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Mechanism of action of
curculigoside ameliorating
osteoporosis: an analysis
based on network
pharmacology and
experimental validation
Chuanfu Wei1,2‡, Wenhuan Zhang2‡, Chunbiao Lou1,
Nianhu Li2*† and Hui Cao1*†

1Shandong University of Chinese Medicine, Jinan, China, 2Affiliated Hospital of Shandong University of
Chinese Medicine, Jinan, China
Objective: This study aimed to predict and verify themechanism of curculigoside

in treating osteoporosis using network pharmacology, molecular docking

technology, and micro-CT technology.

Methods: Herb databases were searched to identify and screen potential targets

of curculigoside. The GeneCards platform was utilized to mine osteoporosis-

related targets. Cytoscape 3.6.0 software was employed to construct a

compound-target-disease network. A protein–protein interaction (PPI)

network for curculigoside in osteoporosis treatment was established, and core

targets were screened. The Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment and GO biological process analyses were performed using

the Metascape database. Finally, molecular docking and micro-CT were used to

validate core targets relevant to osteoporosis.

Results: A total of 166 potential curculigoside targets and 4,313 osteoporosis-

related targets were identified, with 91 common targets. Ten key targets,

including matrix metalloproteinase (MMP)3, MMP9, interleukin (IL)-6, and

caspase-3, were screened. KEGG pathway enrichment analysis indicated

involvement in 10 pathways, such as the Rap1 signaling pathway and tumor

necrosis factor (TNF) signaling pathway. Molecular docking results demonstrated

strong binding affinity between curculigoside and the core targets. Micro-CT

analysis revealed that curculigoside not only improved BMD, BV/TV, BS/BV, and

Tb.Th but also reduced Tb.Sp in osteoporotic bone.

Conclusions: Curculigoside is likely to treat osteoporosis through targets such as

MMP3, MMP9, IL-6, and caspase-3, acting on signaling pathways including Rap1

and TNF. These results indicate that curculigoside exhibits multitarget and

multipathway characteristics in osteoporosis treatment, providing a theoretical

basis for further clinical investigation.
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curculigoside, osteoporosis, network pharmacology, molecular docking, micro
CT technology
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1 Introduction

Bone is a special type of connective tissue that is dynamically

mineralized and has a variety of physiological functions (1, 2).

Recognized for its mechanical properties, it serves as an attachment

point for muscles, providing a structural basis and aiding movement

(3, 4). Bone undergoes lifelong remodeling, including bone

formation by osteoblasts and bone resorption by osteoclasts,

which are essential for maintaining healthy bone mass (5–7). The

entire process of bone remodeling is strictly controlled and

coordinated by a variety of cells, including osteoblasts, which

mediate bone formation, and osteoclasts, which mediate bone

resorption (8, 9). Osteoblasts originate from mesenchymal stem

cells in the bone marrow stroma and are responsible for the

synthesis of the bone matrix and its subsequent mineralization

(10, 11). Osteoclasts are large multinucleated giant cells formed by

the fusion of mononuclear progenitors of monocytes/macrophages,

and they are responsible for bone resorption (12, 13). The

formation, proliferation, differentiation, and activity of these cells

are controlled by local and systemic factors (14, 15).

Osteoporosis results from an imbalance between bone

formation and resorption. It represents a common group of

skeletal disorders characterized by destruction of bone

microstructure, reduced bone mass, and increased bone fragility

(16–18). The dynamic equilibrium between new bone formation by

osteoblasts and old bone resorption by osteoclasts is crucial for

maintaining bone tissue metabolism (19, 20). Osteoblasts, as the

principal bone-forming cells, play a major role in the metabolic

balance, growth, development, and repair of bone tissue (21, 22).

During bone formation, osteoblasts undergo three stages:

proliferation, differentiation, and apoptosis. These three stages

involve: (1) the proliferation stage, where osteoblast precursor

cells multiply; (2) the differentiation stage, where cells mature to

secrete bone matrix; and (3) the apoptosis stage, where excess cells

undergo programmed death to maintain tissue balance (23).

Abnormalities in osteoblast proliferation, differentiation, or

apoptosis play a critical role in the development of osteoporosis

(24, 25).

Curculigoside, a naturally occurring phenolic compound, has been

traditionally employed in many Asian countries for the treatment of

osteoporosis (26). Its documented effects include antioxidant, anti-

aging, immunomodulatory, and anti-inflammatory activities, along

with the prevention of bone loss. Curculigoside demonstrates

osteoprotective properties (27). Studies indicate that it improves bone

microstructure and biomechanical properties while enhancing

antioxidant enzyme activity in serum and bone tissue through the

regulation of bone metabolic homeostasis (28, 29). Furthermore,

curculigoside reduces bone loss, promotes osteogenesis, and inhibits

adipogenesis in ovariectomized rats by upregulating endoplasmic

reticulum-dependent bone morphogenetic protein-2 (BMP) (30).

During aging, declining estrogen levels and excessive accumulation

of reactive oxygen species (ROS) in bone tissue activate the nuclear

factor kappa B (NF-kB) and MAPK pathways, inducing apoptosis and
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osteoclastogenesis (31). These findings suggest that curculigoside exerts

bone-protective effects, though its precise mechanism of action

remains unclear.

Traditional Chinese medicine is characterized by multiple

chemical components, multiple targets, and multiple effects.

Network pharmacology explores the complex relationships among

drugs, targets, diseases, and pathways, enabling the identification of

multiple components, targets, and signaling pathways. In this way,

network pharmacology helps elucidate the therapeutic mechanisms

of traditional Chinese medicine (32, 33). In this study, we applied a

network pharmacological approach to identify potential targets of

curculigoside and to elucidate its mechanism of action in the

treatment of osteoporosis. Effective targets for curculigoside and

osteoporosis were mined from multiple databases. Pathway

enrichment and protein–protein interaction (PPI) network

analyses were then performed on the overlapping curculigoside

and osteoporosis to identify potential therapeutic pathways for

osteoporosis treatment. To verify the protective effect of

curculigoside on osteoporosis, in vitro validation was conducted

by detecting the expression of cross-targets (e.g., IL-6, tumor

necrosis factor alpha [TNF-a], matrix metalloproteinase (MMP)3,

MMP9, caspase-3) in rat bone tissue using reverse transcription

quantitative polymerase chain reaction (RT-qPCR) and enzyme-

linked immunosorbent assay (ELISA). The results were consistent

with the network pharmacology predictions.
2 Materials and methods

2.1 Animals

Thirty female SD rats of specific pathogen-free (SPF) grade, 8

weeks old, were purchased from Shandong Jinan Panyue

Experimental Animal Co. Ltd. (Animal Production License No.

SCXK [Lu] 20190003). All animals were housed under controlled,

identical SPF standard environmental conditions (23°C ± 2°C, 12-h

light/dark cycle), had free access to food, and were allowed free

movement. The study protocol was approved by the Experimental

Animal Ethics Committee of the Affiliated Hospital of Shandong

University of Traditional Chinese Medicine (approval number:

SDSZYYAWE20241105005).
2.2 Screening potential gene targets of
curculigoside

Target gene data for curculigoside were collected from the

Encyclopaedia of Traditional Chinese Medicine, SwissTargetPrediction

(http://swisstargetprediction.ch), and the Similarity Ensemble

Approach (https://sea.bkslab.org). The obtained gene targets were

summarized and de-duplicated by searching the database using

“cynarin” as the keyword. Target names were normalized using the

UniProt database (https://www.uniprot.org/) (34).
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2.3 Osteoporosis disease-target collection

The DisGeNET (https://www.disgenet.org/home/) and

GeneCards (https://www.genecards.org/) (35) databases were used

to search for relevant targets using the keyword “osteoporosis”. A

network target map was constructed to identify overlapping targets

between osteoporosis and the active ingredient. The identified

overlapping targets are considered to play key roles in the

antiosteoporosis activity of curculigoside.
2.4 Network construction

To elucidate the relationship among curculigoside, gene targets,

and osteoporosis, Cytoscape 3.7.2 software was used to construct the

curculigoside-target and osteoporosis-target networks (36). The

drug-target network and disease-target network were established. In

the network, nodes of different colors represent various drug and

disease targets. Edges represent the relationships between two nodes,

and their number, defined as the “degree,” determines the size of each

node. A Venn diagram (http://bioinformatics.psb.ugent.be/webtools/

Venn/) was then generated to identify the intersection of targets

between curculigoside and osteoporosis, thereby revealing the

potential targets of curculigoside against osteoporosis.
2.5 KEGG pathway enrichment and Gene
Ontology analyses

The intersecting targets were used as inputs for the functional

annotation tool DAVID 6.8 (https://david.ncifcrf.gov/). The

identifier was set to OFFICIAL_GENE SYMBOL, and Homo

sapiens and Gene List were selected. The Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment and Gene

Ontology (GO) enrichment analyses were then performed. p <

0.01 and FDR < 0.05 were set as the screening criteria to identify the

biological processes and signaling pathways associated with

Traditional Chinese Medicine (TCM) disease interventions.
2.6 Protein–protein interaction network
construction

The potential targets of curculigoside in osteoporosis treatment were

imported into the STRING 11.5 platform (https://cn.string-db.org/)

(37). The species was set to Homo sapiens before conducting the

PPI analysis. The PPI analysis output was saved in TSV file format, with

the minimum interaction threshold set to 0.9. Cytoscape 3.7.2 was used

to construct the PPI network and evaluate the node and edge degrees.
2.7 Molecular docking

Molecular docking was used to clarify the relationships among

the potential curculigoside targets versus osteoporosis and the
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corresponding active ingredients. The 3D structure of the core

target protein was retrieved from the RSCB PDB database (https://

www.rcsb.org/) (38). The chemical structure of curculigoside was

acquired from the PubChem database (https://pubchem.ncbi.

nlm.nih.gov/) (39). AutoDock (https://vina.scripps.edu) was used

to perform the molecular docking, and PYMOL (https://pymol.org/

2/) was used to visualize the results.
2.8 Establishment of animal model

After 2 weeks of acclimatization, all female SD rats were

randomly divided into three groups: sham-operated (sham)

group, model (OVX) group, and curculigoside (curculigoside)

group, with 10 rats in each group. Both the model group and the

curculigoside group underwent bilateral ovariectomy via the

abdominal approach, while the sham-operated group underwent

excision of bilateral parietal ovarian adipose tissue. Penicillin was

administered intraperitoneally to the rats daily for 3 days to prevent

incisional infection. Penicillin at a concentration of 40,000 IU/mL

was injected into rats at a volume of 1 mL/kg for 3 consecutive days

to prevent infection (40). The rats in the curculigoside group were

injected intraperitoneally at 7.5 mg/kg. In this study, three doses of

Curculigoside were set: 5, 7.5, and 10 mg/kg. Based on

hematoxylin–eosin (HE) staining and TRAP staining to observe

the expression of bone trabeculae and osteoclasts, no significant

difference was found between the 7.5- and 10-mg/kg intervention

groups. Therefore, 7.5 mg/kg was selected as the optimal dose. The

experimental data are provided in Supplementary File 1. All rats

were treated continuously for 12 weeks, and bone mineral density

testing was performed.
2.9 HE staining and SOFG staining

After fixation, decalcification, and paraffin embedding, HE

staining was performed, and the pathological structure of the bone

tissue was observed following dehydration and clearing. Safranine O

and Fast Green (SOFG) staining was carried out after dewaxing and

hydration of the sections. The sections were sequentially stained with

hematoxylin, solid green, and mesene O, followed by dehydration

and clearing, to more precisely display structural changes such as

trabeculae and bone marrow cavities. For the liver and kidney tissues

of rats, the HE staining procedure was as follows: the tissues were

fixed and embedded in paraffin, then sectioned. After dewaxing and

hydration, the sections were stained with hematoxylin–eosin.

Following dehydration and clearing, the tissue structures were

observed to evaluate whether any of the treatment groups caused

toxic damage to the liver and kidneys.
2.10 Microcomputed tomography

The removed femur was placed in 4% paraformaldehyde (4°C,

24 h) for fixation. The microstructure of the femur was scanned and
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analyzed using the SkyScan imaging system. Each sample was

carefully placed so that the femoral stem was oriented as

vertically as possible. Bone morphometric parameters of the

femur were obtained, including bone mineral density (BMD) on

total volume, bone surface area to bone volume ratio (BS/BV), bone

surface area to tissue volume ratio (BS/TV), trabecular thickness

(Tb.Th), and trabecular separation (Tb.Sp).
2.11 Measurement of inflammatory
cytokines

The plasma of mice was centrifuged, and the supernatant was

collected to determine the levels of inflammatory factors. The

expression levels of IL-6, TNF-a, IL-1b, osteocalcin (OCN), and

insulin-like growth factor-1 (IGF-1) were measured using ELISA

kits according to the manufacturer’s instructions.
2.12 RNA isolation and real-time PCR

Total RNA was extracted from rat bone tissue using the Spark

Jade Science & Technology Co., Ltd. (SPARK) easy Improved

Tissue/Cell RNA Kit (Spark Jade, AC0202). RNA reverse

transcription was performed using the SPARK script IIRT Plus

Kit (Spark Jade, AG0304) according to the manufacturer’s

instructions. qPCR reactions, prepared with 2 × SYBR Green

qPCR Mix (Spark Jade, AH0104), were run at 94°C for 3 min.

Primers for collagen I, IL-6, TNF-a, MMP3, MMP9, and caspase-3

were used for the RT-qPCR. Glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) served as the internal reference. The

relative expression levels of the target and reference genes were

quantified using the 2−DDCT method (Table 1).
2.13 Statistical analysis

All data were analyzed with GraphPad Prism v.8 (GraphPad

Software, La Jolla, CA, USA). One-way analysis of variance

(ANOVA) was used to detect significant differences between

groups. p < 0.05 indicated statistical significance. Figure 1 shows

the overall flowchart of the research.
3 Results

3.1 Potential targets of curculigoside
against osteoporosis

The chemical molecular formula of curculigoside is C22H26O11,

and its molecular structure is shown in Figure 2A. A total of 188

potential targets were obtained by searching the Encyclopaedia of

Chinese Medicine database, SwissTargetPrediction, and the

Similarity Ensemble Approach database. A total of 4,313
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osteoporosis-related targets were retrieved from the DisGeNET

and GeneCards databases. By linking the two groups of targets,

91 overlapping targets were identified as valid targets for the

treatment of osteoporosis with curculigoside. Finally, a network

target map was constructed using Cytoscape (3.7.1) software and

Venny (2.1.0) for the 91 valid targets (Figures 2B, C).
3.2 Construction of a protein–protein
interaction network

The validated targets of cenobacterial glycosides for

osteoporosis were imported into the STRING (11.5) database, set

to “Homo sapiens”, and subjected to PPI analysis. The PPI data were

imported into Cytoscape software, and topological and clustering

analyses were performed using the Cytoscape plug-in cytoHubba

and MCODE. The top 10 central genes obtained from the

topological analysis were Vascular Endothelial Growth Factor A

(VEGFA), GAPDH, Epidermal Growth Factor Receptor (EGFR),

CASP3, IL6, Fibroblast Growth Factor 2 (FGF2), MMP9, Kinase

Insert Domain Receptor (KDR), SRC, and MMP3. Among these

genes, Vascular Endothelial Growth Factor A (VEGFA) acts as an

active growth factor in angiogenesis and endothelial cell growth; it

induces endothelial cell proliferation, promotes cell migration, and

inhibits apoptosis. GAPDH possesses 3-phosphoglyceraldehyde

dehydrogenase and nitrosylase activities, which play roles in

glycolysis and nuclear function, respectively. FGF2 plays an

important role in the regulation of cell survival, cell division, cell

differentiation, and cell migration. KDR and SRC play an important

role in the regulation of angiogenesis and vascular permeability.

MMP9 and MMP3 play an important role in local protein
TABLE 1 Primers in qRT-PCR.

Name Primer Sequence

Collagen I
Forward ACTGGTACATCAGCCCGAAC

Reverse AATCCATCGGTCATGCTCTC

Caspase-3
Forward AGCATGAAAGGGTGGTCTCA

Reverse GICGGCATACTGTTTCAGCA

MMP3
Forward GGGTCTCTTTCACTCAGCCAACAC

Reverse ACAGGCGGAACCGAGTCAGG

MMP9
Forward CGTCTTCCAGTACCGAGAGAAAGC

Reverse TIGGTCCACCTGGTTCAACTCAC

TNF-a
Forward CCCCAAAGGGATGAGAAGTT

Reverse GGTCTGGGCCATAGAACTGA

IL-6
Forward ATG AAC TCC TTC TCC ACA AG

Reverse GTG CCT GCA GCT TCG TCA GCA

GAPDH
Forward TCACGACCATGGAGAAGGCT

Reverse CAGGAGGCATTGCTGATGATC
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hydrolysis and leukocyte migration in the extracellular matrix, as

well as in osteoclast-mediated bone resorption (Figures 3A, B). The

results of the clustering analysis are shown in Figure 3C.
3.3 KEGG enrichment and GO functional
analyses

A total of 69 signaling pathways were identified by GO and

KEGG functional enrichment analyses of the validated targets using

Metascape software. Using a threshold of p < 0.01 and sorting by

ascending p-value, 47 KEGG pathways were obtained, with the top

10 shown in Figure 4. Further analysis of GO functional enrichment

results, using the same screening criteria (p < 0.01 and ascending

p-value), yielded a total of 514 BPs, 5 CCs, and 31 MFs, as shown in

Figure 4. Supplementary File 2 provides the detailed GO analysis

results, while Supplementary File 3 presents the specific KEGG

analysis outcomes.
3.4 Molecular docking

Molecular docking analysis was used to assess the binding

ability of curculigoside to key proteins. To evaluate its potential

antiosteoporotic effect, molecular docking was performed between

curculigoside and the key proteins VEGFA, GAPDH, EGFR,

CASP3, IL-6, FGF2, MMP9, KDR, SRC, and MMP3. A lower

binding energy indicates higher docking affinity and stronger

binding ability. The molecular docking results showed binding

energies ranging from − 5.8 to − 8.2. Targets with binding
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energies ≤ − 6 were considered potentially active, while those ≤ −

8 indicated strong stability and activity. Among them, curculigoside

exhibited strong binding affinity to MMP3, MMP9, and KDR with

binding energies ≤ − 8, suggesting high binding stability and

potential biological activity (41) (as shown in Figure 5).
3.5 Liver and kidney tests show no toxicity

Figure 6 shows that the liver and kidney tissue structures in the

sham group, OVX group, and curculigoside group were all normal.

No lesions such as steatosis, necrosis, inflammatory cell infiltration,

or renal tubular epithelial cell injury were observed, indicating that

the treatments did not cause liver or kidney toxicity. In bone tissue,

the results of HE staining and SOFG staining confirmed the

successful establishment of the osteoporosis model in the OVX

group, which exhibited pathological features such as sparse and

fractured trabeculae and an enlarged bone marrow cavity. The

trabecular bone structure in the curculigoside group was improved

compared to that in the OVX group and was closer to the normal

state, indicating that curculigoside has a therapeutic effect

on osteoporosis.
3.6 Bone density and CT evaluation

Results from the OVX and curculigoside groups showed a

significant decrease in femoral bone mineral density compared to

the sham group. The curculigoside group showed a significant

increase in BMD compared to the OVX group (p < 0.05). Daily
FIGURE 1

Flowchart of the research.
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administration of cenicaloside further increased femoral bone

density. 2D micro-CT scans revealed the trabecular bone

microstructure at the femoral epiphysis after 12 weeks of

curculigoside treatment. Quantitative parameters included BMD,

BV/TV, BS/BV, Tb.Sp, and Tb.Th. Cenchoside treatment positively

affected all CT parameters (Figure 7).
3.7 The effect of curculigoside on
inflammatory and proapoptotic factors

Collagen I, a major constituent of the extracellular matrix, is

sensitive to external stimulation. RT-qPCR was used to detect the

messenger RNA (mRNA) expression of collagen I, IL-6, TNF-a,
MMP3, MMP9, and caspase-3, while ELISA kits were employed to

measure the levels of IL-6, TNF-a, IL-1b, OCN, and IGF-1. The results
demonstrated that, in the OVX group, collagen I mRNA expression was

significantly downregulated and OCN and IGF-1 levels were reduced.

Conversely, the mRNA levels of IL-6, TNF-a, MMP3, MMP9, and

caspase-3, as well as the secretion levels of IL-6, TNF-a, and IL-1b, were
significantly increased. Treatment with curculigoside reversed these
Frontiers in Endocrinology 06
changes by upregulating collagen I mRNA and increasing OCN and

IGF-1 levels, while downregulating the mRNA and protein levels of IL-

6, TNF-a, MMP3, MMP9, and caspase-3 (Figure 8).
4 Discussion

Osteoporosis is a common skeletal metabolic disease

characterized primarily by reduced bone mass. In recent years, its

prevalence has risen significantly and has increasingly affected

younger populations. Consequently, identifying improved

treatments has become a major focus of current research.

Cyberpharmacology enables comprehensive visualization and

analysis of drug chemistry, disease targets, and pathways of

action, facilitating the exploration of curculigoside’s potential

mechanisms for treating osteoporosis (42, 43). Employing

network pharmacology and molecular docking techniques, this

study enabled the initial identification of curculigoside’s potential

targets and complex molecular mechanisms in osteoporosis.

A Venn diagram of the “curculigoside-target-disease” network

was constructed, identifying 166 cross-targets and 10 related
FIGURE 2

Network target diagram and targets common to curculigoside and osteoporosis. (A) Molecular structure of curculigoside. (B) Network target
diagram. (C) Venn diagram of shared targets.
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signaling pathways. These pathways are primarily involved in the

negative regulation of reactive oxygen species, oxidative stress, and

cell proliferation and differentiation, through the regulation of the

Rap1 signaling pathway, interleukin (IL)-17 signaling pathway, and

Hypoxia-Inducible Factor 1 (HIF-1) signaling pathway. The IL-17,

HIF-1, and TNF signaling pathways may contribute to

curculigoside’s therapeutic effects in osteoporosis. The protein–

protein interaction network was analyzed using Cytoscape 3.6.0,

identifying 10 core targets. Curculigoside may exert its therapeutic

effect on osteoporosis by binding to these key targets. The results
Frontiers in Endocrinology 07
showed that curculigoside reduced the mRNA expression of IL-6,

TNF-a, and IL-1b; decreased the damage caused by inflammatory

factors to osteoblasts; downregulated the expression of MMP3,

MMP9, and caspase-3; and upregulated the expression of the

collagen I gene. It also reduced the secretion levels of IL-6, IL-1b,
and TNF-a; increased the secretion levels of OCN and IGF-1;

improved the status of type I collagen; promoted the proliferation of

osteoblasts; and slowed the progression of osteoporosis. In this

study, the downregulation of IL-6, TNF-a, IL-1b, MMP3, MMP9,

and caspase-3 by curculigoside aligns with previous findings that
FIGURE 3

Construction of protein–protein interaction (PPI) network and disease topology analysis. (A) PPI network of overlapping targets. (B) Intersecting
genes from the STRING database were constructed using Cytoscape. (C) Clustering analysis.
FIGURE 4

KEGG and GO functional enrichment analyses. (A, B) KEGG pathway enrichment analysis bubble map. (B) GO Ontology analysis.
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these factors mediate osteoblast injury and extracellular matrix

degradation in osteoporosis (44–46). For example, Min et al.

demonstrated that IL-17-driven inflammation promotes

osteoclastogenesis and osteoblast apoptosis, which is consistent

with our observation of reduced proinflammatory cytokine levels.

Additionally, the upregulation of collagen I, OCN, and IGF-1 by

curculigoside supports its role in enhancing osteoblast function,

paralleling the reported mechanisms of VEGFA and FGF2 in

promoting bone formation (46). These results collectively suggest

that curculigoside may inhibit osteoclast differentiation and

promote osteoblast proliferation through multitarget regulation of
Frontiers in Endocrinology 08
inflammatory and oxidative stress pathways. We suggest that

cynarin may be involved in the regulation of ROS-related

biological processes, estrogen signaling, osteoblast apoptosis, and

osteoclast differentiation pathways in the treatment of osteoporosis.

Both osteoclast and osteoblast differentiation, as well as their

proliferation, are closely related to reactive oxygen species (47).

ROS can cause severe damage to bone tissue by accelerating

bone resorption, which is strongly associated with the

upregulation of osteoclast differentiation via the NF-kB and

calcium-regulated neurophosphatase pathways (48). Cynarin

processes multiple biological activities, such as antioxidant and
FIGURE 5

3D molecular docking of the active ingredient with target proteins.
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FIGURE 6

Histopathological sections of the liver, kidney, and bone tissues of rats in each group (H&E and SOFG staining).
FIGURE 7

Detection of bone tissue by micro-CT. (A–E) Bone tissue-related index measurements. (F) CT images. n = 3, *p < 0.05; **p < 0.01. #p < 0.05; ##p <
0.01; ###p < 0.01.
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anti-inflammatory properties, which have been demonstrated in

both animal and cellular experiments (26, 27). Liu et al. (49)

suggested that cynarin could attenuate oxidative stress and inhibit

osteoclastogenesis and MMP9-specific gene expression by

modulating the Nrf2/NF-kB signaling pathway in RAW264.7

cells. This is consistent with our KEGG and GO enrichment

results, which highlighted the involvement of NF-kB and ROS-

related pathways in curculigoside’s mechanism, further validating

its antiosteoporotic effects through the regulation of oxidative stress

and inflammation. Mitochondrial impairment exacerbates the

accumulation of reactive oxygen species, leading to oxidative

stress and activation of osteoclast activity, as well as increased

expression of MMPs and secretion of inflammatory factors through

NF-kB activation. The results of KEGG and GO functional

enrichment suggest that curculigoside may treat osteoporosis by

inhibiting the overproduction of osteoclastic cytokines and their

induction of oxidative damage, primarily through modulation of

the Rap1, IL-17, HIF-1, and TNF signaling pathways. This

modulation may reduce oxidative damage, restore mitochondrial

dysfunction, decrease osteoblast apoptosis, and help maintain the

dynamic balance between bone resorption and bone formation.

In this study, micro-CT imaging was employed to assess

histopathological changes in the bone tissues of ovariectomized rats,

providing both quantitative and qualitative evidence for curculigoside’s

effects on bone microarchitecture. The technique helped confirm that

curculigoside improved bone density and microstructural parameters

(e.g., trabecular thickness and connectivity) (50–52), supporting the

study’s overall conclusion on the drug’s antiosteoporotic efficacy.

However, it should be noted that micro-CT alone cannot fully

characterize cellular and molecular mechanisms. Future studies could
Frontiers in Endocrinology 10
combine histomorphological analysis and immunohistochemistry to

further validate these findings.
5 Conclusion

This study combined network pharmacology, molecular docking,

and in vivo experiments to investigate curculigoside’s mechanism

against osteoporosis. Network analysis identified 91 shared targets

(e.g., MMP3, MMP9, IL-6, caspase-3) enriched in the Rap1 and TNF

signaling pathways. Molecular docking showed strong binding

affinity (≤ − 8 kcal/mol) to core targets. In ovariectomized rats,

curculigoside improved bone parameters (BMD, BV/TV, Tb.Th↑;
Tb.Sp↓) and regulated inflammatory (IL-6, TNF-a↓) and osteogenic

(collagen I, IGF-1↑) markers. These results indicate that curculigoside

exerts multitarget, multipathway effects on bone remodeling,

inflammation, and apoptosis, providing a basis for its clinical use.
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