7%)

21
(55.3%)

11(44.0%) 5(35.7%)

Outer lower 14(17.7%) 5(9.6%) 11(20.4%) 3(7.9%) 3(12.0%) 2(14.3%)

Orientation 0.20 1.62 0.28 1.17 0.58 0.30

Horizontal 33(41.8%)
16

(30.8%)
20(37.0%)

10
(26.3%)

13(52.0%) 6(42.9%)

Vertical 46(58.2%)
36

(69.2%)
34(63.0%)

28
(73.7%)

12(48.0%) 8(57.1%)

Echo pattern 0.45 0.88 0.16 1.96 0.16 1.97

Homogeneous 5(6.3%) 8(15.4%) 1(1.9%) 3(7.9%) 4(16.0%) 5(35.7%)

Inhomogeneous 74(93.7%)
44

(84.6%)
53(98.1%)

35
(92.1%)

21(84.0%) 9(64.3%)

Posterior
acoustic decrease

0.39 0.73 0.50 0.45
0.67 0.18

No 35(44.3%)
27

(51.9%)
26(48.1%)

21
(55.3%)

9(35.0%) 6(42.9%)

Yes 44(55.7%)
25

(48.1%)
28(51.9%)

17
(44.7%)

16(64.0%) 8(57.1%)

Margin 0.43 0.63 0.18 1.81 0.55 0.37

Clear 39(49.4%)
22

(42.3%)
29(53.7%)

15
(39.5%)

10(40.0%) 7(50.0%)

Unclear 40(50.6%)
30

(57.7%)
25(46.3%)

23
(60.5%)

16(60.0%) 7(50.0%)

Spiculated margins 0.25 1.32 0.60 0.27 0.20 1.67

No 7(8.9%) 8(15.4%) 4(7.4%) 4(10.5%) 3(12.0%) 4(28.6%)

Yes 72(91.1%)
44

(84.6%)
50(92.6%)

34
(89.5%)

22(88.0%)
10

(71.4%)

Morphology 0.25 1.32 0.66 0.20

Regular 7(8.9%) 8(15.4%) 3(5.6%) 3(7.9%) 4(16.0%) 6(35.7%)

Irregularly 72(91.1%)
44

(84.6%)
51(94.4%)

35
(92.1%)

21(84.0%) 9(64.3%)

Microcalcifications 0.86 0.03

No 38(48.1%)
25

(48.1%)
0.99 0.02 28(51.9%)

19
(50.0%)

10(40.0%) 6(42.9%)

Yes 41(51.9%)
27

(51.9%)
26(48.1%)

19
(50.0%)

15(60.0%) 8(57.1%)

Adler Flow Grading 0.03 8.21 0.02 9.87 0.86 0.76

0 12(15.2%) 3(5.8%) 8(14.8%) 2(5.3%) 4(16.0%) 1(7.1%)

(Continued)
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threshold of 0.250. The calibration curves in both cohorts closely

aligned with the ideal curve, demonstrating the high predictive

accuracy and calibration of the model, which supports its reliability

and effectiveness in clinical applications (Appendix Figures 8A, B).

Decision curve analysis (DCA) results (Appendix Figures 9A, B)

indicated that the combined clinical-radiomics model provided

significant net benefits over a wide range of risk thresholds (10%-

90% in the training group, and 20%-65% in the validation group),

outperforming both “treat-all” and “treat-none” strategies. Notably,

at the threshold of 52%, the model achieved an optimal balance

between sensitivity and specificity, enhancing the identification of

AHNB patients without increasing the risk of misdiagnosis. These

findings suggest that the model holds strong clinical utility

and potential decision-support value for predicting AHNB, aiding

in the optimization of patient management and minimizing

unnecessary interventions.
3.5 Visualization analysis of the
predictive model

To further enhance the clinical applicability of the combined

clinical-radiomics predictive model, we visualized the model and

constructed a nomogram for predicting AHNB risk (Appendix

Figure 10). The nomogram incorporated several key variables,

including histological grade, vascular invasion, Adler vascular
Frontiers in Endocrinology 08
grade, and Rad Score. Each variable was assigned a weighted

score based on its relative importance in predicting AHNB.

Among these, the Rad Score was identified as an independent risk

factor for AHNB in multivariate analysis, with a score range from

-0.1 to 1 point, corresponding to a weighted score of 0 to 100 in the

nomogram. The length of the Rad Score line in the nomogram

indicates its substantial impact on predicting AHNB compared to

other variables.

In practice, clinicians can calculate a total score by summing the

individual scores of each variable and quickly determine the

predicted probability of AHNB using the “Probability” axis at the

bottom of the nomogram. For instance, in the training group, a

patient with vascular invasion, a maximum tumor diameter > 2 cm,

an Adler vascular grade of II, and a Rad Score of 0.344 would have a

total score of 62 points, corresponding to a 72% probability of

AHNB. This visualization tool not only enhances the model’s

clinical usability but also provides clinicians with an intuitive and

quantitative risk assessment method, facilitating personalized

treatment decision-making.
4 Discussion

The status of ALN is a critical prognostic factor in breast

cancer, as it plays a key role in determining the pathological

staging of the disease (16). ALND is the standard procedure used

to assess ALN status, accurately stage the disease, and remove

potentially metastatic lymph nodes. However, ALND can lead to

severe complications, such as shoulder dysfunction and arm

lymphedema, which negatively affect the quality of life (17).

Therefore, minimizing unnecessary ALND has become an urgent

issue. Studies (18) have shown that for patients with ≤2 metastatic

axillary lymph nodes (ALNM, low ALNmetastatic load), there is no

statistically significant difference in local recurrence rates and 10-

year overall survival between the ALND and non-ALND groups.

However, patients with more than 2 ALNM (high ALN metastatic

load) face a higher risk of local recurrence and are thus better suited

for neoadjuvant chemotherapy or ALND (19). Therefore, accurately

predicting ALNB before ALND is crucial for determining

appropriate treatment plans. In this study, we developed a
TABLE 2 Continued

Characteristics

Total
(n=131) P

Value
t/
X2

Training set
(n=92) P

Value
t/
X2

Validation set
(n=39) P

Value
t/
X2

ALNB
(n=79)

AHNB
(n=52)

ALNB
(n=54)

AHNB
(n=38)

ALNB
(n=25)

AHNB
(n=14)

I 32(40.5%)
14

(26.9%)
20(37.0%) 6(15.8%) 12(48.0%) 8(57.1%)

II 24(30.4%)
20

(38.5%)
18(33.3%)

17
(44.7%)

6(24.0%) 3(21.4%)

III 11(13.9%)
15

(28.8%)
8(14.8%)

13
(34.2%)

3(12.0%) 2(14.3%)

RI 0.72±0.07 0.75±0.08 0.04 3.14 0.70±0.11 0.73±0.10 0.04 2.79 0.68±0.11
0.71
±0.10

0.07 1.45
frontier
Bold formatting is used to highlight the factors or categories in the table and does not indicate any statistical significance or additional meaning.
TABLE 3 Evaluation metrics for machine learning algorithms selected
using 10-fold cross-validation in the combined predictive model.

Model Average_
AUC

Average_
Kappa

Average_
Accuracy

Logistic 0.825 0.684 0.795

Tree 0.755 0.523 0.767

SVM 0.722 0.567 0.699

XGBoost 0.712 0.476 0.554

KNN 0.768 0.545 0.673

RF 0.685 0.673 0.737
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predictive model for AHNB by analyzing the clinical ultrasound

and radiomics characteristics of the primary tumor and ALNB,

creating a visual nomogram to assist in individualized preoperative

assessment and treatment planning, ultimately supporting better

clinical decision-making.

This study included 131 patients with ALNM. Univariate and

multivariate analyses identified vascular invasion, maximum tumor

diameter, and Adler blood flow grading as independent risk factors

for AHNB. Metastasis in malignant tumors is a complex process

involving multiple steps, including tumor cell detachment, invasion,

migration, entry into the vascular system, evasion of immune

responses, infiltration of new sites, and growth. Among these,

tumor vascular invasion is a key step. Research shows that

interactions among tumor cells, stromal cells, and lymphatic

endothelial cells via growth factors, cell surface receptors, and

cytokines form a complex regulatory network. For instance,

CXCL12 and SLC (CCL-21) bind to CXCR4 and CCR7 receptors

on breast cancer cells, respectively, promoting tumor cell migration

to the lymphatic system along a chemotactic gradient (20). Our

findings indicate that although vascular invasion was not an

independent risk factor for ALNM, it was significantly correlated

with AHNB, with patients exhibiting vascular invasion being 1.82

times more likely to develop AHNB compared to those without

vascular invasion, which is consistent with the findings of Luo

et al. (21).

The selection of the 2 cm threshold for distinguishing T1 and

T2 tumors in this study was grounded in both the AJCC TNM

staging criteria and its biological relevance to metastatic potential

(22). While the AJCC system defines T1 tumors as ≤2 cm and T2

tumors as >2 cm, our rationale extended beyond staging
Frontiers in Endocrinology 09
conventions. Receiver operating characteristic (ROC) curve

analysis confirmed that 2 cm optimally balanced sensitivity (78%)

and specificity (64%) for predicting AHNB (AUC=0.71, 95% CI:

0.63–0.79; Youden index=0.42). Furthermore, continuous tumor

diameter analysis revealed a dose-dependent relationship, with each

1 cm increase in size associated with a 1.41-fold elevated AHNB risk

(95% CI: 1.12–1.78, p=0.03). Biologically, tumors exceeding 2 cm

exhibit heightened invasiveness, as demonstrated by Dihge et al.

(23) suggested that larger tumors tend to be more aggressive,

breaking through breast tissue more easily and spreading to

nearby lymph nodes, significantly increasing the risk of ALNM.

Moreover, larger tumors are often associated with increased

angiogenesis, providing additional nutrients and oxygen while

facilitating distant metastasis via lymphatic or blood routes.

Tumor growth also leads to significant changes in the local

microenvironment, such as immune suppression or activation of

pro-metastatic pathways, which allow tumor cells to thrive in lymph

nodes and increase the likelihood of ALNM. These factors

collectively explain why patients with tumors >2 cm more prone

to AHNB. However, some studies have reported (24, 25) no clear

relationship between tumor size and ALNB, possibly due to other

factors such as tumor molecular subtype, cell proliferation rate, and

immune responses, which also influence metastatic potential.

Therefore, the relationship between tumor size and ALNB

requires further investigation.

Our results showed a significant correlation between Adler

blood flow grading (II-III) and AHNB. The number of blood

vessels in breast cancer plays a crucial role in tumor growth,

invasion, and metastasis. During tumor growth, factors such as

hypoxia and activation of oncogenes can induce the expression of

vascular endothelial growth factor (VEGF), promoting angiogenesis

within the tumor and facilitating metastasis through the vascular

network, thereby increasing tumor invasiveness. While

intratumoral vascularization does not directly affect surrounding

lymphatic vessels, it provides nutrients necessary for tumor growth

and invasion, increasing the risk of ALNM. Studies have also

demonstrated a positive correlation between angiogenic factors

and tumor growth and metastasis, with microvascular blood flow

detection serving as an important prognostic indicator in breast

cancer. VEGF is particularly significant in predicting breast cancer

prognosis. However, findings by Yi et al. (26) contradict our results,
TABLE 4 Diagnostic performance of the three predictive model in training and validation groups.

Accuracy Sensitivity Specificity PPV NPV Youden Index F1 Score

Training

Model_Cl 0.762 0.859 0.526 0.786 0.628 0.385 0.774

Model_Rad 0.814 0.848 0.617 0.749 0.667 0.465 0.727

Model_Comb 0.897 0.914 0.602 0.904 0.794 0.516 0.866

Validation

Model_Cl 0.747 0.864 0.511 0.858 0.563 0.375 0.725

Model_Rad 0.787 0.824 0.651 0.786 0.687 0.475 0.793

Model_Comb 0.897 0.879 0.663 0.860 0.692 0.542 0.835
TABLE 5 DeLong's test for three prediction model in training and
validation groups.

Training P Value P Value P Value

Model_Cl <0.01 0.03

Model_Rad <0.01 0.89

Model_Comb 0.04 <0.01

Model_Comb Model_Rad Model_Cl Validation
frontiersin.org

https://doi.org/10.3389/fendo.2025.1548888
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2025.1548888
suggesting no significant correlation between Adler blood flow

grading and AHNB. The discrepancy may stem from differences

in case distribution and intergroup discriminative power of Adler

grading. In Yi et al.’s study, the proportions of Adler II-III grades in

the LNB and LHB groups were 79% and 81%, respectively (p=0.84),

rendering this metric ineffective for distinguishing the two groups.

In contrast, our study demonstrated a significantly higher

proportion of Adler II-III grades in the LHB group compared to

the LNB group (p<0.05). This discrepancy may be explained by the

fact that while tumor vasculature acts as a transport medium for

tumor cells, it does not directly affect lymphatic function. The

spread, deposition, and proliferation of cancer cells in draining

lymph nodes depend on their quantity and invasive growth

patterns, which could account for the lack of significant

association between Adler blood flow grading and AHNB in

some studies.

Some studies have suggested that (27) pathological subtypes are

prognostic factors in breast cancer, but our study found no

significant statistical difference, possibly because there is no linear

correlation between pathological subtypes and malignancy.

Additionally, our study categorized tumor burden based on

ALNM, which might have contributed to the lack of

differentiation in pathological subtypes. With the advancement of

radiomics, it has become an important tool for breast cancer

diagnosis and prognosis. Radiomics, by extracting large quantities

of quantitative features from medical images, captures subtle

differences not detectable through conventional imaging,

providing new evidence for clinical decision-making. By analyzing

intratumoral and peritumoral radiomic features, our study

identified significant features associated with AHNB, and

combining intratumoral and peritumoral features significantly

improved prediction accuracy.

The analysis of radiomic features involved a rigorous multi-step

workflow to ensure robustness and biological relevance. First, 107

radiomic features were extracted from both intratumoral and

peritumoral (1–5 mm) regions using standardized protocols,

including shape-based descriptors, first-order statistics, gray-level

co-occurrence matrix (GLCM) textures, and wavelet-transformed

features. To address reproducibility, features with intraclass

correlation coefficients (ICC) <0.8 across two independent

observers were excluded, retaining 30 stable features. Subsequent

dimensionality reduction employed Maximum Relevance

Minimum Redundancy (MRMR) to prioritize high-discriminative,

low-redundancy features, followed by LASSO regression with 10-

fold cross-validation, ultimately identifying five key predictors (e.g.,

wavelet-HLH_GLCM_Correlation). These wavelet-based features

capture heterogeneity at the tumor-stroma interface, potentially

reflecting spatial patterns of lymphatic invasion.

When evaluating different peritumoral regions, the

intratumoral + peritumoral 3 mm model achieved the highest

AUC (training: 0.722; validation: 0.771), outperforming narrower

(1–2 mm) and broader (4–5 mm) regions. This suggests that the 3

mm peritumoral zone contains microenvironmental cues—such as

immune cell infiltration or angiogenesis—critical to lymph node

metastasis, while wider regions introduce noise from normal tissue.

The decline in performance beyond 3 mm aligns with Dong et al.’s
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findings (28), which emphasize the tumor microenvironment’s

spatially constrained role in metastatic behavior. These results

underscore the importance of balancing biological relevance and

computational complexity when defining radiomics regions of

interest (ROIs).

Based on the ultrasound radiomics model, we further developed

a combined model incorporating clinical and radiomic features. The

combined model outperformed both the clinical feature model and

the radiomics model alone in terms of AUC, ACC, and other

diagnostic metrics in both training and validation cohorts. This

confirms that integrating clinical and radiomic features enhances

the capture of multidimensional information and improves AHNB

prediction. The combined model built using LR demonstrated

superior diagnostic performance compared to other machine

learning algorithms, confirming the advantages of LR models in

clinical applications. This model not only achieved high diagnostic

performance but also exhibited good generalizability, helping

clinicians more accurately assess lymph node status in real-

world practice.

Additionally, we validated the model’s consistency and clinical

utility through multiple evaluation methods. Bootstrap analysis

showed that the calibration curves for both the training and

validation cohorts exhibited high accuracy, indicating the model’s

stable and accurate AHNB risk prediction. Moreover, decision

curve analysis (DCA) demonstrated significant net benefit across

a wide range of risk thresholds, particularly at the 52% cutoff, where

the model effectively balanced sensitivity and specificity. This

suggests that the model can aid clinicians in making more precise

treatment decisions, reducing unnecessary interventions and

enhancing individualized patient management.

While several studies have shown that radiomics-based models

have good predictive value for breast cancer AHNB, limitations still

exist (13, 29–31). Wu et al. (13) explored a prediction model for

ALNB in breast cancer patients with ALNM, combining ultrasound

radiomics and clinical features. The results in their training and

validation cohorts were 0.816 and 0.577, respectively, indicating

limitations such as overfitting and the exclusion of peritumoral

radiomic features. In contrast, our study addresses these limitations

by incorporating both intratumoral and peritumoral radiomic

features along with clinical characteristics, thus enhancing

AHNB prediction.

Lu et al. (31) developed an ALNB prediction model for breast

cancer using preoperative MRI-based radiomic features, visualized

with a nomogram, with an AUC of only 0.79. Their study was

limited by the use of a single dataset and reliance on SVM, a

nonlinear classification algorithm that is not well-suited for

constructing nomograms, which are typically based on linear or

interpretable models such as LR. In comparison, our study

employed multiple classifiers for the combined prediction model,

using LR for the nomogram, and validated the results with a test set,

ensuring greater reliability.

Despite these contributions, this study has some limitations.

First, the sample size is relatively small, and future research should

expand the cohort to verify the model’s generalizability. Second,

the extraction and selection of radiomic features depend on

existing algorithms and parameter settings, which may affect the
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model’s robustness. Future research should focus on developing

standardized radiomic workflows to enhance comparability across

studies. Third, The exclusion of tumors >5 cm and multifocal

lesions aimed to focus on predicting lymph node burden in early-

stage breast cancer (T1–T2). However, this may limit the model’s

applicability to advanced-stage or multifocal patients. Finally, while

this study focused on preoperative ultrasound data, incorporating

additional imaging modalities, such as MRI or CT, could further

improve the model’s accuracy and provide a more comprehensive

assessment of ALNB.
5 Conclusion

This study developed a noninvasive predictive model for AHNB

in breast cancer patients, combining clinical and ultrasound radiomic

features. The model demonstrated high diagnostic performance and

clinical utility, providing a valuable tool for individualized treatment

planning and decision-making in breast cancer management. By

integrating intratumoral and peritumoral radiomic features, the

model captures multidimensional information that improves the

accuracy of AHNB prediction. Future studies should focus on

validating the model in larger, multicenter cohorts and exploring

the potential of incorporating additional imaging modalities to

further enhance prediction accuracy.
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20. da Luz FAC, Araújo BJ, de Araújo RA. The current staging and classification
systems of breast cancer and their pitfalls: Is it possible to integrate the complexity of
this neoplasm into a unified staging system? Crit Rev Oncology/Hematology. (2022)
178:103781. doi: 10.1016/j.critrevonc.2022.103781

21. Luo H, Mo Y, Zhong J, Zhang Y, Zhu L, Shi X, et al. Preoperative axillary
ultrasound helps in the identification of a limited nodal burden in breast cancer
patients. Ultrasound Q. (2020) 36:173–8. doi: 10.1097/RUQ.0000000000000495

22. Olawaiye AB, Baker TP, Washington MK, Mutch DG. The new (Version 9)
American Joint Committee on Cancer tumor, node, metastasis staging for cervical
cancer. CA A Cancer J Clin. (2021) 71:287–98. doi: 10.3322/caac.21663

23. Dihge L, Bendahl P-O, Skarping I, Hjärtström M, Ohlsson M, Rydén L. The
implementation of NILS: A web-based artificial neural network decision support tool
for noninvasive lymph node staging in breast cancer. Front Oncol. (2023) 13:1102254.
doi: 10.3389/fonc.2023.1102254

24. Malter W, Hellmich M, Badian M, Kirn V, Mallmann P, Krämer S. Factors
predictive of sentinel lymph node involvement in primary breast cancer. Anticancer
Res. (2018) 38:3657–62. doi: 10.21873/anticanres.12642

25. Hotton J, Salleron J, Henrot P, Buhler J, Leufflen L, Rauch P, et al. Pre-operative
axillary ultrasound with fine-needle aspiration cytology performance and predictive
factors of false negatives in axillary lymph node involvement in early breast cancer.
Breast Cancer Res Treat. (2020) 183:639–47. doi: 10.1007/s10549-020-05830-z

26. Yi C-B, Ding Z-Y, Deng J, Ye XH, Chen L, Zong M, et al. Combining the
ultrasound features of primary tumor and axillary lymph nodes can reduce false-
negative rate during the prediction of high axillary node burden in BI-RADS category 4
or 5 breast cancer lesions. Ultrasound Med Biol. (2020) 46:1941–8. doi: 10.1016/
j.ultrasmedbio.2020.04.003

27. Chen W, Wang C, Fu F, Yang B, Chen C, Sun Y. A model to predict the risk of
lymph node metastasis in breast cancer based on clinicopathological characteristics.
CMAR. (2020) 12:10439–47. doi: 10.2147/CMAR.S272420

28. Dong F, She R, Cui C, Shi S, Hu X, Zeng J, et al. One step further into the
blackbox: a pilot study of how to build more confidence around an AI-based decision
system of breast nodule assessment in 2D ultrasound. Eur Radiol. (2021) 31:4991–5000.
doi: 10.1007/s00330-020-07561-7

29. Gao Y, Luo Y, Zhao C, Xiao M, Ma C, LiW, et al. Nomogram based on radiomics
analysis of primary breast cancer ultrasound images: prediction of axillary lymph node
tumor burden in patients. Eur Radiol. (2021) 31:928–37. doi: DOI:10/gnxktw

30. Chen Y, Xie Y, Li B, Shao H, Na Z, Wang Q, et al. Automated Breast Ultrasound
(ABUS)-based radiomics nomogram: an individualized tool for predicting axillary
lymph node tumor burden in patients with early breast cancer. BMC Cancer. (2023)
23:340. doi: 10.1186/s12885-023-10743-3

31. Han L, Zhu Y, Liu Z, Yu T, He C, Jiang W, et al. Radiomic nomogram for
prediction of axillary lymph node metastasis in breast cancer. Eur Radiol. (2019)
29:3820–9. doi: 10.1007/s00330-018-5981-2
frontiersin.org

https://doi.org/10.1148/radiol.2020192534
https://doi.org/10.1148/radiol.2020192534
https://doi.org/10.6004/jnccn.2022.0047
https://doi.org/10.1093/annonc/mdz173
https://doi.org/10.1016/S1470-2045(18)30380-2
https://doi.org/10.1016/j.ejso.2018.04.003
https://doi.org/10.1016/j.ejso.2017.08.007
https://doi.org/10.1016/j.ejso.2017.08.007
https://doi.org/10.1200/JCO.2016.71.0947
https://doi.org/10.1016/j.ejso.2015.01.011
https://doi.org/10.1111/tbj.13343
https://doi.org/10.1111/tbj.13594
https://doi.org/10.1007/s00330-021-08452-1
https://doi.org/10.1186/s12967-024-05619-4
https://doi.org/10.1080/07853890.2024.2395061
https://doi.org/10.1080/07853890.2024.2395061
https://doi.org/10.1001/jamanetworkopen.2020.28086
https://doi.org/10.1001/jamanetworkopen.2020.28086
https://doi.org/10.1186/s40644-022-00450-w
https://doi.org/10.3233/BD-160230
https://doi.org/10.3233/BD-160230
https://doi.org/10.1186/s13037-019-0199-z
https://doi.org/10.1186/s13037-019-0199-z
https://doi.org/10.1200/JCO.2007.15.5630
https://doi.org/10.1007/s10549-020-06056-9
https://doi.org/10.1016/j.critrevonc.2022.103781
https://doi.org/10.1097/RUQ.0000000000000495
https://doi.org/10.3322/caac.21663
https://doi.org/10.3389/fonc.2023.1102254
https://doi.org/10.21873/anticanres.12642
https://doi.org/10.1007/s10549-020-05830-z
https://doi.org/10.1016/j.ultrasmedbio.2020.04.003
https://doi.org/10.1016/j.ultrasmedbio.2020.04.003
https://doi.org/10.2147/CMAR.S272420
https://doi.org/10.1007/s00330-020-07561-7
https://doi.org/DOI:10/gnxktw
https://doi.org/10.1186/s12885-023-10743-3
https://doi.org/10.1007/s00330-018-5981-2
https://doi.org/10.3389/fendo.2025.1548888
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Machine learning-driven ultrasound radiomics for assessing axillary lymph node burden in breast cancer
	1 Introduction
	2 Methods
	2.1 Study population
	2.2 Equipment and methods
	2.2.1 Ultrasound equipment
	2.2.2 Ultrasound examination
	2.2.3 Ultrasound image feature extraction

	2.3 Image segmentation and feature selection
	2.4 Prediction model construction
	2.5 Feature consistency evaluation
	2.6 Clinical features
	2.7 Statistical analysis

	3 Results
	3.1 Clinical characteristics of patients
	3.2 Construction of clinical feature prediction models
	3.3 Construction and evaluation of radiomics models
	3.4 Comparison of performance among the three predictive models
	3.5 Visualization analysis of the predictive model

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


