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1Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical
Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College,
Beijing, China, 2Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of
Medical School, Nanjing University, Nanjing, China, 3School of Pediatrics, Nanjing Medical University,
Nanjing, China
Background:While the Cardiometabolic Index (CMI) serves as a novel marker for

assessing adipose tissue distribution and metabolic function, its prognostic utility

for cardiovascular disease (CVD) events remains incompletely understood. This

investigation sought to elucidate the predictive capabilities of CMI for

cardiovascular outcomes and explore underlying mechanistic pathways to

establish a comprehensive risk prediction framework.

Methods: The study encompassed 7,822 individuals from a national health and

retirement longitudinal cohort, with participants stratified by CMI quartiles.

Following baseline characteristic comparisons and CVD incidence rate

calculations, we implemented multiple Cox regression models to assess CMI’s

cardiovascular risk prediction capabilities. For nomogram construction, we

utilized an ensemble machine learning framework, combining Boruta

algorithm-based feature selection with Random Forest (RF) and XGBoost

analyses to determine key predictive parameters.

Results: Throughout the median follow-up duration of 84 months, we

documented 1,500 incident CVD cases, comprising 1,148 cardiac events and

488 cerebrovascular events. CVD incidence demonstrated a positive gradient

across ascending CMI quartiles. Multivariate Cox regression analysis, adjusting for

potential confounders, confirmed a significant association between CMI and

CVD risk. Notably, mediation analyses revealed that hypertension and glycated

hemoglobin (HbA1c) potentially serve as mechanistic intermediaries in the CMI-

CVD relationship. Sex-stratified analyses suggested differential predictive

patterns between gender subgroups. Given CMI’s robust and consistent

predictive capability for stroke outcomes, we developed a machine learning-

derived nomogram incorporating five key predictors: age, CMI, hypertension

status, high-sensitivity C-reactive protein (hsCRP) and renal function (measured
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as serum creatinine). The nomogram demonstrated strong discriminative ability,

achieving areas under the receiver operating characteristic curve (AUC) of 0.76

(95% CI: 0.56-0.97) and 0.74 (95% CI: 0.66-0.81) for 2-year and 6-year stroke

prediction, respectively.

Conclusions: Our findings establish CMI as a significant predictor of

cardiovascular events in the aging population, with the relationship partially

mediated through hypertension and insulin resistance pathways. The validated

nomogram, developed using longitudinal data from a substantial elderly cohort,

incorporates CMI to enable preclinical risk stratification, supporting timely

preventive strategies.
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Introduction

Cardiovascular diseases (CVD) remain a paramount global

health challenge, exerting substantial burden on healthcare systems

and societies through their significant mortality and morbidity rates

(1, 2). The global landscape has witnessed an alarming upward

trajectory, with incident CVD cases surging from 31.31 million to

55.45 million between 1990 and 2019, accompanied by a

corresponding increase in mortality from 12.07 million to 18.56

million deaths during the same period (2). This burden is particularly

pronounced in regions with lower to middle sociodemographic

indices, where limited healthcare resources and insufficient research

infrastructure compound the challenges of CVD management (3). In

China, a major developing nation experiencing accelerated

population aging, there is an urgent imperative to enhance risk

identification strategies to effectively mitigate the mounting CVD-

related morbidity and mortality rates (4).

While Body Mass Index (BMI) has been traditionally employed

as a predictor of CVD, recent evidence has revealed a complex

“obesity paradox,” suggesting that elevated BMI may paradoxically

offer protection against certain cardiometabolic conditions (5).

Traditional anthropometric measurements, such as waist

circumference and Waist-to-Height Ratio (WHtR), effectively

capture central adiposity but lack insight into insulin metabolic

status (6). Additionally, lipid profile-based indices such as the

Triglycerides to High-Density Lipoprotein Cholesterol ratio (TG/

HDL-C) have been validated through large-scale epidemiological

studies as simple yet effective indicators of insulin metabolism (7).

Notably, TG/HDL-C has shown comparable or slightly superior

predictive capability for cardiometabolic disorders when compared

to the visceral adipose index (VAI) (8). A significant advancement
iovascular disease; BMI,

cerides; HDL-C, High-

ght ratio; WC, Waist

02
in this field emerged with the introduction of CMI by Wakabayashi

and colleagues in 2015 (9). By integrating WHtR and TG/HDL-C,

the CMI provides a more comprehensive evaluation of both central

fat distribution and insulin metabolism, demonstrating promising

potential for predicting cardiovascular events (10).

This innovative metric has demonstrated remarkable predictive

capacity for various conditions, including diabetes mellitus, asthma,

atherosclerosis, and hyperuricemia (11–14). Furthermore, CMI has

shown particular promise in predicting coronary heart disease,

stroke, and other cardiovascular events among patients with

concurrent obstructive sleep apnea (OSA) and hypertension (15).

However, the current evidence base faces two significant limitations:

first, the restricted demographic scope of existing studies potentially

constrains the broader applicability of these findings; second, despite

establishing strong associations between CMI and various

cardiovascular conditions, researchers have yet to develop robust

predictive models that could facilitate its clinical implementation (10,

16). These gaps underscore the pressing need for comprehensive,

large-scale population studies to both elucidate the relationship

between CMI and CVD incidence and develop comprehensive

predictive models that could enhance its clinical utility.

This study leverages the China Health and Retirement

Longitudinal Study (CHARLS), a nationally representative

longitudinal survey of middle-aged and elderly Chinese

individuals, to investigate: 1) key risk factors associated with

cardiovascular disease incidence among individuals aged 45 and

older; 2) the predictive capability of baseline CMI for cardiovascular

events, ultimately developing an evidence-based prognostic model.
Materials and methods

Study design and participant selection

The China Health and Retirement Longitudinal Study

(CHARLS) comprehensively collects data from Chinese residents
frontiersin.org
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aged 45 and above, focusing on aging-related issues to foster

interdisciplinary research. Initially surveyed in 2011 with 17,708

individuals, this nationally representative cohort undergoes biennial

follow-ups, with the latest data pending release. Prior literature

details the study’s design and inclusion criteria (17). CHARLS

approved by Peking University’s Ethics Review Committee (IRB

00001052-11015), ensures written informed consent from all

participants. Adhering to ethical standards set by the institution,

national research councils, and the Declaration of Helsinki,

CHARLS conducts research involving human subjects with

integrity (18). For detailed information and access to raw data,

visit the official website at https://charls.pku.edu.cn (19). Adherence

to the STROBE framework ensured rigorous reporting of our

observational epidemiological finding (20).

Of the initial 17,708 participants, the final analytical cohort

comprised 7,822 individuals after systematic exclusions

(Supplementary Figure 1). The exclusion criteria encompassed:

absence of CMI data (n=7,811), age ineligibility or missing age

information (n=648), preexisting cardiovascular disease (n=1,361),

and cancer diagnosis (n=66), with the latter exclusion addressing

potential reverse causality between malignancy and lipid

metabolism (21). The study population was subsequently

categorized into quartiles based on baseline CMI values.
Data collection and definition

Investigators collected variables according to established criteria.

Trained examiners measured blood pressure on the right arm thrice

using a mercury sphygmomanometer and recorded the results.

Participants, dressed in light clothing and shoes removed, had

height, weight, and waist circumference (WC) measured by trained

nurses (22). Blood samples, obtained after overnight fasting, were

stored at -70°C and analyzed at China CDC for high-sensitivity C-

reactive protein (hsCRP), blood urea nitrogen (BUN), serum

creatinine (Sc), Hemoglobin A1c (HbA1c), and lipid profiles (17).

Systolic blood pressure (SBP) and diastolic blood pressure (DBP)

were recorded as the mean values for each participant. Hypertension is

defined by self-reported physician diagnosis, use of antihypertensive

medications, or SBP/DBP ≥140/90 mmHg. Abnormal glucose

metabolism encompasses prediabetes and diabetes, with the

American Diabetes Association (ADA) criteria specifying prediabetes

as fasting plasma glucose (FPG) 100-125 mg/dl or HbA1c 5.7-6.4%,

and diabetes as FPG≥126 mg/dl, HbA1c≥6.5%, or reported history

with medication use (23, 24). Renal disease is identified by physician-

diagnosed chronic kidney disease and estimated glomerular filtration

rate (eGFR) <60 ml/min/1.73m² (25). Geographic regions are

categorized as north or south by the Qinling-Huaihe line (4).

Obesity is defined as a Body Mass Index (BMI) ≥28 kg/m²,

calculated by BMI (kg/m²) = weight (kg)/height² (m²).
Exposures and outcomes

This study’s primary exposure is the baseline CMI of study

population, derived using the formula CMI = TG/HDL-C × WHtR
Frontiers in Endocrinology 03
(26), where TG is triglycerides (mg/dL), HDL-C is high-density

lipoprotein cholesterol (mg/dL), and WHtR is the waist-to-height

ratio (cm/cm). The main outcome of interest is new-onset

cardiovascular events, including heart disease and stroke,

ascertained by self-reported, physician-diagnosed conditions (4).

Participants were followed from 2011 baseline to the first

occurrence of a cardiovascular event or the 2018 survey.
Statistical analysis

This study’s statistical analyses were conducted using RStudio

4.2.2, with a two-tail P < 0.05 considered statistically significant.

Continuous data, assessed for normality, were described as mean ±

SD for normally distributed variables, analyzed with ANOVA, or as

Median (IQR) for non-normal distributions, tested with Mann-

Whitney U or Kruskal-Wallis tests. Categorical variables were

reported as counts (percentages), with group comparisons made

using Fisher’s exact test for low expected counts (<5) or Chi-

squared test for larger counts. The Kaplan-Meier method was

utilized for estimating cumulative CVD incidence rates, with the

log-rank test for group comparisons, and rates were calculated per

1000 person-years. Missing data, detailed in Table 1 with no

variable exceeding a 2.02% absence, were imputed using the

“missRanger” R package employing a random forest algorithm

(27), seeded at 1234, with presented in Supplementary Material.

Supplementary Tables 4–6 display a comparative analysis of

characteristics between individuals who experienced CVD events

and those who remained free of such events throughout the follow-

up period.

The association between CMI (both continuous and quartiles)

and CVD phenotypes was evaluated using Cox proportional hazards

models, with hazard ratios (HRs) and 95% confidence intervals (CIs)

calculated. We constructed three sequential models: an unadjusted

model (Model 1); a model adjusted for sociodemographic and

lifestyle factors including age, sex, marital status, education, region,

rural residence, smoking, and alcohol consumption (Model 2); and a

fully adjusted model incorporating clinical parameters such as

hypertension, hemoglobin, glucose metabolism status, TC, LDL,

hsCRP, and kidney disease (Model 3). Schoenfeld residual analysis

confirmed the proportional hazards assumption. Additionally,

collinearity assessment was performed using the variance inflation

factor (VIF) for variables included in Model 3.

Restricted cubic spline (RCS) analysis was performed to

examine the potential non-linear relationships between CMI and

disease risks, with adjustments based on Model 3 covariates. The

optimal number of knots (ranging from 3 to 7) was determined

using the minimum Akaike Information Criterion (AIC) value

through the ‘rms’ package in R. The optimal knot selections for

each model are presented in the Supplementary Material, ensuring

model flexibility while mitigating overfitting. Subgroup analyses

were conducted based on pre-specified variables, including age

(categorized at 65 years), gender, region (southern and northern),

and glucose metabolism abnormalities (28). Both univariate and

multivariate analyses were conducted, with the latter adjusted for

Model 3 covariates.
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We applied the Boruta algorithm to ascertain the predictive

efficacy of the CMI in forecasting the incidence rates of CVD, heart

disease, and stroke. The Boruta algorithm discerns significant

features within a dataset by comparing the Z-scores of actual

features with those of shadow features. Shadow features are

duplicates of the real feature data values that have been randomly

shuffled (29). The algorithm combines shadow features with the

original features to form an extended information dataset and

employs a random forest to determine the importance of each

feature, including both the original and shadow features. In

summary, within the Boruta algorithm, the measure of

importance is based on the Z-scores derived from shadow

features: if a feature’s Z-score consistently exceeds the maximum

Z-score of the shadow features across multiple trials, the feature is

classified as “confirmed” (green area), indicating its significance. If

the Z-scores of the actual features are very close to those of the

shadow features, they are considered “tentative” (yellow area),

requiring further review. Conversely, features that cannot
Frontiers in Endocrinology 04
distinguish themselves from shadow features are deemed

“unimportant” (red area) and are excluded from the final feature

selection due to a lack of predictive power (30, 31).

The CMI showed distinctive prognostic value for stroke

incidence. We integrated “Confirmed” and “Tentative” variables

into machine learning models, Random Forest (RF) and XGBoost,

with a 75% training subset. The RF model was constructed with 500

decision trees and evaluated through 10-fold cross-validation.

Variable importance scoring was performed based on minimal

Out-Of-Bag (OOB) error estimation, ultimately identifying seven

significant variables (32). The XGBoost algorithm, known for its

efficiency and flexibility in handling large-scale datasets (33), was

implemented with a maximum of 50 iterations (nrounds). Detailed

model parameters are provided in the Supplementary Materials.

The top seven risk factors were selected based on variable

significance scores. To enhance the reliability of our findings, we

constructed a Venn diagram to identify the intersection of variables

selected by both algorithms, yielding five highly potential
TABLE 1 Baseline characteristics of participants stratified by quartiles of CMI.

Characteristics Overall
N=7822

Quartile
1 N=1956

Quartile
2 N=1955

Quartile3
N=1955

Quartile4
N=1956

P value

Age, years 59.25 ± 9.37 59.62 ± 9.62 59.31 ± 9.50 59.53 ± 9.48 58.56 ± 8.81 0.002

Age Group <.001

< 65 years 5714(73.05) 1381 (70.60) 1411 (72.17) 1409 (72.07) 1513 (77.35)

≥ 65 years 2108 (26.95) 575 (29.40) 544 (27.83) 546 (27.93) 443 (22.65)

Gender male, n (%) 3708 (47.40) 1093 (55.88) 944 (48.29) 837 (42.81) 834 (42.64) <.001

Marital status, n (%) 6860 (87.70) 1700 (86.91) 1720 (87.98) 1690 (86.45) 1750 (89.47) 0.020

Education, n (%) 0.072

Primary school or lower 5526 (70.65) 1409 (72.03) 1393 (71.25) 1388 (71.00) 1336 (68.30) 0.059

Secondary school or higher 2296 (29.35) 547 (27.97) 562 (28.75) 567 (29.00) 620 (31.70)

Regiona, n (%) <.001

North 2595 (33.18) 563 (28.78) 639 (32.69) 684 (34.99) 709 (36.25)

South 5227 (66.83) 1393 (71.22) 1316 (67.31) 1271 (65.01) 1247 (63.75)

Rural residence, n(%) 5185 (66.29) 1436 (73.42) 1342 (68.64) 1342 (68.64) 1151 (58.84) <.001

Smokingb, n (%) 3098 (39.61) 894 (45.73) 797 (40.77) 694 (35.50) 713 (36.45) <.001

Alcohol drinkingb, n (%) 3282 (41.98) 971 (49.67) 816 (41.74) 748 (38.32) 747 (38.19) <.001

WC (cm) 84.85 ± 9.84 78.86 ± 7.78 83.07 ± 8.68 86.58 ± 9.30 90.89 ± 9.29 <.001

BMI (kg/m2) 23.33 ± 3.75 21.37 ± 3.04 22.59 ± 3.34 23.96 ± 3.54 25.41 ± 3.79 <.001

SBPb, mmHg 129.01 ± 21.14 125.63 ± 21.05 126.70 ± 20.01 130.93 ± 21.57 132.79 ± 21.07 <.001

DBPb, mmHg 75.11 ± 12.11 72.80 ± 12.05 73.88 ± 11.60 76.09 ± 12.11 77.67 ± 12.10 <.001

Hemoglobinb, g/dL 14.36 ± 2.21 14.16 ± 2.21 14.19 ± 2.20 14.42 ± 2.19 14.66 ± 2.23 <.001

FBGb, mg/dL 109.25 ± 35.56 102.36 ± 23.39 105.01 ± 29.71 108.88 ± 35.48 120.76 ± 46.64 <.001

HbA1cb, % 5.25 ± 0.79 5.13 ± 0.58 5.20 ± 0.73 5.27 ± 0.80 5.41 ± 0.98 <.001

TCb, mg/dL 193.34 ± 37.83 187.63 ± 34.30 188.89 ± 36.61 194.94 ± 37.28 201.91 ± 41.14 <.001

(Continued)
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predictors. This methodological approach has been validated in

numerous high-quality studies (34, 35), supporting the rationale

and generalizability of our research protocol. A nomogram was

subsequently developed based on these five predictors, and its

predictive performance was validated using Receiver Operating

Characteristic (ROC) curves and decision curve analysis (DCA).
Results

Characteristics of the study participants

Participants (n=7822; mean age 59.25 ± 9.37 years; 47.40% male)

were stratified into quartiles based on CMI values [Q1: 0.49 (0.39-

0.57); Q2: 0.86 (0.76-0.98); Q3: 1.42 (1.25-1.63); Q4: 2.91 (2.31-4.28)]

(Table 1). Higher CMI quartiles were characterized by a greater

proportion of individuals under 65 years, females, married status, and

higher educational attainment. Clinical parameters, including BMI,

blood pressure, hemoglobin, FBG, HbA1c, TC, TG, UA, and hsCRP,

as well as the prevalence of obesity and dysglycemia, showed

progressive increases across CMI quartiles (all P < 0.001). Box plot

analysis (Supplementary Figure 2) revealed that while both CMI and

BMI demonstrated significant inter-quartile differences (P < 0.001),

BMI distributions showed considerable overlap between adjacent

quartiles, contrasting with the more distinct separation observed in

CMI quartiles. Lower CMI quartiles were associated with southern
Frontiers in Endocrinology 05
and rural residence, and higher prevalence of smoking and alcohol

consumption (all P < 0.001).
Association of baseline CMI with incident
CVD

During a median follow-up of 84 months, we documented 1500

CVD events, comprising 1148 heart disease and 488 stroke cases

(Supplementary Table 1). The overall incidence rates per 1000

person-years were 31.80 for CVD, 24.21 for heart disease, and

9.97 for stroke. Across ascending CMI quartiles, CVD incidence

rates demonstrated a progressive increase (24.90, 30.92, 34.65, and

36.75 per 1000 person-years from Q1 to Q4). Kaplan-Meier analysis

revealed significant differences in cumulative hazard across CMI

quartiles for overall CVD, heart disease, and stroke (all Log-rank P

< 0.01; Supplementary Figures 3–5).

Cox regression analysis was employed to evaluate the

associations between CMI (both continuous and quartiles) and

outcome events across different adjustment models (Table 2). The

findings revealed a significant positive association between elevated

CMI and the risk of cardiovascular events. Following

comprehensive covariate adjustment (Model 3), each standard

deviation (SD) increase in CMI was associated with a 5% higher

risk of CVD (HR: 1.05, 95% CI: 1.02-1.09) and a 14% elevated risk

of stroke (HR: 1.14, 95% CI: 1.09-1.20). However, the association
TABLE 1 Continued

Characteristics Overall
N=7822

Quartile
1 N=1956

Quartile
2 N=1955

Quartile3
N=1955

Quartile4
N=1956

P value

TG, mg/dL 126.68 ± 84.01 62.10 ± 15.27 90.13 ± 19.98 124.42 ± 26.88 230.06 ± 103.32 <.001

HDL, mg/dL 51.74 ± 15.17 67.20 ± 14.34 54.63 ± 10.51 47.28 ± 8.70 37.85 ± 8.30 <.001

LDLb, mg/dL 116.84 ± 34.43 110.55 ± 29.57 118.24 ± 32.88 124.18 ± 33.99 114.42 ± 39.14 <.001

BUNb, mg/dL 15.76 ± 4.58 16.61 ± 5.09 15.85 ± 4.54 15.40 ± 4.45 15.17 ± 4.06 <.001

UAb, mg/dL 4.45 ± 1.25 4.29 ± 1.15 4.29 ± 1.20 4.42 ± 1.23 4.80 ± 1.32 <.001

Serum creatinineb, mg/dL 0.78 ± 0.24 0.78 ± 0.33 0.77 ± 0.21 0.78 ± 0.20 0.79 ± 0.19 0.053

hsCRP, mg/L 1.01
(0.54- 2.12)

0.75
(0.44-1.71)

0.89
(0.50-1.89)

1.05
(0.57-2.17)

1.36
(0.74-2.68)

<.001

CMI 1.10
(0.66-0.91)

0.49
(0.39-0.57)

0.86
(0.76-0.98)

1.42
(1.25-1.63)

2.91
(2.31-4.28)

<.001

Kidney diseaseb, n (%) 381 (4.89) 94 (4.83) 106 (5.43) 98 (5.03) 83 (4.25) 0.388

Obesityc, n (%) 804 (10.28) 44 (2.25) 98 (5.01) 227 (11.61) 435 (22.24) <.001

Abnormal glucose
metabolismb, n (%)

4132 (53.91) 891 (46.24) 935 (48.83) 1030 (54.01) 1276 (66.63) <.001
fr
WC, waist circumference; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting blood glucose; HbA1c, glycosylated hemoglobin A1c; TC, total
cholesterol; TG, triglycerides; HDL, high density lipoprotein; LDL, low density lipoprotein; BUN, blood urea nitrogen; UA, uric acid; hsCRP, high-sensitivity C-reactive protein; CMI,
Cardiometabolic index.
aRegion was divided into north and south based on the Qinling Mountains-Huaihe River Line.
bMissing data: 1 for smoking, 4 for Alcohol drinking, 72 for systolic blood pressure, 73 for diastolic blood pressure, 157 for Hemoglobin, 11 for fasting blood glucose, 64 for glycosylated
hemoglobin A1c, 3 for total cholesterol, 1 for low density lipoprotein, 1 for uric acid, 1 for high-sensitivity C-reactive protein, 25 for Kidney disease, 46 for diabetes, 158 for abnormal
glucose metabolism.
cObesity was defined as BMI ≥ 28 kg/m2.
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between CMI and heart disease risk did not reach statistical

significance after multivariable adjustment (HR: 1.03, 95% CI:

0.99-1.07). Furthermore, the RCS analysis demonstrated dose-

response relationships between CMI and the risks of CVD and

stroke, with significant non-linear associations observed (all P for

non-linearity < 0.05). Meanwhile, no significant relationship was

detected between CMI and heart disease risk in the fully adjusted

model (Supplementary Figure 6).

Participants who developed CVD during follow-up

(Supplementary Tables 4–6) were characterized by older age,

female predominance, and lower residence rates in southern

regions. These individuals exhibited higher baseline values for

blood pressure, waist circumference, and BMI, alongside elevated

levels of FBG, HbA1c, TC, TG, LDL, UA, and hsCRP. A higher

prevalence of glucose metabolism disorders was also observed in
Frontiers in Endocrinology 06
this group. Baseline CMI values were significantly higher among

those who developed cardiovascular events compared to those who

remained event-free [CVD: 1.24 (0.75, 2.12) vs. 1.07 (0.65, 1.87);

heart disease: 1.19 (0.72, 2.07) vs. 1.08 (0.66, 1.89); stroke: 1.36

(0.84, 2.27) vs. 1.08 (0.66, 1.88); all p < 0.001].
Subgroup analyses

The relationship between CMI and CVD risk was examined across

pre-specified demographic subgroups (Figure 1, Supplementary

Figures 7, 8). While most subgroup analyses yielded results

consistent with the primary findings, sex emerged as a significant

effect modifier (P-interaction = 0.048). In sex-stratified analyses of

continuous CMI, males showed significant associations with both
TABLE 2 Multivariate-adjusted hazard ratios (95% confidence intervals) of Cardiometabolic index for cardiovascular diseases.

CMI N (Annualized event ratea) Model 1 Model 2 Model 3

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

CVD

Continues Per
SD increase

1500 (31.49) 1.05 (1.03-1.09) <.001 1.05 (1.03-1.08) <.001 1.05 (1.02-1.09) 0.002

Quartiles

Q1 294 (24.64) Ref Ref Ref

Q2 364 (30.59) 1.27 (1.09-1.48) 0.003 1.25 (1.07-1.46) 0.005 1.24 (1.06-1.45) 0.007

Q3 410 (34.31) 1.42 (1.22-1.65) <.001 1.34 (1.15-1.56) <.001 1.29 (1.11-1.51) 0.001

Q4 432 (36.43) 1.53 (1.32-1.78) <.001 1.47 (1.26-1.71) <.001 1.37 (1.17-1.60) <.001

Heart disease

Continues Per
SD increase

1148 (23.97) 1.04 (1.01-1.06) 0.014 1.03 (1.00-1.06) 0.038 1.03 (0.99-1.07) 0.148

Quartiles

Q1 238 (19.87) Ref Ref Ref

Q2 284 (23.74) 1.21 (1.02-1.44) 0.029 1.17 (0.99-1.40) 0.068 1.16 (0.98-1.38) 0.086

Q3 305 (25.42) 1.30 (1.09-1.53) 0.003 1.18 (1.00-1.40) 0.057 1.15 (0.97-1.37) 0.107

Q4 321 (26.86) 1.39 (1.17-1.64) <.001 1.28 (1.08-1.51) 0.005 1.23 (1.03-1.46) 0.025

Stroke

Continues Per
SD increase

488 (9.88) 1.10 (1.07-1.14) <.001 1.11 (1.08-1.15) <.001 1.14 (1.09-1.20 <.001

Quartiles

Q1 77 (6.26) Ref Ref Ref

Q2 111 (9.00) 1.47 (1.10-1.97) 0.009 1.52 (1.14-2.03) 0.005 1.50 (1.12-2.02) 0.007

Q3 139 (11.20) 1.84 (1.39-2.43) <.001 1.91 (1.45-2.53) <.001 1.78 (1.34-2.36) <.001

Q4 161 (13.03) 2.16 (1.65-2.83) <.001 2.30 (1.75-3.03) <.001 2.04 (1.54-2.71) <.001
fro
Model 1: unadjusted.
Model 2: adjusted for age, sex, marital status, education, region, rural residence, smoking, alcohol drinking.
Model 3: adjusted for age, sex, marital status, education, region, rural residence, smoking, alcohol drinking, hypertension, hemoglobin, abnormal glucose metabolism, TC, LDL, hsCRP,
kidney disease.
TC, total cholesterol; LDL, low density lipoprotein hsCRP, high-sensitivity C-reactive protein; CMI, Cardiometabolic index.
aAnnualized event rate was presented as per 1000 person-years of follow-up.
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CVD incidence [HR: 1.10, 95% CI: 1.05-1.16, p < 0.001] and heart

disease [HR: 1.09, 95% CI: 1.04-1.16, p = 0.001]. These associations

were not observed in females [CVD: HR: 1.02, 95% CI: 0.97-1.07, p =

0.424; heart disease: HR: 0.99, 95% CI: 0.94-1.04, p = 0.593]. The

association between CMI and stroke remained significant across both

sexes (p < 0.001). No significant interactions were observed for other

demographic characteristics (all P-interaction > 0.05).
Mediation analyses

Mediation analysis (Supplementary Figures 9–14) revealed

hypertension as a significant mediator in the CMI-cardiovascular

outcomes relationship. After full adjustment, hypertension

mediated 7.84%, 8.00%, and 7.23% of the total effects of CMI on

CVD, heart disease, and stroke, respectively (all P < 0.05). HbA1c

demonstrated significant mediating effects for CVD (10.46%) and

stroke (3.55%), but its mediation in the CMI-heart disease pathway

did not reach statistical significance in the fully adjusted model.
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Establishment and validation of the
prediction model

The Boruta algorithm was employed to evaluate the relative

importance of multiple variables, including CMI, in predicting

cardiovascular outcomes (Figure 2, Supplementary Figures 15,

16). After 500 iterations, CMI demonstrated significant predictive

value for CVD and stroke events. For stroke prediction specifically,

the algorithm identified several key variables: hypertension, age, TC,

smoking, CMI, LDL, hsCRP, FBG, sex, marital status, HbA1c,

and UA.

Further variable selection was conducted using RF and

XGBoost algorithms (Figure 3). The RF model identified TC,

hypertension, CMI, LDL, Sc, age, and hsCRP as the top

predictors (Figure 3A). XGBoost analysis yielded a slightly

different ranking, with hypertension, age, CMI, Sc, hsCRP, FBG,

and HbA1c as the leading predictors (Figure 3B). The intersection

of these results highlighted five central variables: age, CMI,

hypertension, Sc, and hsCRP.
FIGURE 1

Subgroup analysis of hazard ratios (95% confidence intervals) for total CVD of estimated CMI.
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Based on these core predictors, we developed a nomogram for

stroke prediction (Figure 4). The model demonstrated robust

predictive performance, with AUCs of 0.77 (95% CI: 0.61-0.93) and

0.76 (95% CI: 0.56-0.97) for 2-year prediction in the training and

validation sets, respectively. For 6-year prediction, the AUCs were

0.71 (95% CI: 0.66-0.76) and 0.74 (95% CI: 0.66-0.81), respectively.

We constructed five comparative models to evaluate the

incremental value of different obesity indices (Figure 5): a baseline

model (f1) including age, hypertension, Sc, and CRP; and four

additional models incorporating BMI (f2), WHtR (f3), TG/HDL

(f4), or CMI (f5). DCA and time-dependent ROC analysis revealed

that while all obesity indices improved the predictive performance of

the baseline model, the CMI-enhanced model (f5) demonstrated

superior prognostic capability and predictive stability.
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Discussion

Based on a nationally representative cohort of middle-

aged and elderly Chinese adults, this study examined the

relationship between CMI and cardiovascular outcomes,

yielding four key findings: 1) CMI demonstrated significant

predictive value for total CVD, heart disease, and stroke events;

2) The association between CMI and both CVD and heart

disease varied by sex, while its predictive ability for stroke

remained consistent across sex groups; 3) Hypertension and

HbA1c partially mediated the relationship between CMI and

cardiovascular events; 4) A novel nomogram incorporating

CMI, age, hypertension, CRP, and creatinine showed superior

performance in prediction.
FIGURE 3

Machine learning analysis of potential variables. (A) Variable importance ranking (top 7) by Random Forest analysis. (B) Variable importance ranking
(top 7) assessed by XGBoost algorithm. (C) Venn diagram showing intersection of variables selected by both algorithms.
FIGURE 2

Feature selection for stroke based on the Boruta algorithm.
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CVD poses a significant burden on the elderly population,

with substantial mortality rates, which has been a severe issue in

developing countries (1–3). Given China’s rapidly aging demographic

profile and its status as a developing nation, there is an urgent need to

identify CVD risk factors specific to this population (17). The

development of accurate risk stratification metrics is crucial for

early identification of high-risk individuals and implementation of

preventive strategies.

The limitations of BMI, particularly its inability to account for

body fat distribution and metabolic parameters, have become

increasingly evident through phenomena such as the “obesity

paradox” (5, 34). This has prompted the development of
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alternative anthropometric indices. The WHtR, which considers

waist circumference relative to height, more effectively reflects

central adiposity while streamlining assessment procedures by

eliminating the need for advanced imaging (15, 36). Meta-

analyses encompassing over 300,000 adults across diverse

ethnicities have demonstrated WHtR’s superior performance

compared to both waist circumference and BMI in identifying

cardiometabolic risk factors across sexes (37). Concurrently, the

TG/HDL-C has shown strong correlation with euglycemic

hyperinsulinemic clamp measurements, establishing itself as a

reliable surrogate marker for insulin resistance (37). Multiple

longitudinal, prospective observational studies have validated TG/
FIGURE 5

(A) Clinical decision analysis (DCA) curves for five different models. (B) Time-dependent ROC analysis for five different models. Model f1: A model
adjusted for age, hypertension, creatinine, and CRP. Model f2: building upon Model f1 with the addition of BMI. Model f3: building upon Model f1 with
the addition of WHtR. Model f4: building upon Model f1 with the addition of TG/HDL. Model f5: building upon Model f1 with the addition of CMI.
FIGURE 4

Development and validation of a predictive model. (A) A nomogram for predicting the risk of stroke onset. (B, C) ROC curves for the 2-year and 6-
year risk of disease onset in both the training cohort and the validation cohort.
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HDL-C’s predictive capability for CVD onset (38, 39). The CMI,

building upon these metrics, represents a further refinement that

effectively captures both lipid profile and insulin metabolism - key

factors in CVD risk assessment. Our research substantiates

these findings, demonstrating that models incorporating CMI

alongside traditional metrics like BMI, WHtR, and TG/HDL-

C exhibit enhanced predictive performance for long-term

cardiovascular events.

Initially validated in Japanese populations for predicting

hyperglycemia and diabetes mellitus (11, 40), CMI has expanded

its utility to encompass various cardiometabolic conditions,

including hypertension, metabolic syndrome, and atherosclerotic

diseases (10, 40, 41). While previous studies have demonstrated

CMI’s association with cardiovascular outcomes in specific

populations, such as patients with hypertension and OSA or rural

Chinese residents, these investigations were constrained by

selection bias and confounding variables (15, 16). Our study

extends these findings by examining CMI’s predictive value across

a diverse, nationally representative cohort of middle-aged and

elderly Chinese adults, thereby offering more generalizable

insights into its efficacy as a cardiovascular risk assessment tool

and demonstrating its superior predictive capability compared to

other obesity-related indices.

This investigation demonstrates the significant predictive value

of CMI for CVD incidence over a median follow-up of 84 months,

with findings persisting after adjustment for demographic and

biochemical covariates in multiple Cox regression analyses.

Importantly, the RCS analysis uncovered a non-linear association

between CMI and cardiovascular events (P for non-linearity < 0.05),

which further validates our approach of investigating CMI through

quartile-based categorization (28). This non-linearity suggests that

the association between CMI and cardiovascular outcomes cannot

be adequately captured through simple linear modeling. Further

research incorporating additional variables is needed to establish

optimal CMI thresholds for cardiovascular risk prediction.

Previous studies have revealed gender differences in CMI’s

predictive value. A large-scale, community-based study in rural

northeastern China demonstrated gender-specific differences in

CMI’s ability to predict diabetes (6), while a Japanese population

survey observed varying age-related CMI trends between males and

females (42). Our study of individuals aged ≥45 years confirms that

gender significantly influences CMI’s predictive power for CVD risk

(P for interaction = 0.048) after adjusting for covariates. As a

continuous variable, CMI significantly distinguished the risk of

total CVD (P < 0.001) and heart disease (P = 0.001) in males but not

in females (P = 0.424 and P = 0.593, respectively).

Several factors may contribute to this gender disparity. The

cardiovascular protective effects of estrogen, including improved

lipid metabolism, vasodilation, and anti-inflammatory actions (43),

may persist in some middle-aged and elderly women, potentially

resulting in lower CVD incidence and thus weakening CMI’s

predictive ability. Additionally, gender-specific fat distribution

patterns affect CMI’s predictive power. Males tend to accumulate

visceral fat, which exhibits higher metabolic activity and stronger
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cardiometabolic associations compared to the subcutaneous fat

typically found in females (44). This difference directly influences

waist circumference and WHtR, potentially enhancing CMI’s

predictive ability in males. Furthermore, the higher cardiovascular

burden among Chinese males due to smoking and hypertension

(45), may strengthen the association between CMI and CVD events.

Further research is needed to explore how hormonal and

physiological factors influence the relationship between CMI and

CVD events.

Our findings revealed that CMI’s predictive effect on CVD

outcomes was partially mediated through hypertension and HbA1c.

Among cardiovascular risk factors, hypertension has the most

robust causal evidence (46). While previous research has

demonstrated CMI’s superior predictive ability for hypertension

incidence (10), our study further strengthens this evidence chain by

establishing that CMI can predict CVD events through blood

pressure mediation. Additionally, HbA1c, as a long-term

indicator of glucose metabolism, reflects insulin metabolic status

and has been consistently associated with elevated CVD risk across

multiple population studies (7, 47). Insulin resistance is closely

linked to microvascular pathology, while hyperglycemic states

promote platelet activation and coagulation abnormalities,

collectively contributing to CVD events (48, 49). Notably, CMI,

our focus indicator, inherently reflects both lipid profile and insulin

metabolism, explaining its particularly strong connection with

glucose and insulin metabolism (11). This relationship may

account for the higher mediation proportion of HbA1c in the

association between CMI and CVD events observed in our study.

While we comprehensively considered population characteristics,

the mediation effects are influenced by exposure, outcomes,

and covariates, and we cannot account for all potential

influencing factors. The intricate relationships between insulin

metabolism and blood pressure warrant further investigation to

elucidate their individual and combined effects on circulatory and

cardiovascular events.

Through the application of the Boruta algorithm, we identified

CMI as a crucial predictor of stroke incidence. Our subsequent

analysis using RF and XGBoost models led to the development of a

nomogram incorporating five key variables: age, CMI,

hypertension, Sc, and hsCRP. The significance of these variables

is well-supported by existing literature. Advanced age and

hypertension have been established as prominent risk factors for

stroke (50), while meta-analyses have demonstrated that elevated

baseline hsCRP levels independently correlate with increased

ischemic stroke risk (51). The incorporation of hsCRP as an

inflammatory marker has notably enhanced the precision of

stroke risk stratification (52). Notably, a recent landmark 30-year

follow-up study of 27,939 participants revealed that baseline hsCRP

demonstrated stronger predictive power for cardiovascular

outcomes than LDL cholesterol after multivariate adjustment

(53), further validating the rationale of our model construction.

Furthermore, the Chronic Kidney Disease Prognosis Consortium’s

meta-analysis, encompassing 24 cohorts and 637,315 individuals

without prior cardiovascular disease, emphasizes the importance of
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incorporating renal function markers, such as creatinine, in

cardiovascular risk stratification. This recommendation holds

particular significance for our study population of middle-aged

and elderly adults, who face an elevated risk of chronic kidney

disease and may benefit from improved cardiovascular event

prediction (54). The CMI, with its components intricately linked

to cardiovascular events, has been validated in our study as an

effective predictor of stroke risk. This finding aligns with well-

established pathophysiological pathways involved in atherosclerosis

development and plaque progression (7). Our comprehensive

comparative analysis demonstrates that the predictive model not

only exhibits robust performance but also offers substantial clinical

utility in stroke risk assessment among elderly populations.
Conclusion

In this comprehensive investigation, we demonstrate the robust

predictive value of CMI for cardiovascular events, with our

mediation analyses revealing that this association operates

primarily through hypertension and insulin resistance pathways.

The novel nomogram we developed integrates CMI with other key

risk factors, enabling efficient identification of individuals at

elevated stroke risk during the subclinical stage. This early

detection capability facilitates the timely implementation of

personalized interventions, ranging from lifestyle modifications

(dietary optimization, physical activity enhancement) to targeted

medical management of blood pressure and glucose metabolism. By

providing these evidence-based tools for risk stratification and early

intervention, our findings contribute significantly to the

optimization of cardiovascular prevention strategies among

middle-aged and elderly populations.
Limitations

Several limitations warrant consideration in this study. First, the

exclusion of cases with incomplete data may have introduced

selection bias. However, our rigorous data collection process,

including standardized interviewer training and CAPI technology

implementation, helped minimize potential misclassification bias in

CVD diagnosis (1, 17). Second, while subclinical cardiovascular

conditions might have led to case underestimation, CMI’s

persistent statistical significance demonstrates its robust predictive

capability. Third, the broad categorization of heart disease without

specific subtype differentiation may explain the relatively modest

associations observed. Fourth, although we utilized only baseline CMI

measurements, this approach reflects real-world conditions in

developing countries where regular follow-up poses significant

challenges (3). Finally, while our study focused on the Chinese

population aged 45 and above, the consistent predictive

performance of CMI supports the validity of our findings.

However, given the diverse dietary habits and lifestyles across

different regions and countries, the applicability of our conclusions

to other developing countries requires further investigation.
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