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Background: To establish a classification model for assisting the diagnosis of

type 2 diabetes mellitus (T2DM) complicated with coronary heart disease (CHD).

Methods: Patients with T2DM who underwent coronary angiography (CA) were

enrolled from seven affiliated hospitals of Chongqing Medical University. Statistical

differences in clinical variables between T2DM with or without CHD patients were

verified using univariate analysis. The original data was divided into a training set and

a validation set in a 7:3 ratio. The training set data were used to screen features using

Logistic regression, Lasso regression, or recursive feature elimination (RFE). Five

machine learning algorithms, including Logistic regression, Support Vector Machine

(SVM), Random Forest (RF), eXtreme gradient boosting (XgBoost), and Light Gradient

Boosting Machine (LightGBM), were selected for modeling. The performance of the

models was verified through 5-fold cross-validation and the training set.

Results: Clinical data were collected from 1943 patients with T2DM complicated

with CHD and 574 T2DM patients without CHD. Univariate analysis identified 20

optimal risk factors, four of the risk factors had over 30% missing values, we

ultimately included 16 risk factors. Logistic regression screened eight features,

Lasso regression screened ten features, the RFE method screened eight,

fourteen, sixteen, and thirteen features for SVM, RF, XgBoost, and LightGBM,

respectively. Among all models, the XgBoost model based on features selected

by RFE+LightGBM demonstrated the best performance, achieving an AUC of

0.814 (95% CI, 0.779-0.847), accuracy of 0.799 (95% CI, 0.771-0.827), precision
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of 0.841 (95% CI, 0.812-0.868), recall of 0.920 (95% CI, 0.898-0.941), and F1-

score of 0.879 (95% CI, 0.859-0.897) in the testing set.

Conclusions: Based on T2DM data and machine learning theory, a Bayesian-

optimized XgBoost model was established using the RFE+LightGBM method.

This model effectively determines whether T2DM patients have CHD.
KEYWORDS

machine learning, type 2 diabetes mellitus, coronary heart diseases, diagnosis model,
diabetic comorbidities
GRAPHICAL ABSTRACT
Introduction

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease

characterized by insufficient insulin production, poor insulin action,

or both. According to the 11th edition of the International Diabetes

Federation (IDF) Diabetes Atlas published in 2025, approximately

589 million adults (aged 20–79 years) are living with diabetes

globally, equating to nearly 1 in 9 adults. Alarmingly, diabetes

was responsible for 3.4 million deaths in 2024, translating to one

death every six seconds (1). A nationwide cross-sectional study

conducted in China in 2024 involving 1.87 million patients with

type 2 diabetes mellitus (T2DM) found that approximately 67.5% of

the participants were classified as being at very high risk for

cardiovascular disease (CVD), with coronary heart disease (CHD)

identified as the most common cardiovascular complication (2).

Furthermore, data from the CAPTURE study indicated that 33.9%

of Chinese adults with T2DM had established CVD, with CHD
02
being the most prevalent subtype, affecting 16.0% of the study

population (3).

T2DM significantly increases the risk of developing coronary heart

disease (CHD), largely due to a complex interplay of metabolic and

vascular dysfunction. Persistent hyperglycemia promotes the

formation of advanced glycation end-products (AGEs), which impair

endothelial function and promote inflammation (4). Additionally,

insulin resistance and associated dyslipidemia accelerate

atherosclerosis through increased oxidative stress and macrophage

activation, contributing to plaque formation and vascular injury (5).

Chronic systemic inflammation and altered adipokine profiles further

exacerbate vascular dysfunction in T2DM patients (6).

Although there is ongoing debate about whether diabetes

mellitus (DM) precedes coronary CHD or coexists early in the

disease, it is widely accepted that DM-induced oxidative stress,

advanced glycosylated end-products, and chronic inflammatory

responses harm vascular endothelial function and cause
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cardiovascular disease (7, 8). This suggests that T2DM is a major

risk factor for microvascular and macrovascular complications (9).

T2DM patients with CHD are more susceptible to severe

atherosclerosis than non-DM patients with CHD, with narrower

arterial lumens (10). These patients often exhibit two or three vessel

lesions, presenting as multivessel and diffuse lesions (11).

Symptoms of CHD in T2DM patients are often atypical

compared to non-DM patients due to severe autonomic disorders

in T2DM patients, which increase pain thresholds. Consequently,

T2DM patients may only experience mild pain or no pain, even

during severe myocardial ischemia (12).

Coronary angiography (CA) is a necessary and widely used

method for diagnosing CHD in clinical practice (13). However, CA

is invasive and can cause complications such as arterial dissection,

arrhythmia, and even death. Additionally, image-based detection

techniques are expensive and not suitable for screening large

populations or for patient follow-up. Given the drawbacks of CA,

several non-invasive examination methods are widely used in clinical

settings, including coronary computed tomography angiography,

cardiac Magnetic Resonance Imaging (MRI), Holter monitoring, and

echocardiography. As a non-invasive method, computed tomography

angiography offers high sensitivity and negative predictive value, but

there is still debate over whether accurate judgments can be made

based solely on imaging examination results (14). Cardiac MRI can

noninvasively examine cardiovascular morphology, ventricular

function, myocardial perfusion, tissue characteristics, blood flow

quantification, and coronary artery disease. However, patients with

metal implants (such as defibrillators, pacemakers etc.) cannot undergo

MRI, limiting its clinical implementation to only 13.5% (15). Holter

monitoring is a commonly used non-invasive method for detecting

cardiovascular diseases. It offers advantages such as real-time

monitoring, repeatability, and affordability. However, the

Electrocardiogram (ECG) signals obtained from Holter monitors are

susceptible to external environmental influences (16). In addition,

many T2DM patients with CHD do not show abnormal

electrocardiograms in the early stages. Once the Holter monitor

detects abnormal signals, it indicates that CHD has already reached

a relatively serious stage. Therefore, there is an urgent need to find new

auxiliary methods for the early diagnosis of CHD in T2DM patients.

In this study, we retrospectively collected electronic medical

record data from T2DM patients who underwent CA using the

medical data platform of Chongqing Medical University. Based on

this data and relevant machine learning theory, we developed a

Bayesian-optimized eXtreme gradient boosting(XgBoost) model

using the recursive feature elimination+Light Gradient Boosting

Machine (RFE+LightGBM) method. This model effectively

diagnoses whether T2DM patients also have CHD.
Methods

Study population

We retrospectively enrolled electronic medical record data of

T2DM patients who underwent CA from the medical data platform
Frontiers in Endocrinology 03
of Chongqing Medical University affiliated hospitals, China. All

data had been desensitized. The study included patients discharged

between January 1st, 2015, and December 31st, 2021.

The inclusion and exclusion criteria were as follows. Inclusion

criteria: Patients who met the diagnostic criteria for T2DM

according to Chinese Guidelines for the Prevention and

Treatment of T2DM (2020) (17), or those with a documented

history of T2DM duration; patients who underwent CA during

hospitalization and had complete surgical records. Exclusion

criteria: Patients with a history of CHD, type 1 DM, gestational

DM, acute complications of DM, autoimmune diseases such as

systemic lupus erythematosus and rheumatic heart disease, severe

organ failure, or malignant tumors; patients with a clinical data

deletion rate exceeding 70%.
Data collection

A total of 2862 T2DM patients were initially enrolled based on

the inclusion criteria. Exclusions included 266 patients previously

diagnosed with CHD and 79 patients with a clinical data deletion

rate exceeding 70%. Ultimately, 2517 T2DM patients were included.

Among them, 1943 patients were classified into the T2DM with

CHD group (T2DM_CHD) based on significant stenosis (≥50%) in

one or more branches of the left main trunk, anterior descending

branch, circumflex branch, or right coronary artery, as documented

in their surgical records. The remaining 574 patients formed the

T2DM group. These two groups were divided into a training set

(T2DM_CHD group:1330, T2DM group:411) and a testing set

(T2DM_CHD group:613, T2DM group:163) in a 7:3 ratio (as

shown in Step I of the Graphical Abstract). The training set was

used for feature selection and model development, while the testing

set was used to evaluate the performance of the established

classification models.
Features selection and data preprocessing

We collected a total of 48 clinical variables (Supplementary

Table 1), referred to as “risk factors” in CHD, based on features

specific to T2DM combined with CHD and CHD clinical

guidelines (18). After screening, clinical risk factors with a

missing percentage of less than 30% were retained and imputed

using the Random Forest (RF) method (implemented in R using

the missForest packages). Statistical differences in these risk factors

between the groups were verified using univariate analysis. Values

were assigned to non-digitized risk factors as shown in

Supplementary Table 2. Measurement data were analyzed using

t-tests or Mann-Whitney U tests, while enumeration data were

analyzed using the Chi-square test (c2 test). A significance level of

P<0.05 was considered. Six clinical variable screening methods

were employed, including Logistic regression (using the stats

packages in R), Lasso regression (using the glmnet packages in

R), Support Vector Machine (SVM), RF, XgBoost, and LightGBM

based on RFE using python packages (sklearn). These methods
frontiersin.org
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used to select significant features and prepare for establishing

classification models.
Model establishment and performance
assessment

In clinical research, positive and negative samples are often

imbalanced, and classification models established using imbalanced

samples cannot effectively predict diseases. The imbalances in the

training set were addressed using the Synthetic Minority Over-

Sampling Technique (SMOTE, implemented with the imblearn

package in Python). The classification model algorithms were

optimized using the Bayesian optimization algorithm

(implemented with the bayesian-optimization package in Python).

Classification models for diagnosing CHD in T2DM patients were

established using various underlying models, including Logistic

Regression, SVM, RF, XgBoost, and LightGBM. The classification

modeling was performed using Python’s sklearn package.

The testing set was used to assess the performance of the

classification model. Evaluation metrics included accuracy,

precision, recall, F1 score, and AUC (with 95% confidence

intervals calculated using the Bootstrap resampling method).
Calculation of the feature importance

Machine learning models are often criticized for their lack of

interpretability, particularly in explaining why an algorithm

provides an auxiliary diagnosis for a particular patient cohort.

SHapley Additive exPlanations (SHAP), implemented using the

shap package in Python, is a conventional approach that can

interpret machine learning models, providing both global and

local interpretability simultaneously (19). We used SHAP to

visualize and calculate the importance of features from the final

classification model.
Results

Patient characteristics

We enrolled 2517 T2DM patients who underwent CA using the

medical data platform of Chongqing Medical University from

January 1st, 2015, to December 31st, 2021. This cohort included

1943 T2DM_CHD patients and 574 T2DM patients. We identified

20 risk factors with statistically significant differences between

T2DM patients with and without CHD were identified using

univariate analysis. However, 4 of these risk factors had more

than 30% missing data and were excluded (Distributions and

statistical differences before and after imputation are presented in

Supplementary Figure S1 and detailed in Supplementary Table 3).

Ultimately, we included 16 risk factors in the study (Table 1).
Frontiers in Endocrinology 04
Features in CHD were selected by six
methods

The features were further selected using the training set by six

methods. Logistic regression identified eight features with P<0.05

(Table 2). The variation process of the penalty coefficient l and

index coefficient is shown in Figure 1a. The optimal l value

(Figure 1b, dashed line on the right) was determined to be within

one variance range of the minimum mean square error (Figure 1b,

dashed line on the left) through cross-validation. Ten features were

selected by Lasso regression. Details of these features are shown in

Supplementary Table 4.

Four RFE underlying models, including SVM, RF, XgBoost, and

LightGBM, were used in this study. To find the optimal features for

each of these models, we employed 5-fold cross-validation to verify

the maximum AUC in the training set. The screening process is

shown in Figures 1c-f, where each line represents one validation in

the 5-fold cross-validation, and the red dashed line represents the

feature with the highest average AUC value. Eight features were

selected by RFE+SVM (Figure 1c). Fourteen features were selected

by RFE+RF (Figure 1d). Sixteen features were selected by RFE

+XgBoost (Figure 1e). Thirteen features were selected by RFE

+LightGBM (Figure 1f). Details of these features are shown in

Supplementary Table 4. To better illustrate the intersection of

selected features across different methods, we utilized an UpSet

plot, which provides a clear and comprehensive visualization of

feature overlaps (Figure 2).
Establishment of classification models

Based on the six distinct feature selection methods, the

corresponding clinical feature sets detailed in Supplementary

Table 4 were used as input variables for each classification model,

with the output variable being the presence or absence of comorbid

CHD, we established models based on Logistic Regression, SVM,

RF, XgBoost, and LightGBM. We performed a 5-fold cross-

validation on the training set and used the testing set to verify the

performance of the classification models. Since the hyperparameter

optimization in this study aimed to maximize the AUC, we

compared the AUC values of the various models. The

performance and ROC curve of each classification model, verified

by 5-fold cross-validation based on six feature sets in the training

set, are shown in Supplementary Table 5.
Performance of classification models with
different features selection

After successfully establishing the models, To identify the

optimal classification model, we further evaluated performance

using the testing set to verify the performance of each

classification model. The result was as follows (Table 3). The
frontiersin.org
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TABLE 1 Univariate analysis of related indexes in T2DM group and T2DM_CAD group.

Variables
Measurement
units

T2DM_CAD
(n=1943)

T2DM (n=574) c2/Z/t P

Demographic information

Age year 65.50 (58.00-70.00) 55.50 (53.00-66.00) -7.152 <0.001

Male n (%) 1095/1943 (56.36%) 322/574 (56.10%) 0.012 0.913

BMI* kg/m2 24.39 (22.77-26.56) 25.16 (24.25-26.33) -3.245 0.001

Smoke n (%) 739/1841 (40.14%) 143/552 (25.91%) 36.978 <0.001

Drink n (%) 512/1832 (27.95%) 128/551 (23.23%) 4.789 0.028

Systolic pressure mmHg 144.00 (137.00-166.00) 142.00 (130.50-168.00) -1.707 0.088

Diastolic pressure mmHg 87.50 (79.00-94.00) 89.50 (83.00-101.50) -0.501 0.617

Heart rate beats/min 82.50 (76.00-94.00) 85.00 (76.50-93.00) -0.681 0.496

Clinical history

Hypertension n (%) 1423/1943 (73.24%) 370/574 (64.46%) 16.660 <0.001

Family history of diabetes n (%) 191/1943 (9.83%) 55/574 (9.58%) 0.031 0.860

Family history of CHD n (%) 78/1943 (4.01%) 28/574 (4.88%) 0.819 0.365

Diabetic nephropathy n (%) 140/1943 (7.21%) 24/574 (4.18%) 6.653 0.010

Cerebral infarction n (%) 258/1943 (13.28%) 93/574 (16.20%) 3.156 0.076

Carotid atherosclerosis n (%) 333/1943 (17.14%) 95/574 (16.55%) 0.109 0.742

Atrial fibrillation n (%) 78/1943 (4.01%) 34/574 (5.92%) 3.798 0.051

Heart block n (%) 61/1943 (3.14%) 14/574 (2.44%) 0.752 0.386

Hyperlipidemia n (%) 534/1943 (27.48%) 162/574 (28.57%) 0.121 0.728

Lab values

Urine Glu n (%) 704/1668 (42.21%) 140/503 (27.83%) 33.598 <0.001

Urine protein* n (%) 316/1357 (23.29%) 65/392 (16.58%) 8.025 0.005

Urine WBC* /µL 5.05 (2.00-20.80) 4.70 (0.35-124.85) -2.628 0.009

Urine RBC* /µL 5.15 (1.60-11.60) 5.75 (0.55-14.45) -1.885 0.059

Urine Crea* mmol/L 8.90 (4.40-17.60) 8.80 (3.40-16.50) -0.913 0.361

ALT U/L 23.00 (16.00-35.00) 22.00 (14.00-32.00) -0.066 0.948

AST U/L 22.50 (17.00-33.00) 22.00 (17.00-27.00) -2.893 0.004

GGT U/L 28.00 (18.00-47.00) 28.00 (19.00-44.00) -0.738 0.461

TBIL µmol/L 10.70 (8.10-14.30) 11.40 (8.80-14.90) -0.169 0.866

TP g/L 69.37 ± 7.13 70.68 ± 6.39 -3.507 <0.001

Apo Ai g/L 1.40 (1.23-1.63) 1.50 (1.34-1.74) -7.181 <0.001

Apo B g/L 0.95 (0.76-1.17) 0.94 (0.73-1.14) -0.613 0.540

Apo E* mg/L 34.91 (27.94-40.84) 34.94 (29.30-42.85) -1.091 0.275

Lp (a) mg/L 141.85 (75.50-313.00) 101.30 (48.10-183.40) -6.633 <0.001

DEIL µmol/L 3.65 (2.80-5.00) 3.80 (3.00-5.00) -0.262 0.793

IEIL µmol/L 6.80 (5.20-9.40) 7.20 (5.40-9.70) -0.232 0.817

PA* mg/L 241.01 ± 59.95 249 ± 60.67 -2.496 0.013

GLB* g/L 27.38 ± 4.69 27.85 ± 4.40 -1.481 0.139

(Continued)
F
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LightGBM model (AUC=0.797) achieved the best performance

based on features selected by Logistic regression (Figure 3a). The

XGBoost model (AUC=0.805) outperformed other models based on

features selected by Lasso regression (Figure 3b). The XGBoost

model, based on features selected by RFE+SVM, showed the best
Frontiers in Endocrinology 06
performance (AUC=0.801) (Figure 3c). The LightGBM model

achieved the best performance based on features selected by RFE

+RF (AUC=0.810) (Figure 3d) and RFE+XGBoost (AUC=0.794)

(Figure 3e). The XGBoost model, based on features selected by RFE

+LightGBM, obtained the highest AUC value (AUC = 0.814)
TABLE 1 Continued

Variables
Measurement
units

T2DM_CAD
(n=1943)

T2DM (n=574) c2/Z/t P

Lab values

ALB g/L 41.17 ± 4.55 41.95 ± 4.19 -3.249 0.001

LDL-C mmol/L 2.42 (1.81-2.98) 2.26 (1.79-2.84) -1.316 0.188

HDL-C mmol/L 1.07 (0.93-1.28) 1.16 (1.00-1.27) -3.751 <0.001

TG mmol/L 1.52 (1.07-2.01) 1.57 (1.17-2.20) -0.220 0.826

TC µmol/L 4.20 (3.42-4.90) 4.15 (3.54-4.98) -0.215 0.829

TT s 17.50 (16.80-18.30) 17.50 (16.80-18.40) -0.431 0.667

PT s 13.10 (12.70-13.50) 13.10 (12.70-13.50) -1.085 0.278

INR 1.00 (0.95-1.04) 1.00 (0.96-1.04) -1.426 0.154

FIB g/L 3.48 (3.04-4.22) 3.38 (2.86-3.98) -4.973 <0.001

Crea µmol/L 70.15 (58.90-87.40) 63.00 (54.80-77.10) -7.580 <0.001

Glu mmol/L 8.35 (6.43-12.14) 7.86 (6.21-10.89) -4.428 <0.001

HbA1c % 7.84 (6.76-9.23) 7.08 (6.56-8.80) -6.316 <0.001
The measurement data subject to normal distribution is represented by �x ± s, and the measurement data not subject to normal distribution is represented byM (Q25, Q75); The enumeration data is
expressed in n(%). * indicates missing value > 30%.
TABLE 2 Logistic regression analysis results of difference index of T2DM complicated with CHD in training data.

Indicators B S.E Wald c 2 P OR (95%CI)

Hypertension 0.540 0.144 14.140 <0.001 1.716 (1.295,2.274)

Smoke 0.927 0.188 24.219 <0.001 2.527 (1.747,3.655)

Age 0.044 0.007 37.417 <0.001 1.045 (1.031,1.060)

HbA1c 0.281 0.068 16.823 <0.001 1.324 (1.158,1.514)

AST 0.011 0.003 17.045 <0.001 1.011 (1.006,1.017)

Crea 0.015 0.004 15.759 <0.001 1.015 (1.008,1.023)

Lp (a) 0.004 <0.001 114.610 <0.001 1.004 (1.004,1.005)

Apo Ai -0.815 0.330 6.113 0.013 0.443 (0.232,0.845)

Glu -0.032 0.024 1.755 0.185 0.968 (0.924,1.015)

FIB 0.092 0.085 1.176 0.278 1.096 (0.928,1.294)

Urine Glu 0.160 0.169 0.894 0.344 1.173 (0.843,1.633)

ALB -0.019 0.028 0.458 0.498 0.981 (0.929,1.037)

TP 0.009 0.015 0.329 0.566 1.009 (0.979,1.039)

Drink -0.060 0.192 0.099 0.753 0.942 (0.647,1.371)

Diabetic nephropathy 0.028 0.329 0.007 0.932 1.028 (0.540,1.958)

HDL-C 0.004 0.316 <0.001 0.991 1.004 (0.540,1.865)

Constant -5.749 1.298 19.630 <0.001
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compared to other models based on the six features (Table 3 and

Figure 3f). Thus, we demonstrated that XgBoost model based on

RFE+LightGBM selected features is the optimal auxiliary

diagnostic model.
Visualization of feature importance

To intuitively explain the selected features, we used SHAP to

calculate their importance in determining whether T2DM patients

also have CHD. As shown in Figure 4a, higher values of features

such as HbA1c, Crea, AST, Lp(a), Apo Ai, hypertension, smoking
Frontiers in Endocrinology 07
status, age, fibrinogen (FIB), HDL-C, albumin (ALB), glucose (Glu)

and total protein (TP). The thirteen features in the optimal auxiliary

diagnostic model were ranked by their average SHAP values. The

feature ranking on the y-axis indicates their importance in the

auxiliary diagnostic model (Figure 4b).
Discussion

Our study demonstrates that routinely collected clinical

variables can be effectively leveraged to distinguish T2DM

patients with CHD from those without, using machine learning-
FIGURE 1

LASSO regression screening T2DM combined CHD features and RFE + 5-fold cross-validation screening features process. (a) 15 difference index
model punishment process. (b) Optimal parameters in lasso regression model l Change process. (c) RFE+SVM screening features process. (d) RFE
+RF screening features process. (e) RFE+XgBoost screening features process. (f) RFE+LightGBM screening features process.
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based models. Among the models tested, the XGBoost classifier

using features selected via recursive feature elimination combined

with LightGBM (RFE+LightGBM) achieved the highest

performance (AUC = 0.814), indicating strong discriminatory

ability. The reliance on readily accessible clinical indicators, such

as routine biochemical and hematological parameters, enhances the

model’s feasibility for real-world application, particularly in

endocrinology and primary care settings where cardiovascular

risk in T2DM patients is frequently underrecognized. This

approach offers potential value for the early identification of CHD

and the timely initiation of secondary prevention strategies to

reduce the risk of major cardiovascular events.

In contrast to many prior studies that applied machine learning to

CHD prediction but suffered from key limitations—such as

heterogeneous or unspecified populations, unclear outcome

definitions in control groups, and lack of objective CHD validation

(20–22). Our study addressed these issues systematically. Specifically,

we enrolled a well-defined cohort of T2DMpatients who all underwent

CA, enabling objective classification into CHD and non-CHD groups

based on a standardized criterion of ≥50% stenosis in one or more

major coronary arteries. This design improves both diagnostic

precision and population homogeneity. Compared with recent work

by Sang et al. (23) who developed a CHD prediction model in T2DM

patients based on EHR data and achieved an AUROC of 0.722 using

random forest algorithms, our study offers several improvements.

These include the use of angiographically confirmed CHD

diagnoses, a higher model performance (AUC=0.814), and a broader
Frontiers in Endocrinology 08
range of feature selection strategies. Furthermore, our model’s

interpretability and clinical integration potential are enhanced by its

foundation in real-world, routinely collected data.

Additionally, we applied six independent feature selection

techniques alongside five machine learning classifiers to rigorously

explore the optimal predictive strategy. This multi-method approach

reduced selection bias and improved model generalizability.

The training set is primarily used for features selection and

classification model training, so when evaluating model

performance, the focus is mainly on using the testing set for

assessment. In this study, model optimization is based on

maximizing the AUC value, so the performance of the thirty

established models in the testing set is primarily evaluated through

the AUC value. Supplementary Figure S2 shows a comparison of the

testing set AUC values for 6 different variable screening methods

applied to 5 classification models. As seen in Supplementary Figure

S2a, the model performance of Logistic regression does not vary

significantly across these 6 variable screening methods. Whether using

RFE+XgBoost with up to 16 features or Logistic regression with 8

features, the AUC values on the training set differ only by a fraction of

a percentage. Therefore, when using Logistic regression to build

classification models for disease prediction, it may be preferable to

use a variable screening method with fewer features. Supplementary

Figure S2b shows the performance of classification models established

using the SVM algorithm based on 6 different variable screening

methods. This study found that the Logistic regression is optimal and

significantly outperforms the other methods. However, as shown in
FIGURE 2

UpSet plot of overlapping features selected by multiple methods on the test set.
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TABLE 3 Performance evaluation table of 5 classification models in testing set.

Classification
model

Accuracy
(95% CI)

Precision (95% CI) Recall (95% CI) F1 Score (95% CI) AUC (95% CI)

Feature selection method: Logistic regression

Logistic regression 0.695 (0.662,0.727) 0.916 (0.890,0.941) 0.675 (0.638,0.712) 0.777 (0.750,0.804) 0.777 (0.737,0.814)

SVM 0.750 (0.719,0.781) 0.868 (0.840,0.895) 0.806 (0.774,0.837) 0.836 (0.813,0.858) 0.717 (0.667,0.764)

RF 0.768 (0.738,0.798) 0.890 (0.863,0.916) 0.806 (0.774,0.837) 0.846 (0.823,0.868) 0.792 (0.754,0.827)

XgBoost 0.736 (0.705,0.767) 0.905 (0.878,0.930) 0.744 (0.709,0.778) 0.816 (0.791,0.840) 0.788 (0.751,0.823)

LightGBM 0.751 (0.720,0.782) 0.905 (0.879,0.929) 0.765 (0.731,0.798) 0.829 (0.805,0.853) 0.797 (0.761,0.831)

Feature selection method: Lasso regression

Logistic regression 0.693 (0.661,0.726) 0.908 (0.881,0.934) 0.680 (0.644,0.717) 0.778 (0.750,0.805) 0.776 (0.737,0.814)

SVM 0.762 (0.732,0.791) 0.853 (0.824,0.881) 0.843 (0.815,0.872) 0.848 (0.826,0.869) 0.696 (0.650,0.775)

RF 0.768 (0.738,0.798) 0.889 (0.862,0.914) 0.808 (0.776,0.838) 0.846 (0.824,0.868) 0.792 (0.753,0.828)

XgBoost 0.746 (0.715,0.777) 0.898 (0.872,0.924) 0.765 (0.731,0.798) 0.826 (0.802,0.850) 0.805 (0.769,0.838)

LightGBM 0.731 (0.701,0.763) 0.901 (0.874,0.926) 0.742 (0.707,0.777) 0.814 (0.788,0.838) 0.786 (0.747,0.822)

Feature selection method: RFE+SVM

Logistic regression 0.787 (0.758,0.817) 0.837 (0.809,0.865) 0.907 (0.883,0.930) 0.871 (0.850,0.890) 0.777 (0.736,0.814)

SVM 0.762 (0.731,0.791) 0.851 (0.822,0.879) 0.847 (0.817,0.875) 0.849 (0.826,0.870) 0.685 (0.634,0.735)

RF 0.800 (0.772,0.829) 0.833 (0.805,0.860) 0.935 (0.914,0.954) 0.881 (0.862,0.899) 0.795 (0.757,0.832)

XgBoost 0.798 (0.769,0.826) 0.838 (0.810,0.866) 0.922 (0.900,0.942) 0.878 (0.858,0.896) 0.801 (0.765,0.835)

LightGBM 0.782 (0.753,0.811) 0.852 (0.824,0.880) 0.876 (0.849,0.902) 0.864 (0.843,0.884) 0.784 (0.747,0.820)

Feature selection method: RFE+RF

Logistic regression 0.787 (0.758,0.817) 0.841 (0.813,0.869) 0.900 (0.876,0.924) 0.870 (0.850,0.889) 0.777 (0.737,0.815)

SVM 0.786 (0.756,0.814) 0.808 (0.779,0.837) 0.956 (0.939,0.971) 0.879 (0.857,0.894) 0.681 (0.631,0.730)

RF 0.808 (0.780,0.835) 0.818 (0.789,0.846) 0.974 (0.961,0.956) 0.889 (0.871,0.906) 0.792 (0.754,0.830)

XgBoost 0.796 (0.768,0.825) 0.847 (0.819,0.875) 0.905 (0.882,0.928) 0.875 (0.856,0.894) 0.806 (0.771,0.840)

LightGBM 0.805 (0.777,0.832) 0.861 (0.834,0.887) 0.900 (0.874,0.922) 0.879 (0.860,0.898) 0.810 (0.774,0.844)

Feature selection method: RFE+XgBoost

Logistic regression 0.787 (0.758,0.817) 0.840 (0.812,0.868) 0.902 (0.878,0.925) 0.870 (0.850,0.890) 0.776 (0.736,0.814)

SVM 0.786 (0.758,0.814) 0.803 (0.774,0.832) 0.965 (0.950,0.979) 0.877 (0.858,0.895) 0.685 (0.636,0.732)

RF 0.800 (0.772,0.829) 0.815 (0.787,0.843) 0.966 (0.951,0.979) 0.884 (0.866,0.902) 0.782 (0.741,0.821)

XgBoost 0.790 (0.762,0.818) 0.796 (0.767,0.824) 0.987 (0.977,0.995) 0.881 (0.863,0.899) 0.765 (0.725,0.802)

LightGBM 0.796 (0.768,0.825) 0.859 (0.832,0.886) 0.887 (0.861,0.912) 0.873 (0.853,0.893) 0.794 (0.755,0.830)

Feature selection method: RFE+LightGBM

Logistic regression 0.790 (0.760,0.818) 0.841 (0.812,0.868) 0.905 (0.882,0.928) 0.872 (0.852,0.891) 0.774 (0.734,0.812)

SVM 0.794 (0.764,0.822) 0.818 (0.789,0.850) 0.951 (0.933,0.967) 0.879 (0.860,0.897) 0.690 (0.639,0.738)

RF 0.796 (0.768,0.825) 0.811 (0.782,0.839) 0.967 (0.952,0.981) 0.882 (0.864,0.900) 0.786 (0.746,0.824)

XgBoost 0.799 (0.771,0.827) 0.841 (0.812,0.868) 0.920 (0.898,0.941) 0.879 (0.859,0.897) 0.814 (0.779,0.847)

LightGBM 0.803 (0.774,0.830) 0.848 (0.820,0.875) 0.914 (0.891,0.935) 0.880 (0.860,0.898) 0.806 (0.771,0.839)
F
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Supplementary Figure S3a, the SVM algorithm exhibits the poorest

classification performance among the 5 models in this study.

Supplementary Figure S2c shows the AUC values of the RF

algorithm under 6 variable screening methods. The study found that

the RF algorithm performs better with the Logistic regression, Lasso

regression, and RFE+SVM variable screening methods compared to

the other three methods. This features that the RF model is not well-

suited for using a larger number of indicators and tends to achieve

better results with fewer features. Supplementary Figures S1d, e show

the AUC values of the XgBoost and LightGBM algorithms under 6
Frontiers in Endocrinology 10
different variable screening methods. Except for the RFE+XgBoost

method, which does not remove any variables, using more indicators

with the other 5 variable screening methods generally leads to better

classification performance with these two machine learning models.

Specifically, the classification model established using the XgBoost

algorithm based on the RFE+LightGBM variable screening methods

performed the best in this study (AUC=0.814).

As shown in Supplementary Figure S3a, the XgBoost model

(average AUC=0.797) and the LightGBM model (average

AUC=0.796) outperform the other three classification models in
FIGURE 3

ROC curve of 5 classification models in validation set. (a) ROC curve of 5 classification models based on Logistic regression screening method in
validation set. (b) ROC curve of 5 classification models based on Lasso regression screening method in validation set. (a) ROC curve of 5
classification models based on RFE + SVM variable screening method in validation set. (d) ROC curve of 5 classification models based on RFE + RF
variable screening method in validation set. (e) ROC curve of 5 classification models based on RFE + XgBoost variable screening method in
validation set. (f) ROC curve of 5 classification models based on RFE + LightGBM variable screening method in validation set. LR: Logistic
regression.LR: Logistic regression.
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this study. These two models are similar, which aligns with their

underlying principles. The LightGBM algorithm mainly surpasses

XgBoost in training speed and memory usage, while their

performance in terms of model accuracy is comparable. As seen

in Supplementary Figure S3b, the Logistic regression and RFE

+LightGBM methods are the most optimal variable screening

methods. However, a closer comparison reveals that the superior

performance of the Logistic regression variable screening methods

is mainly due to the large difference between the best and second-

best models when using the SVMmodel. Supplementary Figure S3c

shows the average AUC values of the 6 variable screening methods

after excluding the SVM model. Apart from the RFE+XgBoost
Frontiers in Endocrinology 11
method, which includes all variables, the average AUC values of the

other selection methods are positively correlated with the number

of variables included. The suboptimal performance of the RFE

+XgBoost method may be due to its overly complex algorithm,

which consumes a large amount of memory. This could prevent the

method from effectively selecting useful variables, resulting in lower

AUC values on the subsequent training set.

Our study identified thirteen features: HbA1c, Crea, AST, Lp(a),

Apo Ai, hypertension, smoking status, age, FIB, HDL-C, ALB, Glu

and TP. As shown in the Venn diagram (Supplementary Figure

S3d) based on RFE, Lasso regression, and logistic regression, seven

features including, HbA1c, Crea, AST, Lp(a), hypertension,
FIGURE 4

The importance of feature in optimized. (a) SHAP value of each feature in the optimal model. SHAP summary plot showing the contribution of each
feature to the prediction of CHD risk. Each point represents a sample, with color indicating the actual feature value (red = high, blue = low). The x-
axis represents the SHAP value, which reflects the direction and magnitude of the feature’s impact on CHD prediction. Positive SHAP values (right
side) indicate increased risk, while negative values (left side) indicate decreased risk. For example, if red points are predominantly located on the
right, it suggests that higher values of the feature are associated with increased CHD risk. (b) Average SHAP value of each feature in the
optimal model.
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smoking status and age, were consistently selected by all six

methods and have proven significant in diagnostic models. This

result further confirms the importance of these features in the

auxiliary diagnosis model for CHD in T2DM patients.

HbA1c is one of the diagnostic criteria for T2DM, recent studies

have shown its association with cardiovascular risk (24), which is

consistent with our findings. Crea is commonly used in clinical

practice to assess kidney function. Literature indicates that reduced

kidney function increases CHD risk. Agus et al. (25) conducted a case-

control study in non-DM patients and found that adding Crea to

traditional risk factors improved CHD risk prediction, which is

consistent with our findings.AST reflects the severity of myocardial

cell damage. Several studies (26–28) suggest that AST should be

included in various CHD risk prediction models. In this study, AST

was identified by all six screening methods, indicating its potential as a

biomarker for differentiating CHD in T2DM patients. It is still unclear

whether Lp(a) is a protective factor or a risk factor for T2DM (29), but

it is certain that abnormal Lp(a) levels in T2DM are noteworthy.

Notably, Apo Ai, the secondmost important feature in the optimal

model, was not identified in Supplementary Figure S3d. However, Apo

Ai, the main protein component of HDL-C, has anti-atherosclerotic

effects (30). Figure 3a shows that lower Apo Ai values are associated

with higher CHD probability, consistent with Supplementary Table 4

and reviews of Apo Ai (31). Hypertension, smoking status and age

have been reported as CHD risk factors in T2DM patients (32). The

other features in the optimized model, FIB and HDL-C, are consistent

with previous studies (30, 33). A meta-analysis found a non-linear

relationship between Glu and cardiovascular disease in non-T2DM

patients (34). There are few studies comparing ALB and TP levels in

T2DM patients with and without CHD.

Despite the strengths of our study, several limitations should be

acknowledged. First, this was a retrospective study based on electronic

medical records from a single medical data platform, which may limit

the generalizability of our findings to broader or more diverse

populations. Second, although CA provides an objective standard for

CHD diagnosis, the dataset lacked longitudinal follow-up information,

preventing us from evaluating the prognostic value of the model over

time. Third, we did not incorporate treatment-related variables, such as

medication history or lifestyle interventions, which may have

influenced both feature distribution and CHD risk. Lastly, external

validation using independent datasets from other institutions is still

warranted to confirm the robustness and clinical applicability of our

predictive model.

Future research should focus on addressing these limitations.

Expanding the model to include multicenter cohorts with more

diverse patient populations will enhance its external validity.

Additionally, incorporating longitudinal follow-up data will allow

for evaluation of the model’s prognostic value in predicting long-

term cardiovascular outcomes. Integrating treatment variables, such

as medication use and lifestyle factors, may further improve the

clinical relevance and accuracy of the model. Finally, prospective

studies and real-world implementation are necessary to assess how

the model performs in routine clinical practice and whether it can

serve as a reliable decision support tool for early CHD risk

stratification in T2DM patients.
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Conclusion

We have developed a XgBoost classification model based on

T2DM patient electronic medical record data to determine whether

patients are developing CHD. Moreover, based on the final model, we

found that Lp (a), Apo Ai, HbA1c, Age, Crea, AST and other features

are important in determining whether T2DM patients have CHD. Our

approach addresses key limitations in previous CHD risk prediction

studies by utilizing coronary angiography-verified diagnoses and a

well-defined diabetic population. The model’s reliance on accessible

clinical indicators enhances its feasibility for early risk stratification,

particularly in primary care and endocrinology settings. These findings

contribute to the growing body of research supporting the use of data-

driven tools in chronic disease management and provide a foundation

for future work in precision cardiovascular prevention.
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