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Chronic kidney disease–mineral and bone disorder (CKD-MBD) is a systemic

complication of chronic kidney disease (CKD), resulting in high morbidity and

mortality. However, effective treatment strategies are lacking. The pathogenesis

of CKD-MBD is unclear but involves feedback mechanisms between calcium,

phosphorus, parathyroid hormone, vitamin D and other factors, in addition to

FGF23, Klotho, Wnt inhibitors, and activin A. Construction of a perfect animal

model of CKD-MBD with clinical characteristics is important for in-depth study

of disease development, pathological changes, targeted drug screening, and

management of patients. Currently, the modeling methods of CKD-MBD include

surgery, feeding and radiation. Additionally, the method of CKD-MBD modeling

by surgical combined feeding is worth promoting because of short time,

simplicity, and low mortality. Therefore, this review based on the pathogenesis

and clinical features of CKD-MBD, combined with the current status of animal

models, outlines the advantages and disadvantages of modeling methods, and

provides a reference for further CKD-MBD research.
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1 Introduction

Chronic kidney disease–mineral and bone disorder (CKD-

MBD) significantly increases the incidence and mortality of

fractures and cardiovascular diseases in patients, with high

hospitalization rates and low quality of life (1–3), as well as

incurring high medical costs and heavy social burdens. CKD-

MBD accompanied by abnormal laboratory indicators, bone

lesions, and calcification of blood vessels or other soft tissues has

a prevalence of 33.3%–81% in developing countries (4, 5). The

complicated pathogenesis of CKD-MBD involves fibroblast growth

factor 23 (FGF23), a-Klotho (Klotho), Wnt inhibitors, activin A,

and other factors. In addition to the general clinical manifestations

of CKD disorders of calcium and phosphorus metabolism,

secondary hyperparathyroidism (SHPT), persistent high levels of

parathyroid hormone (PTH), abnormal vitamin D (VD)

metabolism, bone abnormalities (manifested as bone turnover,

mineralization, bone mass, linear bone growth, or bone strength

abnormalities), and vascular or other soft tissue calcification are

caused by CKD-MBD (6–9). Currently, the treatment of CKD-

MBD is still complex, including dietary and lifestyle changes,

adjustment of dialysis schedules, and the use of phosphate

binders, VD, and calcimimetic agents (10). Management of

patients with CKD-MBD faces higher demands because of

considerations of therapeutic goals, adverse drug reactions, and

health economics (11–14). Establishing a stable animal model of

CKD-MBD based on its pathogenesis and clinical characteristics is
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crucial for the study of the disease, and provides an effective

experimental tool for screening and testing of clinically effective

drugs. Therefore, this review summarizes the current status of

animal models of CKD-MBD and provides an overview of the

pathogenesis, evaluation methods, modeling, and common

problems of CKD-MBD.
2 Pathogenesis of CKD-MBD

The onset and progression of CKD-MBD involves feedback

mechanisms between phosphate, calcium, PTH, VD, and other key

factors (15, 16). FGF23, Klotho, Wnt inhibitors, activin A and

circulating inflammatory biomarkers play different roles in the

pathogenesis of CKD-MBD (Figure 1). FGF23 is derived from

osteoblasts and plays an important role in VD and phosphate

metabolism (17–19). By targeting proximal renal tubular

epithelial cells, FGF23 decreases the surface expression of the

sodium/phosphate cotransporter proteins NaPi-2a and NaPi-2c,

thereby reducing renal phosphate reabsorption (20, 21). At the

same time, FGF23 reduces intestinal phosphate absorption by

down-regulating 1,25-hydroxylase activity and increasing 24-

hydroxylase activity, thereby decreasing 1,25-dihydroxy-vitamin

D (1,25-(OH)2D) synthesis (22–24). According to the early stages

of CKD, the compensatory elevation of FGF23 levels can counteract

hyperphosphatemia. Nevertheless, the prolonged FGF23 overdose

reduces phosphate reabsorption by impairing the ability of the
FIGURE 1

The pathogenesis of CKD-MBD. ActA, Activin A; ActRIIA, activin II type A receptor; Klotho, a-Klotho; FGFR1, FGF23 receptor 1; FGF23, fibroblast
growth factor 23; uPA, urokinase plasminogen activator; uPAR, soluble urokinase receptor; suPAR, soluble urokinase plasminogen activator receptor;
DKK1, Dickkopf-1; LRP 5/6, lipoprotein receptor-related protein 5/6; Fzd, Frizzled; Ca, calcium; VDR, vitamin D receptor; P, phosphorus; 1,25-
(OH)2D, 1,25-dihydroxy-vitamin D.
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parathyroid gland to respond to calcium and vitamin D receptor

(VDR) signaling pathway, thus exacerbating SHPT (25). Klotho is a

calcium–phosphorus regulatory protein that has the ability to

increase urinary phosphorus and prevent urinary calcium loss. It

is tissue specific for FGF23, converting FGF23 receptor 1 (FGFR1)

to a specific receptor for FGF23. In Klotho-deficient mice, vascular

calcification, hyperphosphatemia due to abnormal calcium/

phosphate metabolism, and shortened lifespan characterize the

development (26, 27). The FGF23–Klotho axis can be disrupted

in early CKD, which is characterized by decreased Klotho

expression and increased FGF23 levels in serum. In the absence

of Klotho, FGFR1 is underexpressed in the parathyroid glands and

serum FGF23 levels are elevated, leading to a series of mineral

metabolism disorders, SHPT, vascular calcification, and cardiac

hypertrophy. Exogenous Klotho may ameliorate or prevent the

progression of CKD-MBD (28). The Wnt signaling pathway (Wnt/

beta-catenin) promotes bone formation and can affect bone

remodeling by modulating the biological function of osteoblasts

and osteoclasts. Wnt inhibitors (a combination of wingless and int)

play a role in the pathogenesis of CKD-MBD. Wnt inhibitors,

including Dickkopf-1 (Dkk1) and sclerostin, are secreted at

increased levels in response to renal injury (29, 30).

Overexpression of Dkk1 leads to decreased levels of beta-catenin,

which reduces the number of osteoblasts, inhibits bone formation,

and induces osteoclast differentiation and promotes bone

resorption, leading to severe bone metabolic disorders (31).

Activin A originates in renal-injured peritubular myofibroblasts

and acts through the activin II type A receptor (ActRIIA) (32). In a

mouse model, activation and inhibition of ActRIIA using the ligand

trap RAP-011 (a fusion of the soluble extracellular structural

domain of ActRIIA to a mouse IgG-Fc fragment) were separately

evaluated for their roles in the pathogenesis of CKD-MBD (33).

Activation of ActRIIA decreased Klotho expression and induced

osteodystrophy and fibrosis, whereas inhibition of ActRIIA

signaling was observed to reverse and ameliorate these changes

(33, 34). Soluble urokinase receptor (uPAR) and soluble urokinase

plasminogen activator receptor (suPAR), whose important cellular

source is immature myeloid cells in the bone marrow (35), refer to

circulating inflammatory biomarkers that play a pivotal role in the

pathogenesis of renal diseases (36–39). As a cell membrane receptor

distributed on the cell membranes of a wide range of

immunoreactive cells and vascular endothelial cells, uPAR is

involved in extracellular matrix degradation, inflammatory

responses and tissue fibrosis by regulating the fibrinogen

activation system (40). As the soluble form of uPAR shed in body

fluids, suPAR, which is present in the peripheral blood circulation,

is associated with inflammation and immune activation (41, 42). By

virtue of impeding the formation of podocyte peduncles through

activation of b3 integrin on glomerular podocyte membranes,

suPAR is able to impair glomerular filtration and even cause

pathological outcomes such as severe renal failure (36). However,

there are currently no animal models that perfectly fit the clinical

characteristics of CKD-MBD, due to the complex pathogenesis.
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3 Modeling of CKD-MBD

Animal models were constructed by mimicking the

development of human CKD-MBD. Most CKD-MBD animal

models were formed by extending the modeling time of CKD

animal models. However, the construction of animal models is

required to be completed in a short period to facilitate experimental

studies. Therefore, methods such as surgery, special diet, and

radiation are sometimes adopted to accelerate the progression of

CKD-MBD.
3.1 Surgical intervention

The surgical intervention method means that the kidney of the

subject is removed or destroyed in some way, and varying degrees of

kidney damage were caused, leading to CKD-MBD. 5/6

nephrectomy (Nx), unilateral ureteral obstruction (UUO), and

electrocautery are used as common surgical modeling methods.
3.1.1 5/6 Nx
5/6 Nx is a widely used method. After removing 5/6 of rat

kidneys, the residual renal units have the function of systemic blood

filtration, thus leading to glomerular hyperfiltration, which further

destroys glomerulosclerosis and the residual renal units, and results

in the interstitial fibrotic lesions of chronic renal failure

characterized mainly by glomerular hypertrophy and sclerosis

(43, 44). Researchers have been preparing models of kidney

diseases by 2/3 or 3/4 nephrectomy since 1889 when the first

kidney-related animal models were created. However, no

significant signs of proteinuria, hypertension, or myocardial

hypertrophy were observed. Hence, Chauntin et al. (45) proposed

the 5/6 Nx modeling method in 1932. This procedure was

performed by first removing 2/3 of the kidney on one side of

Wistar rats and then the entire kidney on the opposite side 1 week

later. The rats were also characterized by significant proteinuria,

nitrogen retention, hypertension, and cardiac hypertrophy after

successful modeling. Jablonski et al. (46) reported that 150-day-old

female Wistar rats were selected for a long-term renal

osteodystrophy (ROD) model by the 5/6 Nx method in 1993

(Figure 2a). Blood samples were analyzed intermittently after

surgery, and the rats were killed when 340 days old. Samples of

the skull, residual kidney tissue, and bilateral femur, PTH, VD,

alkaline phosphatase (ALP), calcium, and phosphorus were found

to have varying degrees of change in the operated rats, and SHPT

was observed, with a significant decrease in ALP indicating long-

term obstruction of bone formation. The majority of the tested

animals had reduced transverse cross-sectional area of the diaphysis

and markedly increased bone resorption, with fibrous osteitis and

long bone chondromalacia. In 2018, after constructing a CKD-

MBDmodel by 5/6 Nx based on 8-week-old SD rats, the researchers

found the elevated serum creatinine (Scr), phosphorus and intact
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parathyroid hormone (iPTH) levels and the decreased blood

calcium levels compared with sham-operated rats (47, 48). At the

same time, the model rats showed severe renal tubular injury and

inflammatory interstitial cell infiltration. They also had extensive

glomerulosclerosis, which was accompanied by a large number of

dilated renal tubules and interstitial fibrosis. In addition, these

CKD-MBD model rats displayed the significantly reduced bone
Frontiers in Endocrinology 04
mineral density. In 2021, founded on building a new CKD-MBD rat

model using 5/6 Nx, Linna Liu et al. (49) revealed that serum urea

nitrogen (BUN)and Cr levels were significantly elevated. At the 16th

week of the experiment, the model rats showed significant lesions in

the mesorectum of the aorta. Furthermore, the expression of bone

morphogenetic protein 7 (BMP-7) was significantly down-regulated

in the vertebrae of the CKD-MBD model rats, and the values of
FIGURE 2

Simple models of CKD-MBD. (a) CKD-MBD model of 5/6 Nx; (b) CKD-MBD model of UUO; (c) CKD-MBD model of electrocautery; (d) CKD-MBD
model of electrocautery combined with left nephrectomy; (e) CKD-MBD model of adenine alone diet; (f)CKD-MBD model of high-phosphorus diet;
(g) CKD-MBD model of Cy/+ rat fed with casein diet; (h) CKD-MBD model of whole-body radiation in a puppy; (i) CKD-MBD model of localized
radiation in rats. DBA/2, Dilute brown non-Agouti; Cy/+, a genetic model of polycystic kidney disease; SD, Sprague-Dawley; Nx, Nephrectomy; HPD,
high-phosphate diet; SCD, standard chow diet; CKD-MBD, chronic kidney disease-mineral and bone disorder.
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BMD, BV/TV, Tb, and Tb.Th were significantly decreased, and

Tb.Sp was significantly increased. This model shows development

of mixed bone impairments in uremic animals and can be used to

study the early effects of CKD-MBD and the effects of different

treatment options on bone. The subtotal nephrectomy animal

model, a classic and mature model of CKD, has been mainly

applied to the study of the pathological mechanisms of chronic

renal failure. The model is equivalent to CKD stage 5 and GFR value

is less than 15 ml/min/1.73m2. Researchers have used this model to

evaluate and analyze the changes in bone tissue due to kidney injury

as they have gained a better understanding of CKD. Typical bone

abnormalities and vascular calcification are difficult to induce by 5/

6-NX (50), owing to the high renal compensatory capacity of

experimental rats, whose serum PTH, calcium, phosphorus, and

ALP are not markedly altered. Therefore, more time is needed for

developing the model of CKD-MBD. Infection and excessive blood

loss are risks involved in this method of modeling, with greater

surgical difficulty of control and high mortality (51, 52).

3.1.2 UUO
CKD is a state of progressive renal fibrosis (53). The UUOmodel

is well established and has been used to explore renal

tubulointerstitial injury and progressive fibrosis (54). The

hyperplasia of the renal tubular and interstitial cells and the

aggregation and infiltration of macrophages and monocytes in the

renal parenchyma induced by the UUO model ultimately lead to

CKD-MBD due to tubulointerstitial fibrosis and tubular atrophy

caused by the activation of the RAS system (55–57). For instance, 6-

week-old male Sprague–Dawley (SD) rats (160–200 g) were

anesthetized with isoflurane. The left nephron and ureter were

exposed with a side abdominal incision, and the left ureter was

ligated in two places with 3-0 sutures. After surgery, the rats were fed

a high-phosphorus and low-calcium diet (1.2% Pi and 0.6% calcium)

for 8 weeks (Figure 2b) (58). Histopathological analysis using micro-

computed tomography (CT) and immunohistochemistry showed

increased bone resorption in UUO model rats. However, the levels

of Scr, phosphorus, intact PTH, and FGF23 were unremarkable in

UUO model rats. The inconsistency in these results might stem from

the compensatory renal excretory function of the contralateral

kidney, rendering it difficult to ascertain the metabolic state of the

bones solely based on serum biochemical markers. No further studies

on vascular calcification in this model were performed at that time.

The UUO model was dramatically disrupted by subtle biochemical

changes and should be used with caution in studies of CKD-MBD.

The UUO model is equivalent to CKD stage 4 and GFR in 15-29 ml/

min/1.73m2. The UUO model is an ideal renal injury model to study

the rapid progression of renal fibrosis with little effect on total

glomerular filtration rate.

3.1.3 Electrocautery combined with
single nephrectomy

Electrocautery refers to the establishment of a model of CKD-

MBD using needle-type electrocautery to damage the kidney cortex,

causing inflammatory reactions and cortical fibrosis, resulting in

elevated Scr and BUN. The renal failure model established by
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electrocoagulation of the bilateral renal cortex was first proposed

by Gagnon et al. (59). Five-week-old C57/BL6 male mice were

anesthetized with ether, whose kidneys were exposed through a 2-

cm-long waist incision. The perirenal adipose tissue and capsule

were then peeled off and the renal epidermis was subjected to

electrocoagulation and electrocautery to a depth of ~1 mm, leaving

the renal cortex 2 mm from the perirenal hilum unabraded. The

same manipulations were performed on the left renal cortex 10 days

later (Figure 2c). Scr and BUN levels were significantly increased 4

weeks after bilateral renal cortices were electrocoagulated. The

model is equivalent to CKD stage 4 and GFR in 15-29 ml/min/

1.73m2. The previous method of bilateral renal cortical

electrocoagulation was modified by Lund et al. (60). The whole

cortex of the right kidney was cauterized, excluding a 2-mm zone

around the hilum, followed by total left nephrectomy 2 weeks later

(Figure 2d). Elevated levels of BUN, serum phosphorus and PTH,

hyperparathyroidism, conspicuous signs of femoral osteodystrophy

(including reduced number and area of osteoblasts, lower rates of

bone formation and bone mineralization deposition, decreased

bone density, severe fibrosis around the trabeculae, and enlarged

bone marrow cavities filled by fibrotic cells) were visualized after

successful modeling. Renal electrocautery combined with single

nephrectomy is a practical method for constructing CKD-MBD

models. The model is equivalent to CKD stage 5 and GFR value is

less than 15 ml/min/1.73m2. Restrictions of the electrocautery

method are not just that complications can be caused at the

beginning of the procedure, but also that the mortality of the

subject is increased by complications of surgery, anesthesia, and

late CKD (61).
3.2 Feeding intervention

Feeding modeling is a method by which animals are treated

with various nephrotoxic drugs, foods, or special diets, causing renal

unit injury, CKD, and then CKD-MBD. The causative agents

include adenine, high-phosphate diet, casein diet, and doxorubicin.

3.2.1 Adenine diet
By generating 2,8-dihydroxyadenine in vivo through the action

of xanthine oxidase that is deposited in the glomerular and

interstitial parts of the kidney, adenine helps form a foreign body

granulomatous inflammation and block the lumen of the renal

tubules to cause the corresponding cystic dilatation of the lumen of

the renal tubules. As the disease progresses, a large number of lost

renal units lead to CKD-MBD (62). Acute renal failure occurred in

patients with Lesch–Nyhan syndrome treated with adenine in 1974

(63). An animal model of renal injury induced by adenine diet was

first reported in 1986 (64). Male Wistar rats (~110 g) were fed

particles containing 0.75% adenine (adenine dose: 270–320 mg/kg/

day). Eight-week-old male SD rats (~200 g) were fed an adenine-

containing diet (0.75% adenine) for 4 weeks (65), and the rats had

raised levels of Scr, PTH, and phosphorus, reduced serum 1,25(OH)

2D3, increased osteoid on the trabecular surface, active osteoblasts,

and reduced cancellous bone mineral density (Figure 2e). In
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addition, 12-week-old male Wistar-Jcl rats were fed an adenine diet

and exhibited a high turnover type of ROD (66). Male Wistar rats

were fed a diet containing 0.25% adenine and low in vitamin K (67)

to generate a CKD-MBDmodel. Chronic renal failure in rats can be

induced by adenine diet, and also hyperparathyroidism and

disorders of bone and calcium–phosphorus metabolism can be

caused by this diet. Thus, a stable, highly reproducible, and highly

transformative animal model of CKD-MBD was successfully

established. More severe bone disease and vascular calcification

can be manifested by the adenine-induced CKD-MBD animal

model without invasive surgery (68, 69), and thus the difficulty of

modeling and mortality are significantly reduced. However, some

critical issues in elucidating the pathophysiological mechanisms of

CKD-MBD exist in this model. Theoretically, bone metabolism is

affected by systemic toxicity or organ-specific damage caused by

adenine (62). The model is equivalent to CKD stage 5 and GFR

value is less than 15 ml/min/1.73m2. Chronic renal failure is caused

first, with renal bone disease then being caused by chronic renal

failure as the first possible pathway. Bone metabolism directly

affected by adenine is the second possible pathway, but the direct

mechanisms by which it affects bone metabolism have not been

reported. Weight loss, malnutrition, and systemic inflammation can

be induced by an adenine diet.

3.2.2 High-phosphorus diet
High-phosphorus diet increases the risk of decreased renal

function (70) and has detrimental effects on bone health (71, 72).

By increasing blood phosphorus levels, inhibiting calcium-sensitive

receptor and vitamin D activation, and stimulating the

overproduction of PTH and FGF23, high-phosphorus diets cause

calcium and phosphorus metabolism disorders, enhanced bone

resorption and mineralization disorders. Meanwhile, calcium

phosphate deposition triggers ectopic calcification of the

vasculature and soft tissues, ultimately leading to CKD-MBD

(73). A novel model of CKD-MBD using only a high-phosphorus

diet has been created in recent years (61). DBA/2 mice were fed with

a high-phosphorus diet (20.2 g phosphorus, 9.4 g calcium,0.7 g

magnesium, and 500 IU/kg vitamin D3) for 4 or 7 days, followed by

standard chow diet (7.0 g phosphorus, 10.0 g calcium, 2.2 g

magnesium, and 1000 IU/kg vitamin D3), and followed until day

84 (Figure 2f). The experimental mice were found to develop

phosphate nephropathy, as demonstrated by tubular atrophy,

interstitial fibrosis, reduced glomerular filtration rate, elevated

serum urea, as well as SHPT, arterial calcification, and reduced

tibial bone volume and mineralization. The model is equivalent to

CKD stage 5 and GFR value is less than 15 ml/min/1.73m2. The

high mortality in animals due to surgical modeling was reduced

because the model excluded the effects of surgical intervention, and

because the low turnover bone disease was described for the first

time. In addition, progression of CKD-MBD was better simulated

by this model, rendering it a new, noninvasive, easy-to-perform,

and reproducible model. However, limitations of the model include

prolonged breeding and close monitoring of animals. The mortality

of the mice fed high-phosphorus diet for >10 days increases rapidly.
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Lastly, researchers found that the model differed in susceptibility to

vascular calcification by comparing CKD patients to this CKD

mouse model (61).

3.2.3 Casein diet
Casein diet by regulating phosphorus and calcium intake result

in hyperphosphatemia and increased PTH secretion, accompanied

by renal fibrosis and mineral metabolism disorders, which

ultimately leads to CKD-MBD (74, 75). The heterozygous Cy/+

rat is a genetic model of polycystic kidney disease that can be

developed into CKD-MBD on a special diet (75). Male Cy/+ rats are

consistent in the progressive development of nephropathy and have

several features of advanced CKD-MBD (76). Cy/+ rats were fed

with a high-casein diet (18% casein-based protein, 0.7% phosphate,

0.7% calcium, and 5% fat) and were sampled at 10, 34, and 38 weeks

of age, which showed persistent azotemia beginning at 10 weeks of

age, hyperphosphatemia, and hyperparathyroidism at 34 weeks of

age, vascular calcification at 38 weeks of age, and uremia at ~40

weeks of age (Figure 2g). Dietary protein type affecting the

progression of CKD-MBD and renal dysfunction were confirmed

by this model, and casein was introduced as a novel dietary

modeling method, alongside further exploration of the

mechanisms involved; namely that a casein-based diet increases

the concentration of FGF23, resulting in hyperphosphatemia to

complete the modeling. The model is equivalent to CKD stage 5 and

GFR value is less than 15 ml/min/1.73m2. This model, as the first

CKD-MBD model that occurs spontaneously under a normal

phosphorus diet without surgical or pharmacological

involvement, can simulate the development of human CKD,

study the early changes of CKD-MBD, and evaluate the effects of

different dietary regimens on the course of CKD-MBD.
3.3 Radiation

Radiation is an animal modeling method to induce CKD-MBD,

similar to bone disease due to chronic renal failure. The systemic

radiation contributes to anemia and immunosuppression by

destroying the hematopoietic function of the bone marrow (77).

At the same time, systemic radiation induces oxidative stress and

inflammation (78), which exacerbates mineral metabolism

disorders, ultimately leading to CKD-MBD. The dose and timing

of radiation are important because too small a dose makes it difficult

to produce visible kidney damage, while too large a dose can cause

gastrointestinal damage (79, 80). Two-day-old puppies were

exposed to sublethal doses of 60Co gamma radiation in 1981

(Figure 2h) (81), inducing varying degrees of renal failure, with

hyperparathyroidism, altered osteochondrosis, increased bone

remodeling, and reduced bone mineral density. The model is

equivalent to CKD stage 5 and GFR value is less than 15 ml/min/

1.73m2. Therefore, the radiation method can be applied to the study

of CKD-MBD in humans. The local radiation induces renal failure

by directly damaging renal tissues, which in turn leads to CKD-

MBD. The direct damage to renal tissues can cause renal
frontiersin.org

https://doi.org/10.3389/fendo.2025.1549562
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Tan et al. 10.3389/fendo.2025.1549562
hypoplasia, which in turn triggers inflammatory reactions and

fibrosis, as well as disorders of mineral metabolism, ultimately

leading to the pathologic features of CKD-MBD (82).

The method of inducing impaired bone metabolism by

establishing renal injury through localized radiation to the

kidneys based on whole-body radiation was proposed by Ming-

Yu Wu et al. (82). The bilateral kidneys of 3-month-old male SD

rats (280–310 g) were exposed through longitudinal incisions on

both sides of the spine. The rats were fixed in the lateral recumbent

position on a radiation rat mold, and the tissues other than the

kidneys were shielded by lead plates. The exposed kidneys were

irradiated by gamma rays at 15 Gy (Figure 2i). Indicators of bone

mass, three-point bending load on the femur, and compressive load

on the lumbar spine were significantly reduced in the subjects after

3 months of local kidney irradiation. Bone morphology tests

showed diluted bone trabeculae and accelerated bone conversion.

In addition, renal-radiation-injury-induced bone metabolism

disorders are similar in clinical manifestations to renal bone

disease due to chronic renal failure, with frequent manifestations

of osteoporosis, fibrous osteitis, resting bone disease, and

osteochondrosis, which predispose to fractures. The model is

equivalent to CKD stage 5 and GFR value is less than 15 ml/min/

1.73m2. In conclusion, definite bone changes can be caused by

systemic radiation and the modeling process is similar to the

progression of renal failure. However, clinical features more

similar to CKD-MBD are demonstrated by localized radiation of

the kidneys. Shortcomings of the radiation method are the long

modeling times due to slowly developing radiation damage to the

kidneys. Different nephrotoxicity thresholds are available in

different radiological entities (83), so the difficulty of modeling is

heightened by the radiation dose and length of time required

for radiation.
3.4 Improved models

The improved versions of the models refer to the derivation or

combination of the above models to obtain a model with a shorter

modeling time, greater efficiency, and greater suitability for

research purposes.

3.4.1 Partial nephrectomy combined with high-
phosphorus diet

5/6 NX brings severe damage to renal function, such as

increasing the burden on the residual kidneys and decreasing the

glomerular filtration rate to a high degree. Founded on this, a high-

phosphorus diet further exacerbates the abnormalities of bone

metabolism and vascular calcification, thus leading to the

development of CKD-MBD (84). Modeling with a high-

phosphorus diet based on a 5/6 Nx model can achieve better

modeling results for CKD-MBD in a short period. Male Wistar

rats (200–225 g) received a high-phosphorus diet (0.8% calcium and

0.93% phosphorus) for 3 weeks before starting two-stage 5/6 Nx

(85). Two branches of the left renal artery were ligated under
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anesthesia, followed by removal of the right kidney 2 weeks later

(Figure 3a). Execution and sampling were performed at 6 and 12

weeks, followed by testing that revealed elevated PTH,

hyperphosphatemia, hypocalcemia, and SHPT, as well as

increased mineral deposition rates, bone formation rates,

osteoblast perimeter, and erosion perimeter. The model can be

used to assess the effects of dietary phosphorus and the severity of

renal failure on morphological changes in bone histology and

various biochemical markers. Similarly, Scr, FGF23, and

phosphorus were significantly elevated, and total serum ALP

activity was increased with severe SHPT in 5/6 Nx mice fed a

high-phosphorus diet (2.0% calcium, 1.25% phosphorus, 20%

lactose, and 600 IU VD/kg) for 8 weeks postoperatively (86). Low

total and cortical bone density of the spine and proximal tibial

epiphysis, as well as significant signs of impaired bone

mineralization were detected. The CKD-MBD rat model was

developed by Linna Liu et al. (49) using 5/6 Nx combined with a

high-phosphorus diet (0.5 g sodium dihydrogen phosphate, 0.5 g

sodium dihydrogen phosphate). Alternatively, male SDT and SD

rats were used by Kentaro Watanabe et al. and were divided into

experimental and control groups (48). The experimental group had

2/3 of their left kidney removed at 8 weeks of age, followed by CKD

being established by total nephrectomy of the right kidney 1 week

later. Then CKD-MBD animal model was established by feeding a

high-phosphorus diet (1.0% calcium and 1.2% phosphate) at 10

weeks of age. SDT-Nx rats that had undergone 5/6 Nx compared

with SD nephrectomy rats by 20 weeks of age showed more

dramatic changes in CKD-MBD parameters, including vascular

calcification, serum PTH, FGF23, serum calcium and phosphorus

levels, and urinary excretion of calcium and phosphorus. Partial

nephrectomy combined with a high-phosphorus diet is regarded as

an optimal mouse model of chronic renal failure, with

characteristics such as malnutrition, hypertension, and disturbed

calcium and phosphorus metabolism, thus making an ideal model

for studying CKD-MBD. The model is equivalent to CKD stage 5

and GFR value is less than 15 ml/min/1.73m2. SDT-Nx rats can also

be used to examine the pathophysiology of CKD-MBD.
3.4.2 Unilateral nephrectomy combined with
adenine diet

Left nephrectomy aggravates the burden on the remaining

kidneys, resulting in reduced renal function. Moreover, because

adenine is nephrotoxic, an adenine diet causes interstitial fibrosis

and tubular damage, which further impairs residual renal function and

triggers abnormal mineral metabolism, ultimately leading to CKD-

MBD (51). The experiment was conducted using 200–220 g Male SD

rats (87) housed at 22 ± 3°C with 50± 0% humidity on a 12-h light/

dark cycle, and were fed standard rat chow of specific pathogen-free

grade. The rats were subjected to left-sided nephrectomy on day 7 and

given 2% adenine (150 mg/kg/day) on days 8–21 (Figure 3b). Renal

insufficiency, tubular interstitial injury, disturbance of calcium and

phosphorus metabolism, and bone abnormalities were found 3 weeks

after the induction of renal injury. The model is equivalent to CKD
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stage 5 and GFR value is less than 15 ml/min/1.73m2. Significant

vascular calcification was present in this modified CKD-MBD rat

model due to the use of adenine, and renal injury and bone

abnormalities were more easily studied.
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3.4.3 Nephrectomy combined with Adriamycin
The compensatory hyperfiltration state of the residual kidneys after

left nephrectomy results in intraglomerular high pressure, proteinuria

and oxidative stress, which further harms renal structure. Additionally,
FIGURE 3

Improved models of CKD-MBD. (a) CKD-MBD model of partial nephrectomy combined with high-phosphorus diet; (b) CKD-MBD model of
unilateral nephrectomy combined with adenine diet; (c) CKD-MBD model of nephrectomy combined with doxorubicin; (d) CKD-MBD model of
LDLR-/- mice with electrocautery combined with nephrectomy and special dietary intervention; (e) CKD-MBD model of fed with high-phosphorus
and adenine diet. SD, Sprague-Dawley; SDT, spontaneously diabetic Torii; LDLR=low density lipoprotein receptor; Nx, Nephrectomy; HPD, high-
phosphate diet; SCD, standard chow diet; SPF, specific pathogen-free; CKD-MBD, chronic kidney disease-mineral and bone disorder.
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adriamycin causes glomerular shrinkage, glomerulosclerosis, tubular

atrophy and tubulointerstitial fibrosis (88), and left nephrectomy

combined with adriamycin leads to deterioration of renal function

and the development of bone pathology, ultimately leading to CKD-

MBD. Nephrotoxic drugs were used by Liu et al. (89) based on 1/2

nephrectomy; i.e., the surgical modeling method was combined with the

drug–food modeling method. Thus, a new, short-term model of CKD-

MBD was formed. Male SD rats of 120–150 g were selected and

anesthetized under pentobarbital (60 mg/kg) for left nephrectomy

with intravenous doxorubicin (dissolved in 0.9% saline, 5 mg/kg),

whereby an ROD model was created, and experimental sampling was

performed at various times after surgery (Figure 3c). Marked increases in

BUN, Scr, Uric Acid(UA), and Urea-Creatinine Ratio (UCR), and

decreases in serum albumin were indicated in subjects with late ROD

(1 week < duration of disease ≤ 1 month). Overt renal injury was also

found. Low transforming bone lesions were revealed by bone

morphology that were characterized by marked decreases in bone

formation rate, osteoclasts, osteoblasts, and trabecular volume

thickness, as well as a significant increase in osteoid volume. This

experimental model is proposed as a highly reproducible model of

kidney injury, whose time to induction is short and time to injury is

predictable and consistent. Therefore, this model can also be used to test

interventions that exacerbate or prevent kidney injury. The model is

equivalent to CKD stage 4 and GFR in 15-29 ml/min/1.73m2.

Additionally, the process of human CKD development can be better

simulated on account of the high similarity between the type of

structural and functional impairment of the model and that of human

chronic proteinuria nephropathy.
3.4.4 Electrocautery combined with
nephrectomy and special dietary intervention in
LDLR-/- mice

By directly injuring the renal tissues, both left nephrectomy and

electrocautery trigger inflammatory reactions and fibrosis, causing

hyperphosphatemia, increased PTH secretion and abnormal bone

metabolism, ultimately leading to CKD-MBD (50). Therefore, better

modeling results will be achieved by combining the two procedures.

LDLR-/- mice were used by Davies in the preparation of this model

(90), with standard diet-fed mice being given a high-fat diet for 2

weeks at 10 weeks of age. The experimental manipulations were

carried out following the procedure previously described by Gagnon

(59) and Lund (60) at 12 weeks of age. The rate of mineral deposition

in the cancellous bone of the distal femur was significantly reduced,

osteoblasts were reduced, bone formation was slowed, and low

turnover of osteodystrophy was observed in mice fed a high-fat

diet. The right kidney of 12-week-old LDLR-/- mice was subjected to

electrocautery through a 2-cm lateral incision pair (91), with mild

and moderate kidney injury being produced according to the degree

of cautery. The left kidney was removed through a similar incision in

mice at 14 weeks, followed feeding a high-fat diet until 22 or 28 weeks

(Figure 3d). The final experiment showed suppressed bone formation

rate, decreased cortical bone density, decreased bone area, increased

osteoclast secretion, and vascular calcification. In addition, BUN,

calcium, phosphate, and PTHwere elevated at week 28. The degree of

renal injury was lowered by reducing the area of electrocautery in the
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right kidney. Early CKD (stages 2 and 3) in the model group was

judged by utilizing inulin clearance, and CKD-MBD appeared early.

The model is equivalent to CKD stage 5 and GFR value is less than 15

ml/min/1.73m2.

3.4.5 Combined high-phosphorus and
adenine diet

Adenine-fed renal pathology stems from the formation of 2,8-

dihydroxyadenine, an adenine metabolite that crystallizes in renal

tubules, which leads to an inflammatory response, oxidative stress,

tubular atrophy and renal parenchymal fibrosis. A high-phosphorus

diet increases the phosphorus load in the body and damaged kidneys

can’t excrete phosphorus efficiently, leading to elevated blood

phosphorus and stimulating increased secretion of PTH, which

triggers disorders of mineral metabolism and ultimately leads to

CKD-MBD. Eight-week-old male C57BL/6J mice were used by

Takashi et al. in 2017 (73). A novel CKD mouse model with

adenine and high-phosphate diet for assessing the progression of

hyperphosphate and associated mineral bone disease, and the longer

the high-phosphorus diet was fed, the greater the volume of

calcification was found. Twenty-week-old male C57/BL6J mice were

recently used to create a CKD-MBD model (92) in which CKD was

induced by feeding a 0.2% adenine and 0.8% phosphorus diet for 6

weeks, followed by induction of CKD-MBD by feeding a 0.2% adenine

and 1.8% phosphorus diet for 6 weeks (Figure 3e). Elevated creatinine

and phosphorus, decreased calcium, SHPT, thin and irregular femoral

cortex, visibly reduced cortical bone mineral density and cortical bone

thickness, and reduction in bone volume and trabecular number were

detected after successful modeling. The model is equivalent to CKD

stage 5 and GFR value is less than 15 ml/min/1.73m2. The

complications associated with medial arterial calcification and ROD

in patients with CKD are mimicked by this modeling approach, and

developed severe vascular calcification without surgery.
4 Quality evaluation of animal models
of CKD-MBD

No clear assessment criteria are seen in animal models with CKD-

MBD, and serum biochemical tests, renal histopathological tests, bone

tissue-related index tests, and vascular calcification are commonly used

for the evaluation and diagnosis of CKD-MBD (93, 94).
4.1 Serum biochemical tests

CKD-MBD is treated as a disease secondary to CKD. CKD-

MBD is regarded as a secondary disease of chronic kidney disease

(CKD), and its animal model needs to be evaluated by serum

biochemical tests to reflect the key indicators of renal function and

mineral metabolism disorders. The commonly used assays include

serum Scr, BUN, calcium, phosphorus, 1,25-(OH)2D, PTH (95, 96)

and ALP (73, 97, 98). Additionally, in order to improve the validity

and reproducibility of the model, it is recommended to incorporate

statistical analyses to validate the sensitivity and specificity of these
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assays, and to ensure the consistency of the experimental conditions

(e.g., feed formulations, surgical procedures) in order to minimize

bias due to individual differences.
4.2 Renal histopathology

Renal histopathology serves as an important tool for evaluating

animal models of CKD-MBD. Pathological changes in the kidneys,

including glomeruli, tubules, and interstitium, are usually visualized

under light microscopy after hematoxylin–eosin staining,

peroxynitrite Schiff staining, and Masson staining. To enhance

the clinical relevance of the model, quantitative analyses (e.g.,

glomerular sclerosis rate, percentage of fibrotic area) should be

combined to quantify the pathological changes and compared with

the pathological characteristics of human CKD-MBD patients to

validate the representativeness of the model.
4.3 Bone tissue-related indicators

Bone tissue-related index tests have been used as an important

indicator for the diagnosis of CKD-MBD. The lumbar spine, femur,

and tibia are often tested in experiments, with the femur being the

most commonly tested (75, 87).The presence of abnormalities in

bone transformation, mineralization, bone volume, linear bone

growth, or bone strength is clarified by detecting bone mineral

density (99), hematoxylin–eosin staining of bone sections (87, 100),

Masson staining, tartrate-resistant acid phosphatase (TRAP staining),

Goldner’s staining (101), immunohistochemical staining, and micro-

CT, and the type of bone transformation can be predicted by the

results of the assay (102–104). By combination with the dynamic

bone metabolism markers detection, the progression pattern of bone

lesions can be observed through long-term follow-up, thus enhancing

the validity, time-dependence and clinical relevance of the model.
4.4 Vascular calcification

Damage to the cardiovascular system in CKD-MBD is

considered an important factor in mortality (1). Experimental

models are often assessed by vascular calcium content

measurement, Von Kossa staining of aortic segments, and

percentage of aortic calcified plaque area (50, 105, 106). To

improve the reproducibility and clinical relevance of the model, it

can be combined with vascular endothelial function test as well as

inflammatory factor test to comprehensively reflect the pathological

mechanism of vascular calcification and to be compared with the

vascular lesion characteristics of human CKD-MBD patients.
4.5 Other assessment methods

The establishment of CKD-MBD animal models should also

consider the validity, reproducibility and clinical relevance. Firstly,
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in terms of the model validity, it can be statistically verified that the

key features of the model (e.g., serum biochemical indexes,

pathological changes and vascular calcification) are at the

expected level and ensure that the experimental results are

significant and biologically meaningful. Secondly, in terms of the

model reproducibility, a standardized operation procedure,

encompassing experimental design, animal selection, surgical

operation and detection methods, can be established to verify the

stability and consistency of the model through multiple batches of

experiments. Finally, the clinical relevance of the model can be

compared with the clinical data and pathological features of human

CKD-MBD patients to verify whether the animal model can

accurately simulate the pathophysiological process of

human disease.

A well-established model of CKD-MBD should resemble the

alterations in bone, renal function, and electrolytes of clinical

patients, in addition to the above-mentioned indicators being

examined. Also, the model should be altered by chronic renal

failure and not by other diseases or drugs. The model is required

to be broadly representative, highly stable, and reproducible, while

simple to operate, take a short time to achieve, and be capable of

representing renal bone disease from various causes.
5 Discussion and conclusion

The clinical presentation of patients with CKD-MBD varies with

the main metabolic abnormalities and characteristic bone disease of the

patient. CKD-MBD is primarily characterized by ROD, leading to

weakness, fractures, bone and muscle pain, and ischemic necrosis.

Hyperconversion osteodystrophy, hypoconversion osteodystrophy,

mixed ROD, and b2-microglobulin amyloidosis osteodystrophy are

specifically included in ROD. The treatment of CKD-MBD has so far

focused on phosphate retention, abnormal VD metabolism, and PTH

disruption, but the strategies have largely proved to be unsuccessful.

Recently, a single modeling method has been found to have a long

modeling time and other obvious shortcomings as the animalmodels of

CKD-MBD have been improved. For example, the mortality rate of 5/6

Nx is high, the experimental subjects of high-phosphorus diet modeling

are limited and have different sensitivities, and the radiation dose and

duration of radiation modeling are difficult to control. The modified

modeling methods were found to be noticeably more advantageous

than single modeling methods concerning the modeling time.

Unilateral nephrectomy combined with adenine diet is recommended

considering the cost of modeling and the difficulty of the operation.

Previous surgical modeling methods have resulted in high mortality

rates due to postoperative infections and other factors. However,

penicillin given to SD rats after unilateral nephrectomy reduced the

risk of infection and mortality. Adenine diet given a few days after

nephrectomy was effective in preventing the rats from developing rapid

malnutrition and death. Unilateral nephrectomy combined with

adenine diet for modeling is simple to perform, low in cost and

mortality, and deserves to be further promoted or improved upon.

However, no widely accepted method of model preparation

exists at present. Further practical studies on the pathogenesis of
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CKD-MBD will provide new ideas for animal modeling. For

instance, proliferation and differentiation of osteoblasts and

osteoclasts can be promoted by thyroid hormone (TH); the bone

turnover rate is high and the bone remodeling time is short in the

hyperthyroid state. Also, previous experiments have shown that the

bone turnover rate of rats can be increased by enhancing TH.

Therefore, can we supplement TH by thyroxine liquid gavage or

other ways based on an adenine diet to cause a high-conversion

CKD-MBD animal model? Bone metabolism can be regulated by

PTH through different signaling pathways; for example, the Gq/

PLC/PKC signaling pathway can be upregulated by increasing PTH,

thereby inhibiting bone formation. Therefore, can we upregulate the

Gq/PLC/PKC signaling pathway by administering PTH

intramuscularly based on the CKD rat model to inhibit bone

formation, thus creating a low conversion CKD-MBD animal

model with more similar clinical manifestations and more severe

vascular calcification? Excessive PTH stimulates increased bone

fibroplasia and osteoid formation, and tends to slow down bone

mineralization if accompanied by low blood calcium and

phosphorus. Then, can we make a mixed CKD-MBD model

based on the model of SHPT by decreasing blood calcium and

phosphorus in experimental animals through subcutaneous

injection of calcitonin, which subsequently leads to insufficient

bone mineralization? Finally, osteoarthropathy can be caused by

continuous aggregation of b (2)-microglobulin; therefore, can we

develop b (2)-microglobulin amyloid osteoarthropathy in

experimental animals by local injection of b2-microglobulin at
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the joints? If the above methods are feasible, they will be more

convenient than the existing methods of CKD-MBD modeling,

more consistent with clinical characteristics and pathogenesis, and

more targeted to create different bone transition types required for

experiments. These modeling methods still need to be further

studied. Researchers should start from the pathogenesis of CKD-

MBD and experimental purposes, find some modeling methods to

establish more consistent clinical features and pathogenesis of

human CKD-MBD, to provide more new strategies for clinical

treatment and disease prevention.

The various methods of modeling CKD-MBD, including

surgical, drug and food, radiation, and modified modeling

methods, have been established from the pathogenesis and

clinical features of CKD-MBD (Table 1). Every modeling

approach has its own advantages; for example, models with slow

disease progression are advantageous because they are more likely

to translate to chronic kidney disease in humans, while surgical,

radiation, and high-dose adenine models may more often simulate

kidney disease after acute kidney injury. However, many animal

models of CKD-MBD have the disadvantages of long modeling

time, difficult handling, and high mortality (Table 2). Therefore,

subject selection should be considered by the laboratory

workers, including the species, age, weight, and whether the

animals have underlying diseases. The operation method,

technical requirements, anesthesia dose, time and content of the

extraction, and mortality should be controlled by the experimenter

for each modeling method.
TABLE 1 Summary of CKD-MBD modeling methods and disease progression-related parameters.

Models Modeling
time

parameter variation Disease
severity

References

5/6 Nx 13 weeks ↑Scr,↑P,↓Ca,↑iPTH, Renal tubular injury, inflammatory interstitial cell infiltration, increased
bone resorption, fibrous osteitis and long bone chondromalacia

CKD stage 5 (46, 50–52)

UUO 8 weeks ↑BUN, slightly elevated iPTH, no change in Ca and P, tubulointerstitial fibrosis and tubular
atrophy, increased bone resorption

CKD stage 4 (55–58)

Electrocautery 12 weeks ↑P,↑iPTH, no change in Ca, significant depressions in osteoblast number, perimeters, bone
formation rates, and mineral apposition rates

CKD stage 4 (59–61)

Adenine diet 4 weeks ↑Scr,↑P,↑iPTH, ↓1,25(OH)2D3, increased osteoid on the trabecular surface, active osteoblasts,
and reduced cancellous bone mineral density

CKD stage 5 (65–69)

High-
phosphorus diet

12 weeks ↑Scr,↑P,↓Ca,↑iPTH, renal tubular atrophy, interstitial fibrosis, vascular calcification, and
decreased tibial bone volume and mineralization

CKD stage 5 (61)

casein diet 40 weeks ↑Scr,↑BUN,↑P,↓Ca,↑iPTH, SHPT, vascular calcification CKD stage 5 (75, 76)

Whole
body radiation

Within
2 years

↑P,↓Ca, SHPT, Osteochondrosis changes, increased bone remodeling, decreased bone density CKD stage 5 (81)

Local radiation 12 weeks Accelerated bone turnover, osteoporosis, fibrous osteitis, resting bone disease
and osteochondrosis

CKD stage 5 (82)

5/6 Nx+HPD 12 weeks ↑Scr,↑P,↓Ca,↑iPTH, increased rates of mineral deposition, bone formation, osteoblast
circumference and erosion circumference

CKD stage 5 (48, 49, 85, 86)

left
nephrectomy
+adenine

3 weeks ↑Scr,↑P,↓Ca,↑iPTH, tubular interstitial injury, bone abnormalities CKD stage 5 (87)

(Continued)
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TABLE 1 Continued

Models Modeling
time

parameter variation Disease
severity

References

Left
nephrectomy
+Adriamycin

3 weeks ↑Scr,↑BUN, Renal inflammatory cell infiltration, renal tubular collapse, and low transforming
bone lesions

CKD stage 4 (90)

Electrocautery
+left nephrectomy

28 weeks ↑Scr,↑P,↓Ca,↑iPTH, Vascular calcification, decreased cortical bone density, decreased bone
area and increased osteoclasts

CKD stage 5 (91)

Adenine
+phosphorus diet

12 weeks ↑Scr,↑P,↓Ca,↑iPTH, thin femoral cortex, reduced cortical bone mineral density and cortical
bone thickness, and reduction in bone volume and trabecular number

CKD stage 5 (92)
F
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5/6 Nx: 5/6 nephrectomy; UUO: unilateral ureteral obstruction; HPD: high-phosphate diet;↑: increased; ↓: decreased; Scr: serum creatinine; P: phosphate; Ca: calcium; iPTH: intact parathyroid
hormone; BUN: urea nitrogen; SHPT: secondary hyperparathyroidism; CKD: chronic kidney disease.
TABLE 2 Common animal modeling methods for CKD-MBD and their advantages and disadvantages.

Models Species Advantages shortcomings Application type References

5/6 Nx Rat stable, widely used, classic
and mature

long modeling time, operation
difficulty, high mortality, insufficient
bone abnormalities and
vascular calcification

Chronic renal failure, uremic
mixed bone disease, and
rapid progression of
renal fibrosis

(46, 50–52)

UUO Rat mature Unknown bone metabolic state Rapid progression of
renal fibrosis

(55–58)

Electrocautery Mouse reproducible, little bleeding long modeling time, early
Complications, difficult

Uremic mixed bone disease (59–61)

Adenine diet Rat stable, Simple, high repeatability,
low mortality, Significant bone
disease and vascular calcification

unknown mechanism, weight loss,
malnutrition, systemic
inflammatory response

Chronic renal failure, highly
transformed bone disease

(65–69)

High-phosphorus diet Mouse simple, high repeatability, low
mortality, similar clinical feature

long modeling time, limited
experimental subject,
different susceptibility

Lowly transformed
bone disease

(61)

casein diet Rat simple, no surgery, no drug,
simulate disease progression,
evaluate diet plan

long modeling time, high Cost Chronic renal failure, highly
transformed bone disease

(75, 76)

Whole body radiation puppy definite osteomalacic changes,
Similar renal failure progression

high mortality, limited exposure to
dogs and radiation sources

Chronic renal failure, uremic
mixed bone disease

(81)

Local radiation Rat similar clinical feature long modeling time, the dose and
duration of radiation are difficult
to control

Chronic renal failure, uremic
mixed bone disease

(82)

5/6-Nx+HPD Rat similar clinical features, drastic
parameter change,
pathophysiology examination

SD +Nx: insufficient vascular
calcification; SDT +Nx: unknown
mechanism, basic disease

Chronic renal failure, highly
transformed bone disease

(48, 49, 85, 86)

left
nephrectomy+adenine

Rat significant bone damage and
skeletal abnormalities

high risk of surgery Uremic mixed bone disease (87)

Left
nephrectomy
+Adriamycin

Rat short molding time, drastic
parameter change, high
repeatability, highly similarity,
predictable damage

unknown mechanism, Adriamycin’s
batch difference, individual
response differences

Lowly transformed
bone disease

(90)

electrocautery
+left nephrectomy

Mouse clear mechanism, obvious
bone lesions

narrow application range, the
complexity of modeling,
high mortality

Lowly transformed
bone disease

(91)

Adenine
+phosphorus diet

Mouse simple, no surgery, no drug,
severe vascular calcification

narrow application range, unknown
mechanism, weight loss, malnutrition,
systemic inflammatory response

Uremic mixed bone disease (92)
5/6 Nx: 5/6 nephrectomy; UUO: unilateral ureteral obstruction; HPD: high-phosphate diet.
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This review summarizes the current methods for modeling

CKD-MBD, their advantages and disadvantages, and scope of

application according to the pathogenesis and clinical

characteristics of CKD-MBD, combined with the serum

biochemical indexes, vascular calcification, and pathological

changes of kidney and bone, which provides a more convenient

reference for researchers to select, establish, and customize animal

models for CKD-MBD research.
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