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Extracellular vesicles (EVs) facilitate intercellular communication and the

conveyance of bioactive substances, including proteins, lipids, and nucleic

acids. They play a significant role in various reproductive biological processes,

including gametogenesis, fertilization, early embryo development, and

implantation. Dysfunctional EV activity is associated with various reproductive

diseases, such as polycystic ovary syndrome (PCOS), endometriosis, male

infertility, and recurrent pregnancy loss (RPL). This review systematically

examines and categorizes current knowledge on EV functions in reproductive

biology and disorders, and their potential as diagnostic and therapeutic tools. A

systematic literature search from 2000 to 2024 identified studies showing EVs’

influence on gamete maturation, fertilization, embryonic development, and

implantation. They also play a role in reproductive disorders by affecting insulin

resistance, androgen production, inflammation, angiogenesis, sperm quality, and

maternal-fetal immune tolerance. The review concludes that EVs are integral to

reproductive health, with further research needed to understand their

mechanisms and clinical potential.
KEYWORDS

extracellular vesicles, sperm, oocyte, fertility, embryos, embryo implantation,
reproductive disorders
1 Introduction

Infertility has become a pressing global health concern, with modern lifestyles and

environmental pollution contributing to its rapid rise (1). Intercellular communication is

essential for maintaining physiological homeostasis in multicellular organisms. Disruptions

in intercellular communication are increasingly recognized as a key factor in infertility (2).

In addition to juxtacrine signaling through tight junctions such as gap junctions for cell-to-
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cell communication, cells secrete a variety of molecules, including

hormones, peptides, cytokines, and growth factors, into the

extracellular environment to facilitate endocrine, paracrine, and

autocrine signaling (3, 4). Recently, a novel mechanism of

intercellular communication has been identified, involving the

secretion and internalization of extracellular vehicles (EVs) (5).

EVs are divided into microvesicles, apoptotic vesicles, and

exosomes based on their nature and function (6, 7). Exosomes are

a separate subpopulation of EVs with diameters ranging from 30 to

150 nm and densities from 1.13 to 1.19 g/mL. They serve as vehicles

for informational molecules involved in communication between

cells, facilitating the transport of functional proteins and genetic

information. This transport can alter the phenotype and function of

recipient cells, leading to alterations in cellular fate and

physiological activities (8). EVs are produced by the double

invagination of the plasma membrane and the inward budding of

the luminal membrane. These structures develop within the

intralumenal vesicles of multivesicular bodies (MVBs), which

extend inward from the luminal membrane. The formation of

these structures involves mechanisms that are both endosomal

sorting complexes required for transport (ESCRT) -dependent

and ESCRT-independent, linking with autophagosomes and
Frontiers in Endocrinology 02
lysosomes for biomolecule degradation or plasma membrane

interaction for release, thus engaging in the endocytic and

transport functions of cellular materials (6) (Figure 1). Across

physiological and pathological states, nearly all cell types,

including epithelial cells, macrophages, mast cells, neurons, and

mesenchymal cells, are capable of secreting EVs (9). Electron

microscopy has revealed that EVs are flattened, or spherical

vesicles encased in a lipid bilayer membrane, displaying a

distinctive cup-like morphology (10). These EVs are widely

present in several biological fluids, such as blood, urine, saliva,

amniotic fluid, cerebrospinal fluid, follicular fluid (FF), and semen

(11, 12). They contain a consistent set of marker proteins,

specifically the tetraspannin proteins CD9, CD63, CD81, and

CD82, which are currently recognized as the hallmark of EV (13).

Additionally, EVs are abundant in proteins that are involved in

multivesicular bodies biogenesis (such as Alix and TSG101), as well

as in membrane transport and fusion (including Annexins,

Flotillins, and GTPases), and heat shock proteins (for instance,

Hsp60, Hsp70, and Hsp90). They also harbor significant

components of the major histocompatibility complex (MHC I

and MHC II) proteins, as well as a variety of lipids, including

sphingomyelin, sphingosine, cholesterol, ceramide, and glycans
FIGURE 1

The formation of EVs begins with endocytosis, which has two pathways: returning the cargo to the plasma membrane as “recycling endosomes” or
transforming into “late endosomes,” or MVBs. MVBs will either merge with the lysosome or the plasma membrane, releasing their cargo outside the
cell. Several RAB proteins, including Rab 27a and Rab 27b, as well as protein complexes, help transport MVBs to the plasma membrane and release
EVs. In contrast, microvesicles are formed by the plasma membrane’s outward budding and scission, whereas apoptotic cellular membranes’
outward bubbling results in the production of apoptotic bodies. EVs and target cells interact in three ways (1): membrane proteins on EVs bind
directly to receptors on target cells, activating an intracellular signaling cascade; (2) EVs transport their contents to target cells by fusing with the cell
membrane; and (3) EVs are engulfed by endocytosis, releasing signaling molecules. Created with BioRender.com.
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(14–16). Additionally, EVs may encompass various types of cell

surface proteins, intracellular proteins, nucleic acids, amino acids,

and various metabolites (5, 17) (Figure 2).

EVs engage in biological activities primarily through three

mechanisms. Firstly, they fuse directly with the membrane of the

target cell, thereby activating downstream signal pathways;

secondly, EVs are internalized by the target cell through

receptor-mediated endocytosis, releasing biomolecules into the

cytoplasm and subsequently activating the cell; thirdly, upon

recognizing specific receptors on the target cell surface, EVs

initiate signal transduction pathways in effector cells (18).

Overall, the interaction between EVs and target cells facilitates

intercellular communication, immune modulation, cellular

differentiation, and pathological processes related to related to

reproductive diseases, including polycystic ovary syndrome

(PCOS), premature ovarian failure (POF), endometriosis (9)

(Figure 1B). For the reproductive system, EVs play a

multifaceted role, including gamete maturation, fertilization,

embryonic development, and implantation (19). Moreover, they

are associated with reproductive disorders such as PCOS (20),

endometriosis (21), male infertility (22), and RPL (23). The

quantity and composition of EVs are considered to be

innovative biomarkers for the diagnosis and prediction of

reproductive diseases (9). The aim of this review is to provide a

summary of the research progress of EVs in reproductive biology,
Frontiers in Endocrinology 03
to enhance our understanding of the intercellular communication

mechanisms of EVs in the reproductive system.
2 EVs in sperm maturation

Semen is collaboratively produced by various regions of the

male reproductive tract, including the testes, epididymis, vas

deferens, prostate, bulbourethral glands, and other accessory

glands. Comprising sperm and seminal plasma, semen plays a

crucial role in reproduction as it modulates immune tolerance,

facilitates sperm-egg binding, and directs pre-implantation

embryonic development (24). Seminal plasma contains EVs,

which constitute 3% of the total protein content and are primarily

derived from the prostate and epididymis. These EVs promote

sperm maturation, enhance sperm motility, and influence the

tyrosine phosphorylation of sperm proteins, thereby significantly

regulating the reproductive process (25) (Figure 3). Mammalian

ejaculates contain billions of EVs, characterized by high levels of

cholesterol and sphingolipids, and are laden with a variety of

mRNAs and small non-coding RNAs (sncRNAs), including

miRNAs, piRNAs, and siRNAs, each potentially playing

regulatory roles (26).

EVs derived from the male reproductive tract play a crucial role

in germ cell development and facilitate sperm maturation. Recent
FIGURE 2

Structure and composition of EV. EV is a lipid bilayer structure that contains lipids, proteins and nucleic acids. Sphingomyelin, phosphatidylserine,
cholesterol and ceramides are highly distributed on the membrane. In addition, EVs also contain a variety of proteins such as major
histocompatibility complex I and II (MHC I and MHC II), proteins from the MVB machinery (ALIX, TSG101), heat shock proteins (HSP70, HSP90,
HSP60), tetraspanins (CD9, CD63, CD81), receptors (FasL, TNF, TfR), adhesion molecules (Interins, Selectins, Cadherins) and cytosolic proteins, RNA
and DNA. Created with BioRender.com.
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studies indicate that EVs secreted by Sertoli cells, containing miR-

486-5p, function as communication messengers between Sertoli

cells and spermatogonial stem cells (SSCs). Specifically, miR-486-5p

targets and downregulates PTEN, thereby inhibiting the

differentiation of SSCs (27). Furthermore, EVs secreted by Sertoli

cells are capable of crossing the blood-testis barrier, supporting the

viability of interstitial cells, particularly Leydig cells, which are

crucial for testosterone production and overall testicular function

(28). A comprehensive proteomic analysis of EVs identified a total

of 2,138 proteins from semen of males diagnosed with non-

obstructive azoospermia (NSP) and severe oligozoospermia (SA).

Notably, 37 proteins were elevated in the NSP group, and 52

proteins increased in the SA group. This indicates that the

semen’s EV proteome is closely associated with molecular

processes governing sperm maturation and motility (29). In

addition to proteins, microRNAs (miRNAs), Y RNAs, and tRNAs

from semen also modulate sperm maturation. Sperm cytoplasmic

droplets (CDs), remnants of cytoplasm, migrate distinctively in

association with epididymal maturation. Sun et al. successfully

isolated 348 known miRNAs and 206 novel miRNAs from EVs in

porcine semen containing CDs. Compared with boar semen

containing spermatozoa without CDs, 13 EV miRNAs were
Frontiers in Endocrinology 04
significantly upregulated, while 3 were notably downregulated in

semen containing spermatozoa with CDs, suggesting that seminal

EVs play an essential role in regulating sperm CDs (30). Moreover,

extracellular adenosine triphosphate produced in boar seminal EVs

modulates mitochondrial metabolism to enhance sperm motility

and reduce apoptosis in fresh porcine sperm cultures (31).

Epididymosomes, also named epididymal-derived EVs, play a

pivotal role in sperm growth and development. Epididymosomes,

secreted by epididymal epithelial cells, contain a variety of

components, including adhesive proteins such as integrins,

tetraspanins, and the milk fat globule-epidermal growth factor 8

protein. These components are responsible for transferring multiple

proteins to sperm, thereby promoting sperm maturation and

facilitating the remodeling of the sperm membrane (32). Sperm

within the epididymis undergo maturation and experience

morphological and biochemical changes in an optimal

microenvironment facilitated by epididymosomes (33, 34).

Epididymosomes are essential for facilitating the attachment of

cholesterol to the sperm membrane, enhancing sperm stability.

Epididymal proteins are predominantly delivered to specific

subcellular compartments or membrane domains in sperm,

which are essential for acquiring fertilization capacity, regulating
FIGURE 3

This figure illustrates how EV-shuttled cargo, released from the epididymis (epididymosomes) and the prostate (prostasomes), affects various sperm
functions. Epididymosomes enhance sperm motility, maturation, mediate cell-to-cell communication, protect sperm from oxidative damage, and
participate in immune regulation. Similarly, prostasomes interact with sperm to improve motility, support maturation, facilitate cell-to-cell
communication, protect against oxidative damage, and modulate immune responses. Both types of EVs play crucial roles in ensuring optimal sperm
function and fertility. Created with BioRender.com.
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motility, and countering oxidative stress (26, 35). Cysteine-rich

secretory protein has been shown to translocate to sperm

via epididymosomes, aiding in sperm maturation (36).

Epididymosomes are equipped with glutathione peroxidase, an

enzyme that is vital for averting premature capacitation and

safeguarding sperm against oxidative stress (37). Prostasomes, EVs

derived from prostate, are believed to be significant in intercellular

communication, facilitating direct interactions between fixed motile

sperm and acinar cells. They contain over 140 proteins,

predominantly prostate-specific enzymes, including some GPI-

anchored proteins, which are crucial for sperm maturation,

capacitation, and the acrosome reaction (38). It has shown that in

an acidic environment, human sperm can merge with prostasomes,

leveraging this interaction to transfer lipids and proteins that reduce

the fluidity of the spermmembrane, thereby enhancing the reception

of fertilization signals. Additionally, prostasomes, rich in cholesterol

and sphingolipids, may shield sperm from the female reproductive

tract’s immune responses and exhibit antioxidant and antibacterial

properties (39).

It has shown that sperm co-cultured with seminal EVs at

different concentrations exhibit preserved integrity, augmented

total antioxidant capacity, elevated motility, and suppressed

premature capacitation (40). Semen-derived EVs and their

encapsulated miRNAs are correlated with male infertility.

Analysis comparing EV miRNA expressions between semen

samples from fertile individuals, those with obstructive

azoospermia and intact spermatogenesis, and individuals with

azoospermia due to spermatogenic failure, has identified

significant differences in miRNA expression, specifically in miR-

31-5p. Therefore, miRNA-31-5p serves as a potential biomarker for

identifying azoospermia, exhibiting high sensitivity and specificity.

Furthermore, miR-539-5p and miR-941 have been utilized to

forecast individuals with significant spermatogenic deficiencies

(41). These studies provide compelling evidence for the role of

EVs in sperm maturation and identify novel avenues for the

diagnosis and treatment of male infertility.
3 EVs in oocyte maturation

EVs are also crucial for oocyte maturation. It has shown that

EVs derived from bovine follicles facilitate oocyte development by

promoting cumulus cell growth and enhancing oocyte competence

(42). Follicular Fluid (FF) is derived from plasma components that

traverse the blood-ovarian barrier and from the secretions of

granulosa and theca cells. It comprises various ions, metabolites,

nucleic acids, and proteins. FF is crucial for creating a favorable

microenvironment for oocyte maturation, containing hormones

such as follicle-stimulating hormone (FSH), luteinizing hormone

(LH), growth hormone, inhibin, and estrogens, as well as androgens

and cytokines like tumor necrosis factor and Fas ligand (43). Heat

stress in animals can induce oocyte damage, including
Frontiers in Endocrinology 05
mitochondrial dysfunction, and elevated levels of reactive oxygen

species (44). EVs from FF can protect oocytes from heat stress,

enhance the cumulus cell expansion during oocyte maturation, and

improve the blastocyst formation capacity of mature oocytes under

in vitro heat stress conditions (45).

Previously, it was believed that the follicle served only as a

passive receiver of signals from granulosa cells. However,

communication between the follicle and granulosa cells is

bidirectional, involving intricate regulatory factor interactions that

govern the development of both cell types. This communication can

occur directly via gap junction networks, as well as through

paracrine, autocrine, and endocrine regulatory mechanisms (46)

(Figure 4A). In follicle development, the factors transmitted to the

oocyte are essential for coordinating follicle development and

activating various signaling molecules, including Kit, TGFB,

insulin, and members of the WNT signaling family (47). In

bovine early embryo development, EV miRNAs in FF are

involved in regulating various signaling pathways, including

ubiquitin-mediated signaling pathways, MAPK signaling

pathways, insulin signaling pathways, and neurotrophic factor

signaling pathways (48). A study found that FF exosomes from

higher-quality oocytes show distinct miRNA profiles targeting

WNT, MAPK, ErbB, and TGFb pathways crucial for follicle

development compared to low-quality oocyte FF exosomes (49).

WNT proteins are secreted signaling molecules that activate

Frizzled G protein-coupled receptors, which in turn facilitate

follicle development, oocyte maturation, and the steroid

production (50). The activation and initiation of the MAPK

pathway can occur through FSH and LH, which promote the

proliferation of granulosa cells and the expansion of cumulus cells

(51). Conversely, the MAPK and ErbB pathways promote the

resumption of oocyte meiosis by modulating cAMP levels,

thereby influencing the transition from meiotic arrest to

resumption (52). The intricate interactions among various factors

within these pathways lead to the removal of meiosis-inhibitory

factors and the activation of oocyte maturation signals.

EV-derived miR-17 and miR-92 from FF have been shown to

enhance oocyte diameter and increase H4K12 acetylation levels

(53). Moreover, Hu et al. identified miR-125b, let7d-5p, miR-200b,

miR-26a, and miR-92a in porcine FF EVs using next-generation

sequencing, suggesting their potential role in modulating porcine

oocyte maturation through the TGF signaling pathway (54). EVs

from bovine FF have been shown to promote granulosa cell

proliferation (55). MiR-424 in EVs from FF of individuals with

PCOS has been found to inhibit granulosa cell proliferation through

targeting cell division cycle associated 4 (CDCA4), thereby

suppressing the Rb/E2F1 signaling pathway identified to promote

cell proliferation and inhibit senescence-related phenotypes (56).

Similarly, EVs derived from human umbilical cord mesenchymal

stem cells, enriched with miR-146a-5p or miR-21-5p, augment

oocyte development in mice via the PI3K/mTOR signaling

pathway, concomitantly enhancing both the quantity and quality
frontiersin.org
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of oocytes (57). Thus, EVs both within and outside the follicle carry

various informational molecules to different cells, coordinating

intercellular communication to promote oocyte development.

A series of EV miRNAs have been identified as non-invasive

biomarkers for oocyte quality in assisted reproductive technologies.

Notably, miR-132, miR-100, miR-99a, and miR-218 are correlated

with oocyte maturation (58, 59). MiR-132, miR-212, and miR-214

may facilitate meiotic rescue by down regulation negative regulatory

genes that suppress follicular maturation factors, and miR-29a may

be implicated in epigenetic modifications (60). The features of

miRNAs, such as miR-31a-5p, found in EVs within FF are age-

dependent, potentially serving as biomarkers for the age-related

decline in oocyte quality (61). Assessment of specific components

within FF EVs can deepen our understanding of intra-follicular

signaling and potentially uncover biomarkers for patients

undergoing assisted reproductive technology treatments.
4 EVs in fertility

Fertilization is a multifaceted process involving oocyte

stimulation, sperm binding to the zona pellucida, gamete fusion,

and pronuclei development. Prostatic-like vesicles, such as

prostasomes, have been shown to influence sperm function in

vitro by inducing the acrosome reaction through their transfer to

the sperm membrane (62). The inner acrosomal membrane

adheres to the microvilli-rich regions of the oocyte, facilitating
Frontiers in Endocrinology 06
membrane fusion between the sperm and oocyte. Following this

fusion, the oocyte membrane becomes depolarized, triggering the

release of subcortical granules, which prevents polyspermy by

modifying the zona pellucida and establishing a block to

additional sperm entry (63). In vitro studies utilizing porcine

models have demonstrated that prostasome-like vesicles can

influence sperm, specifically by inducing the acrosome reaction

(64). The capacitated sperm first binds to the zona pellucida

through specific receptors, triggering the acrosome reaction.

This exocytotic event releases proteases and hyaluronidases

from the acrosome, which digest the zona matrix and facilitate

sperm penetration. Following successful acrosome reaction,

spermatozoa traverse the zona pellucida to reach the

perivitelline space (PVS). Membrane fusion between sperm and

oocyte plasma membrane is then enabled by capacitation-primed

proteins, ultimately leading to fertilization. This process also

promotes the targeted delivery of several regulatory substances

to the female reproductive system, thus aiding fertilization (65).

The oocyte plasma membrane, prior to fertilization, expresses

CD9 and CD81, which are crucial for the successful fusion of sperm

and oocyte. CD9 is present on the sperm that achieves fertilization,

playing a pivotal role in effective membrane fusion. CD9-positive

EVs are detectable on the oocyte membrane, particularly on the

microvilli where sperm attachment occurs. EVs enriched with CD9,

released by the oocyte into the PVS, facilitate sperm-oocyte fusion

by transferring CD9 to the sperm membrane. CD9-deficient show

abnormalities in their microvilli and are unable to fuse with sperm
frontiersin.or
FIGURE 4

This figure illustration highlights the critical roles of EVs in the female reproductive system. Part A, the ovary is depicted, showcasing the formation of
the oocyte and emphasizing the functions of EVs within the follicular fluid, which include promoting oocyte maturation and enhancing fertility. Part
B, the oviduct is illustrated, detailing how EVs are essential for oocyte maturation, fertility, and early embryo development. The image underscores
the multifaceted impact of EVs throughout the reproductive process. Created with BioRender.com.
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(66). Oocytes lacking CD9 were fertilized with polemical material

containing CD9 tetramer; however, another study reported that

fertilization capacity of these oocytes lacking CD9 could not be

rescued (67, 68). A different tetramer, CD81, is mainly synthesized

by cumulus cells and is mostly found in the inner region of the zona

pellucida, where it could play a role in fertilization, especially during

pre-fusion processes like the acrosome reaction (66). As sperm

penetrate the PVS, CD9 and CD81 can be transferred to the sperm

via EVs (66). Abnormal expression of proteins of these proteins can

negatively impact sperm function and fertilization.

EVs from the fallopian tube in mice have been shown to transfer

miRNAs to sperm. For example, miR-34c-5p within oviductal EVs is

transferred to sperm and is essential for initiating the first cleavage

during fertilization (69). Hsa-miR-92a and hsa-miR-130b exhibit

elevated expression levels in unfertilized follicular fluid, suggesting

their potential as biomarkers for fertilization (70). However, the

precise regulatory mechanisms warrant further investigation.
5 EVs role in embryo development
and implantation

Pregnancy initiation requires a coordinated progression

between the embryo and the endometrium, involving interactions

throughout both the pre-implantation stage and the subsequent

placental development. Various secretory factors from the

endometrium have been recognized in uterine fluid, which has

the potential to affect embryo development, endometrial epithelium

adhesion, and overall functionality during the implantation phase

(71) (Figure 4B). As a result, communication between the embryo

and the endometrial lining is essential for effective implantation.

Studies have shown that EVs released by both the trophoblast cells

and the endometrium are crucial in promoting intercellular

interaction at the maternal-fetal junction in early pregnancy (72).

EVs derived from the female reproductive tract, such as

fallopian tube epithelium, can alter embryonic transcript

expression when introduced into embryo culture (73). The

addition of seminal EVs to in vitro fertilization media enhances

blastocyst formation rates, extends embryo viability, diminishes

apoptosis in blastocysts, and elevates embryo quality in murine

models (74). Incorporating tubal bodies sourced in vivo into in vitro

culture systems enhances embryonic development and quality.

Notably, EVs derived from bovine fallopian tube epithelial cells

have been shown to improve embryonic development, quality, and

cryotolerance in vitro (75). Additionally, EVs derived from fallopian

tube cells have increased the efficiency of mouse embryo transfer by

decreasing embryonic cell apoptosis and promoting superior

embryonic cell differentiation (76). Moreover, embryos can

uptake EVs derived from the fallopian tube and endometrium,

while embryonic EVs may regulate the fallopian tube and uterine

functions (77).

EVs in uterine fluid enhance the proliferation of endometrial

endothelial cells at the implantation site and regulate the

endometrium, thereby supporting embryonic implantation. EV
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miR-92b-3p, originating from porcine endometrial epithelial cells,

is internalized by porcine trophectoderm cells, where it modulates

proliferation and migration (78). In addition, EV miRNAs enhance

endometrial epithelial cell adhesion and promote blastocyst

trophectoderm invasiveness during embryo implantation (79, 80).

Embryo attachment is regulated by endometrial secretion of EVs into

the uterine cavity, while the embryo also secretes EVs during

implantation. Embryo-derived EVs modulate endometrial

morphology and gene expression, influencing embryo positioning

and implantation invasiveness (81). EVs from both embryonic and

endometrial origins facilitate immune tolerance through crosstalk

with the maternal system, thereby promoting implantation and

pregnancy maintenance (82). miRNAs within EVs in peripheral

blood may serve as valuable biomarkers for evaluating embryonic

implantation (83). EV miRNAs, including miR-150-5p, miR-150-3p,

miR-146b-3p, and miR-342-3p, are implicated in embryonic

implantation and recognized as biomarkers for this process (84).

The EV miR-17 and miR-20a, members of the miR-17/92 family,

modulate trophoblast invasion and embryonic implantation by

targeting TGF receptor II, Smad2, and Smad4, while both the miR-

17/92 cluster and miR-1290 hold promise as novel biomarkers for

evaluating endometrial receptivity and implantation potential (85–

87). In addition, it has been demonstrated that trophoblast-derived

EV miR-1290 can suppress the expression of LHX6, thus facilitating

epithelial-mesenchymal transition and improving endometrial

receptivity (87). EV miR-26b and miR-98 from the uterus

downregulate maternal immune responses, facilitating conception

and implantation (88). miR-30d and miR-200c within EVs derived

from endometrium are implicated in embryonic implantation by

modulating gene expression (89). Additionally, conceptus-derived

EVs containing interferon-tau modulate gene expression associated

with implantation, promoting progesterone synthesis and facilitating

pregnancy establishment (90–92).

Research shows uterine fluid EVs regulate endometrial function

and embryo implantation. In pregnant sheep, these EVs carry

endogenous beta retroviruses env and gag RNAs that are transferred

between trophoblast and endometrial cells, promoting embryonic

trophectoderm development and placental expansion through

cellular proliferation and tissue remodeling (93). EVs secreted by

the endometrial epithelium are pivotal in mediating miRNA and

adhesion signals to the blastocyst and the surrounding endometrium,

thereby influencing endometrial receptivity and embryonic

implantation (94). These findings offer new insights into the

physiological significance of EV secretion of genomic information.

EVs can function autonomously, yet they often engage in

synergistic interactions with soluble growth factors and

hormones, highlighting their complex role in intercellular

signaling (95). Analyses utilizing bioinformatics suggest that

miRNAs specific to EVs can target biological pathways closely

associated with the process of embryonic implantation (48, 96).

Therefore, EVs that harbor particular miRNAs are found within the

microenvironment of embryonic implantation and might

significantly influence the relationship between the embryo and

the endometrium (97). Endometrial-derived EVs containing
frontiersin.org
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miRNAs regulate embryo implantation in mice by enhancing

levels trophoblast cell adhesion. In summary, EVs originating

from the fallopian tube and endometrium lining promote

interaction between the embryo and the maternal system during

pregnancy (98).
6 EVs in reproductive diseases

In the past few years, EVs have attracted growing interest

concerning their function in reproductive system diseases,

including PCOS, endometriosis, male infertility, and RPL. The

subsequent sections will discuss the role of EVs in diverse

reproductive disorders, with a specific emphasis on their

involvement in the immune system (Figure 5).
6.1 PCOS

EVs exert multifaceted regulatory roles in polycystic ovary

syndrome (PCOS) pathophysiology by delivering specific
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miRNAs that orchestrate critical molecular pathways. These

vesicles modulate energy supply through miR-34a-5p, which

suppresses lactate dehydrogenase A to impair glycolysis in

granulosa cells, while miR-143-3p disrupts Smad1/5/8 signaling

pathway by targeting BMPR1A, promoting granulosa cell apoptosis

(99, 100). Within the ovarian microenvironment, miR-379 inhibits

granulosa cell proliferation via phosphoinositide-dependent kinase

1 upregulation and impedes M2 macrophage polarization,

contributing to follicular developmental arrest (20). In PCOS

mouse model, serum-derived miR-128-3p was down-regulated,

which promotes granulosa cells ferroptosis (101). Notably,

mesenchymal stem cell-derived EVs (e.g., BMSCs-Exo) counteract

ovarian dysfunction by delivering therapeutic miRNAs that

attenuate CD31 overexpression, normalize aberrant angiogenesis,

and inhibit NF-kB-mediated inflammation in granulosa cells (102).

Clinically, circulating EV miRNAs such as miR-143-5p and miR-

34a-5p exhibit strong correlations with gamma-linolenic acid,

serving as dynamic biomarkers for inflammatory monitoring in

PCOS (103). EVs serve as effective drug delivery carriers, enabling

the targeted delivery of therapeutic agents to specific cells. For

instance, the delivery of anti-inflammatory drugs and insulin

sensitizers through EVs can significantly ameliorate the
FIGURE 5

This figure illustrates the process of EV generation and their contents, including proteins, RNA, and lipids. The lower part of the image specifically
details the role of EVs in four reproductive system-related diseases: Polycystic Ovary Syndrome (PCOS), endometriosis, male infertility, and recurrent
pregnancy loss. In these conditions, EVs influence cellular communication by carrying specific biomolecules, thereby contributing to disease
progression and pathogenesis. Created with BioRender.com.
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inflammatory state and enhance insulin sensitivity in patients with

PCOS, ultimately leading to improved treatment outcomes (104–

106). Collectively, these insights underscore EV miRNAs as central

mediators in PCOS pathogenesis, offering a dual promise for

precision diagnostics and targeted therapies.
6.2 Endometriosis

Endometriosis is a common gynecological condition marked by

the presence of endometrial tissue situated beyond the uterus. EVs

are crucial in the pathophysiological mechanisms linked to

endometriosis. Specifically, EVs containing miRNAs and growth

factors facilitate cell migration and invasion. For instance,

endometrial cells transfer miR-15a-5p through EVs, which

ultimately contributes to the development of ectopic lesions (107).

Furthermore, lncRNA carried by EVs, such as CHL1-AS1, can

inhibit cell migration and proliferation (108). Additionally, EVs

carrying IL-10 can inhibit NK cell activity, further facilitating the

development of ectopic lesion (109). EV protein markers in blood

can be leveraged for early diagnosis and monitoring of

endometriosis. Research has shown that the expression levels of

miR-22-3p and miR-320a in peripheral blood are positively

correlated with the severity of endometriosis, establishing their

potential as reliable biomarkers for the condition (110). Lastly,

EV-mediated gene therapy may represent a novel therapeutic

strategy. EVs demonstrate significant therapeutic potential for

endometriosis management, as their capacity to transport

bioactive cargo to designated cellular or tissue targets enables

their employment as precise drug delivery vehicles and

instruments for targeted therapeutic interventions (21).
6.3 Male infertility

Male infertility is a multifaceted condition influenced by

numerous factors related to spermatogenesis and sperm

maturation. Testicular sertoli cells and germ cells transfer

miRNAs and proteins through EVs, influencing the development

of male germ cells. For instance, miR-34b is transferred via EVs and

regulates the sperm motility and count (111). In addition, EVs that

carry antioxidant enzymes help regulate oxidative stress within

sperm cells, thereby protecting them from damage (112). EVs

originating from Sertoli cells have demonstrated the ability to

prevent spermatogonial stem cell apoptosis by transferring

miRNAs like miR-10b, resulting in the downregulation of KLF4

expression (113). Mesenchymal Stem-Cell derived EVs can

contribute to attenuating cell injuries through specific miRNAs,

such as miR-19a, miR-21-5p, and miR-144 (114). The possible role

of these miRNAs in alleviating sperm damage caused by chlamydia

indicates potential therapeutic use for EVs. Furthermore, the

detection of EV miRNAs in semen may serve as valuable
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biomarkers for male infertility. It has demonstrated that semen

miRNA levels correlate positively with sperm quality and male

fertility, underscoring their potential as biomarkers for assessing

these reproductive parameters (22). In treatment, EV delivery of

antioxidants or miRNAs can ameliorate the oxidative stress in

sperm, consequently enhancing sperm quality and fertility.

Administration of superoxide dismutase (SOD) or miR-126-5p

via EVs has been shown to maintain sperm viability and

morphology, ultimately contributing to improved male fertility

(115, 116).
6.4 Recurrent pregnancy loss

Recurrent pregnancy loss (RPL) is a prevalent complication

during pregnancy characterized by a complex pathogenesis, in

which immune factors play a pivotal role. In recent years, the

immune regulatory functions of EVs in RPL have garnered

significant attention. miRNAs, proteins, and lipids carried by EVs,

which are essential for maintaining immune balance at the

maternal-fetal interface (117).

Decidua-derived EVs have been shown to be essential modulators

of T-cell differentiation and function through the delivery of specific

miRNAs, thereby facilitating the development of immune tolerance

(118, 119). This immunoregulatory mechanism extends to their

capacity to activate macrophages and dendritic cells while

maintaining inflammatory homeostasis - a critical function for

protecting the embryo from pathological immune response (120).

Stem cell-derived EVs have demonstrated notable immunosuppressive

and anti-inflammatory properties. A landmark study by Xiang et al.

employed ultracentrifugation to isolate EVs from bone marrow

mesenchymal stem cell cultures, which were then administered to

pregnant mice with a history of RPL. The intervention resulted in

significantly improved pregnancy outcomes, as evidenced by increased

serum levels of the anti-inflammatory cytokines IL-4 and IL-10, along

with concomitant reductions in proinflammatory mediators TNF-a
and IFN-g at the maternal-fetal interface. Mechanistically, this

therapeutic approach modulated both T-cell function and

macrophage polarization, ultimately decreasing embryo resorption

rates by 42% compared to control groups. These findings collectively

establish the therapeutic potential of stem cell-derived EVs in

ameliorating immune-mediated pregnancy complications through

precise immune modulation (121). Another investigation showed

that villi can modulate IFN-g production by decidual natural killer

cells via the EV-mediated delivery of miR-29a-3p. This finding

suggests a novel therapeutic strategy involving engineered villus-

derived EVs mixed with HA-Gel, which shows promise for treating

unexplained RPL in both murine models and potential clinical

applications (23). Collectively, the immune regulatory role of EVs

offers a novel perspective for understanding pathogenesis of RPL. By

exploring the specific mechanisms of EV-mediated immune regulation

at the maternal-fetal interface, we may identify new targets and
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strategies for the early diagnosis and treatment of RPL (122).

Nonetheless, the prospect of utilizing EV therapy for managing RPL

appears encouraging, especially when combined with current

therapeutic strategies.
7 Conclusions and future directions

In conclusion, EVs play a role in numerous biological functions

in reproductive systems, such as gamete maturation, fertilization,

embryo development, and the progression of reproductive diseases.

These small vehicles carry bioactive compounds such as proteins,

lipids, and nucleic acids from one cell to another, functioning as

crucial regulator of cell communication. Their potential as

indicators and therapeutic targets is highlighted by their

involvement in these vital reproductive processes. EVs aid in the

interchange of vital components that improve sperm and oocyte

quality during gamete maturation, increasing the chance of
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successful fertilization (Figure 6). EVs regulate gene expression

and cellular signaling during embryogenesis, fostering proper

embryonic development and differentiation. Their dysregulation

is associated with reproductive disorders, highlighting the

importance of understanding their mechanisms. For ART, the use

of EVs is especially promising. Clinicians can utilize EVs to develop

innovative diagnostic tools and therapeutic strategies to combat

infertility and enhance ART outcomes. EV-based interventions

could enhance the quality of gametes and embryos, reduce the

risk of implantation failure, and minimize the incidence of

pregnancy complications.

Future research should focus on elucidating the specific

molecular pathways and cargo of EVs involved in reproductive

processes, while also exploring their potential applications in

personalized medicine. Integrating EV into clinical practice has

the potential to revolutionize the reproductive medicine, providing

new hope to couples facing infertility diseases. In sum, research into

EVs within reproductive biology and pathology deepens our
FIGURE 6

This figure elucidates the crucial roles of EVs in Assisted Reproductive Technology (ART). EVs enhance the quality of sperm and oocytes by
regulating the microenvironment of the reproductive tract and delivering signaling molecules and bioactive substances. During fertilization, they
facilitate the recognition and binding between sperm and oocyte by transferring specific proteins and molecules, thereby increasing the success rate
of fertilization. In the embryo development stage, EVs are vital in regulating gene expression and cell differentiation through intercellular
communication, ensuring proper embryonic growth. Finally, during embryo transfer, EVs support the preparation of the uterine endometrium and
enhance embryo-uterus interactions, which improves the implantation potential of the embryo. Collectively, these processes demonstrate the
significant impact of EVs on the success of ART. Created with BioRender.com.
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comprehension of human reproduction. With ongoing

advancements, the significance of EVs is anticipated to escalate,

paving the way for innovative strategies in reproductive health.
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Ramıŕez M, et al. Effect of bovine oviductal extracellular vesicles on embryo
development and quality in vitro. Reproduction. (2017) 153:461–70. doi: 10.1530/rep-
16-0384

76. Qu P, Zhao Y, Wang R, Zhang Y, Li L, Fan J, et al. Extracellular vesicles derived
from donor oviduct fluid improved birth rates after embryo transfer in mice. Reprod
Fertil Dev. (2019) 31:324–32. doi: 10.1071/rd18203
frontiersin.org

https://doi.org/10.1093/molehr/gaac002
https://doi.org/10.1093/humrep/dez114
https://doi.org/10.1016/j.theriogenology.2021.09.031
https://doi.org/10.1016/j.theriogenology.2019.08.003
https://doi.org/10.3390/ijms21155377
https://doi.org/10.1111/and.14155
https://doi.org/10.2741/s450
https://doi.org/10.1016/j.theriogenology.2013.01.028
https://doi.org/10.1016/bs.acc.2019.08.004
https://doi.org/10.1016/j.theriogenology.2020.06.020
https://doi.org/10.1007/978-3-030-67171-6_19
https://doi.org/10.1111/aji.13338
https://doi.org/10.1016/j.rbmo.2022.03.033
https://doi.org/10.1016/j.rbmo.2022.03.033
https://doi.org/10.1093/humrep/dey072
https://doi.org/10.1095/biolreprod.115.132977
https://doi.org/10.1093/humrep/dead024
https://doi.org/10.1016/j.jtherbio.2024.103927
https://doi.org/10.1071/rd18450
https://doi.org/10.1016/j.theriogenology.2023.04.009
https://doi.org/10.3390/ijms25063262
https://doi.org/10.1186/s40104-024-01008-5
https://doi.org/10.1016/j.bbrc.2020.11.058
https://doi.org/10.1210/rp.57.1.195
https://doi.org/10.1016/j.mce.2011.11.002
https://doi.org/10.1093/humupd/dml062
https://doi.org/10.1093/humupd/dml062
https://doi.org/10.1007/s10815-020-01909-0
https://doi.org/10.1007/s10815-020-01909-0
https://doi.org/10.1186/s12917-020-02711-x
https://doi.org/10.1111/rda.13021
https://doi.org/10.1016/j.cellsig.2021.110030
https://doi.org/10.1016/j.ymthe.2020.02.003
https://doi.org/10.3390/ijms21020585
https://doi.org/10.3390/diseases12060121
https://doi.org/10.1016/j.fertnstert.2014.08.005
https://doi.org/10.1016/j.cca.2022.11.003
https://doi.org/10.1530/rep-13-0358
https://doi.org/10.1016/j.gene.2013.05.058
https://doi.org/10.1186/1477-7827-6-5
https://doi.org/10.1186/1477-7827-6-5
https://doi.org/10.1016/j.biopha.2022.112752
https://doi.org/10.1242/bio.20121420
https://doi.org/10.1530/rep-12-0040
https://doi.org/10.1073/pnas.0710608105
https://doi.org/10.1038/s41598-018-34409-4
https://doi.org/10.1038/s41598-018-35379-3
https://doi.org/10.1007/s43032-023-01224-w
https://doi.org/10.1007/s43032-023-01224-w
https://doi.org/10.1007/s10815-018-1343-x
https://doi.org/10.1371/journal.pone.0179451
https://doi.org/10.1017/s0967199422000041
https://doi.org/10.1530/rep-16-0384
https://doi.org/10.1530/rep-16-0384
https://doi.org/10.1071/rd18203
https://doi.org/10.3389/fendo.2025.1550068
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2025.1550068
77. Bridi A, Perecin F, Silveira JCD. Extracellular vesicles mediated early embryo-
maternal interactions. Int J Mol Sci. (2020) 21. doi: 10.3390/ijms21031163

78. Hua R, Wang Y, Lian W, Li W, Xi Y, Xue S, et al. Small RNA-seq analysis of
extracellular vesicles from porcine uterine flushing fluids during peri-implantation.
Gene. (2021) 766:145117. doi: 10.1016/j.gene.2020.145117

79. Gurung S, Greening DW, Catt S, Salamonsen L, Evans J. Exosomes and soluble
secretome from hormone-treated endometrial epithelial cells direct embryo
implantation. Mol Hum Reprod. (2020) 26:510–20. doi: 10.1093/molehr/gaaa034

80. Mishra A, Ashary N, Sharma R, Modi D. Extracellular vesicles in embryo
implantation and disorders of the endometrium. Am J Reprod Immunol. (2021) 85:
e13360. doi: 10.1111/aji.13360

81. Kusama K, Nakamura K, Bai R, Nagaoka K, Sakurai T, Imakawa K. Intrauterine
exosomes are required for bovine conceptus implantation. Biochem Biophys Res
Commun. (2018) 495:1370–5. doi: 10.1016/j.bbrc.2017.11.176

82. Wu Y, Yuan W, Ding H, Wu X. Serum exosomal miRNA from endometriosis
patients correlates with disease severity. Arch Gynecol Obstet. (2022) 305:117–27.
doi: 10.1007/s00404-021-06227-z

83. Zhou W, Lian Y, Jiang J, Wang L, Ren L, Li Y, et al. Differential expression of
microRNA in exosomes derived from endometrial stromal cells of women with
endometriosis-associated infertility. Reprod BioMed Online. (2020) 41:170–81.
doi: 10.1016/j.rbmo.2020.04.010

84. Zheng D, Huo M, Li B, Wang W, Piao H, Wang Y, et al. The role of exosomes
and exosomal microRNA in cardiovascular disease. Front Cell Dev Biol. (2020)
8:616161. doi: 10.3389/fcell.2020.616161

85. Mogilyansky E, Rigoutsos I. The miR-17/92 cluster: a comprehensive update on
its genomics, genetics, functions and increasingly important and numerous roles in
health and disease. Cell Death Differ. (2013) 20:1603–14. doi: 10.1038/cdd.2013.125

86. Guo XR, Ma Y, Ma ZM, Dai TS, Wei SH, Chu YK, et al. Exosomes: The role in
mammalian reproductive regulation and pregnancy-related diseases. Front Physiol.
(2023) 14:1056905. doi: 10.3389/fphys.2023.1056905

87. Shi S, Tan Q, Liang J, Cao D,Wang S, Liang J, et al. Placental trophoblast cell-derived
exosomal microRNA-1290 promotes the interaction between endometrium and embryo by
targeting LHX6.Mol Ther Nucleic Acids. (2021) 26:760–72. doi: 10.1016/j.omtn.2021.09.009

88. Nakamura K, Kusama K, Hori M, Imakawa K. The effect of bta-miR-26b in
intrauterine extracellular vesicles on maternal immune system during the implantation
period. Biochem Biophys Res Commun. (2021) 573:100–6. doi: 10.1016/j.bbrc.2021.08.019

89. Tan Q, Shi S, Liang J, Zhang X, Cao D, Wang Z. MicroRNAs in small
extracellular vesicles indicate successful embryo implantation during early
pregnancy. Cells. (2020) 9. doi: 10.3390/cells9030645

90. Kowalczyk A, Czerniawska-Piat̨kowska E, Wrzecińska M. The importance of
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