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A machine learning-based
model for predicting recurrence
in intermediate- and high-risk
differentiated thyroid cancer:
insights from a retrospective
single-center study of
2388 patients
Yi Li1†, Zimei Tang1†, Anwen Ren1, Gang Tian1, Jianing Zhang1,
Yiran Wang1, Jie Liu2 and Jie Ming1*

1Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong
University of Science and Technology, Wuhan, China, 2Department of Radiology, Union Hospital,
Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
Purpose: Current guidelines provide a recognized yet broad framework for

stratifying recurrence risk in differentiated thyroid cancer (DTC) patients. More

precise tools are needed for intermediate- and high-risk groups. This study aims

to identify recurrence-associated risk factors and develop a machine learning-

based predictive model.

Methods: In this retrospective analysis, 2,388 DTC patients were randomly assigned

to a training group (1,910 cases) and a validation group (478 cases). Predictive factors

were identified using univariate and multivariate analyses. Six machine learning

models were trained and validated, with performance evaluated through accuracy,

area under the curve, and clinical utility via decision curve analysis.

Results: Independent risk factors for recurrence included intraglandular

dissemination, total tumor size, bilateral cervical lymph node involvement, and

Hashimoto’s thyroiditis, while normal/elevated TSH and multifocal nodules were

protective. The random forest model demonstrated the best performance

(training accuracy: 0.801; validation accuracy: 0.808). A random forest-based

online calculator was developed to facilitate individualized risk assessment in

clinical settings.

Conclusions: The random forest model effectively predicts DTC recurrence,

offering a practical tool for individualized risk assessment and aiding clinical

decision-making.
KEYWORDS

differentiated thyroid cancer (DTC), cancer recurrence, predictive models, machine
learning, risk factors, random forest
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1 Introduction

Differentiated thyroid cancer (DTC), primarily comprising

papillary and follicular subtypes, is the most common endocrine

malignancy, accounting for approximately 90% of thyroid cancer

cases (1). Despite its generally favorable prognosis, with a five-year

survival rate exceeding 95%, a subset of DTC patients experiences a

higher probability of recurrence, which significantly impacts long-

term health outcomes (2).

The 2015 American Thyroid Association (ATA) guidelines offer

a widely recognized framework for stratifying the risk of recurrence

in DTC patients based on factors such as tumor size,

histopathological characteristics, and the presence of metastases.

Patients are classified into low-, intermediate-, and high-risk

groups, with recurrence rates ranging from 3–13% in low-risk,

21–36% in intermediate-risk, and approximately 68% in high-risk

patients (3). While these guidelines are broadly effective, their

ability to accurately predict individual recurrence risks remains

limited, especially for intermediate- and high-risk groups (4). This

limitation is primarily due to the limited number of factors included

and the equal weighting assigned to each, thereby hindering

personalized clinical management.

In recent years, machine learning (ML) has emerged as a

powerful tool for analyzing large, complex healthcare datasets (5).

Unlike traditional statistical methods, ML algorithms excel at

processing high-dimensional data and identifying intricate non-

linear relationships, thereby enhancing predictive accuracy in

oncology (6). Numerous studies have demonstrated the efficacy of

ML models in survival prediction and recurrence monitoring in

various cancer types, promoting a more personalized and data-

driven approach to patient management (7). However, their

application in refining risk stratification for DTC, particularly

within intermediate- and high-risk cohorts, remains underexplored.

Addressing this gap, our study aims to develop and validate an

ML-based recurrence prediction model tailored for intermediate-

and high-risk DTC patients. Utilizing a robust retrospective cohort

of 2,388 DTC patients from our center, we trained and validated

multiple ML algorithms on demographic, clinical, and pathological

features to predict recurrence. Model performance was assessed

through metrics such as the area under the receiver operating

characteristic curve (AUC), sensitivity, and specificity. By

enhancing the precision of recurrence risk assessment, the

proposed model facilitates more individualized and effective

clinical management for intermediate- and high-risk DTC patients.
2 Materials and methods

2.1 Population and data collection

We retrospectively retrieved clinical records of DTC patients

treated between 2009 and 2021 at the Department of Breast and

Thyroid Surgery, Union Hospital, Tongji Medical College,

Huazhong University of Science and Technology (WHUH). The

data were used to establish training and validation cohorts. Patients
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were included if they met the following criteria: (1) pathologically

confirmed DTC; (2) underwent total thyroidectomy or lobectomy;

and (3) classified as having intermediate or high recurrence risk

according to the 2015 ATA guidelines (3). Exclusion criteria were:

(1) history of other malignancies and (2) incomplete clinical

records. Only patients who underwent reoperation and had DTC

recurrence confirmed by pathology was defined as recurrence. Our

study adopted pathologically confirmed thyroid carcinoma as the

objective criterion for reoperation grouping, primarily due to

inherent limitations in postoperative surveillance completeness

within retrospective data - specifically, the absence of consecutive

ultrasound or thyroglobulin monitoring records in some patients

precluded precise definition of a ‘disease-free interval’.

Our database retrospectively collected demographic

information, ultrasound (US) findings, biochemical test results,

and pathological characteristics of the enrolled patients.

Preoperative US identified the size, location, number,

echogenicity, calcifications, cervical lymph nodes (LNs), and

extrathyroidal extension (ETE) of nodules. Clinically evident

metastatic lymph nodes (cN1) were defined by features such as

calcifications, loss of fatty hilum, disrupted medullary architecture,

and cystic changes on US (3, 8, 9). Bilateral and multifocal lesions,

as confirmed by US and intraoperative findings, referred to disease

affecting both thyroid lobes and the presence of two or more foci in

one or both lobes, respectively. Palpable nodules and LNs were

those detectable on preoperative physical examination.

Hashimoto’s thyroiditis (HT) was confirmed by intraoperative

frozen sections characterized by diffuse infiltration of lymphocytes

and plasma cells, the formation of lymphoid follicles with germinal

centers within the gland, fibrosis, and atrophy of thyroid

parenchyma (10, 11). Postoperative pathology determined the

number, size, distribution, subtype, invasiveness of cancer foci, as

well as the number and location of metastatic LNs. The total tumor

size was calculated as the sum of the maximum diameters of all

excised cancer foci.
2.2 Statistical analysis

Missing values were handled using the Multiple Imputation by

Chained Equations (MICE) method, with appropriate imputation

algorithms selected based on variable type (12, 13). Predictive mean

matching (PMM) was applied for continuous variables, logistic

regression (LogReg) for binary variables (14), and polynomial

regression (PolyReg) for categorical variables with more than two

levels (15). The imputed datasets were used for subsequent analyses.

For continuous variables, the Shapiro-Wilk test was employed to

assess their normality. Variables following a normal distribution were

analyzed using independent-sample t-tests to evaluate their

associations with the outcome variable, while non-normally

distributed variables were assessed with the Mann-Whitney U test.

Categorical variables were analyzed using the chi-squared test or

Fisher’s exact test, depending on cell frequencies in contingency tables.

Multivariate analysis was conducted using stepwise logistic

regression based on the Akaike Information Criterion (AIC) to
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identify the optimal model for evaluating factors associated with the

outcome variable. Model fit was assessed using the Hosmer-Lemeshow

test, while discriminatory performance was evaluated with Receiver

Operating Characteristic (ROC) curves and AUC values.

The final multivariate model included the following predictors:

total tumor size, HT, lateral cervical lymph node metastasis

(LLNM), intraglandular dissemination, the number of nodules >1

cm identified on preoperative US, palpable nodules, nodule texture,

nodule calcification on US, multifocality on US, size of lymph node

area with suspicion of metastasis identified preoperatively,

preoperative TSH levels, and central LN metastasis (CLNM).

Odds ratios (OR) and their corresponding 95% confidence

intervals (CI) were calculated for both categorical and continuous

variables using logistic regression. Data analyses were performed

using R software (version 4.4.1).
2.3 Development and comparison of ML-
based models

The use of the Random Over-Sampling Examples (ROSE) method

was necessitated by the severe class imbalance in the dataset, where

recurrence cases (minority class) were underrepresented. Traditional

models trained on such data often prioritize majority-class accuracy,

leading to poor sensitivity for recurrence prediction—a critical

shortcoming in clinical settings. ROSE was chosen over alternatives

like SMOTE due to its ability to generate synthetic minority samples

using bootstrapping and kernel density estimation, introducing

controlled noise to simulate realistic feature variations. This approach

avoids deterministic interpolation, which risks overfitting by creating

artificial linear patterns, while expanding the diversity of the minority

class.We used cross-validation to avoid the problem of overfitting.

For model development and validation, the dataset was

randomly split into a training cohort (80%) and a validation

cohort (20%). Six popular ML models—K-nearest neighbors

(KNN), decision trees (DT), support vector machines (SVM),

extreme gradient boosting (XGBoost), logistic regression (LR),

and random forest (RF)—were trained using significant predictors

identified in multivariate analyses.

The models’ performance was evaluated using multidimensional

metrics, including accuracy, AUC, sensitivity, specificity, false positive

rate (FPR), and false negative rate (FNR). Higher values for accuracy,

AUC, sensitivity, and specificity indicate better performance, while

lower FPR and FNR are desirable. Decision curve analysis (DCA) was

conducted to assess the clinical utility of the models by estimating net

benefits at various threshold probabilities. DCA calculates the net

benefit of treating patients within a specific threshold probability,

balancing true-positive benefits against false-positive harms (16).

To enhance interpretability, feature importance analysis was

performed to evaluate the contribution of variables to the models.

Feature importance quantifies the impact of individual predictors

by measuring the increase in model prediction error after

permuting each feature. This approach helps identify variables

with the greatest influence on predictive outcomes.
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2.4 Model validation and web development

Following the selection of the best-performing model, internal

validation was conducted using the reserved validation cohort. The

same evaluation metrics employed for model comparison were

applied to assess performance, including accuracy, AUC,

sensitivity, specificity, FPR, and FNR. A confusion matrix was

generated to illustrate discrepancies between actual and predicted

outcomes. Calibration curves were constructed to evaluate the

agreement between predicted probabilities and observed

outcomes, providing insight into the model’s reliability.

To facilitate clinical application, a web-based calculator was

developed using the R package Shiny. This tool allows clinicians to

input patient-specific data and obtain individualized recurrence risk

predictions based on the developed ML model.
3 Results

3.1 Clinical characteristics

A total of 2,388 patients were included in this study, selected

from the WHUH database comprising 12,362 individuals who

underwent thyroid surgery (Figure 1). Among the cohort, 139

patients (5.82%) experienced recurrence during follow-up, while

2,249 (94.18%) did not. Table 1 summarizes of the demographic

and clinicopathological characteristics of the cohort.
3.2 Feature selection

Univariate analysis identified significant associations between

recurrence and several variables, including maximum tumor size,

total tumor size, HT, ETE, LLNM, intraglandular dissemination,

US-detected >1cm nodule count, palpable nodules, nodule texture,

US-detected calcified nodule, mixed echogenicity nodules on US,

US- detected mutifocality, size of lymph node area with suspicion of

metastasis on US, fine-needle aspiration (FNA), preoperative TSH

levels, and CLNM (P < 0.05) (Figure 2A).

In multivariate analysis, independent risk factors for recurrence

included intraglandular dissemination (OR = 4.347, 95% CI: 2.894–

6.529, P < 0.001), total tumor size (OR = 1.012, 95% CI: 1.000–

1.025, P < 0.05), suspicious LNs in the central and bilateral cervical

regions on US (OR = 2.919, 95% CI: 1.504–5.668, P < 0.001), US-

detected >1cm nodule count (OR = 1.275, 95% CI: 1.004–1.620, P <

0.05), and HT (OR = 9.575, 95% CI: 2.819–32.525, P < 0.001).

Protective factors included soft nodule texture (OR = 0.460,

95% CI: 0.237–0.893, P < 0.05) and medium texture (OR = 0.401,

95% CI: 0.238–0.678, P < 0.001), normal (OR = 0.172, 95% CI:

0.098–0.303, P < 0.001) or elevated preoperative TSH levels (OR =

0.055, 95% CI: 0.012–0.258, P < 0.001), CLNM (OR = 0.463, 95%

CI: 0.293–0.730, P < 0.001), and US-detected mutifocality (OR =

0.659, 95% CI: 0.435–0.999, P < 0.05) (Figure 2B; Supplementary

Table S1).
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The correlation analysis (Figure 2C) demonstrated that none of

the features had a significant correlation with one another (<0.3).

Considering their clinical relevance, all the above factors were

included in the ML model.
3.3 Machine Learning Model Performance

Using the identified features, six ML models—KNN, DT, SVM,

XGBoost, LR, and RF—were developed to predict recurrence. These

models were evaluated in the training cohort (Figures 3A, B).

Supplementary Table S2 detailed the models. All demonstrated

satisfactory performance, with RF achieving the highest accuracy

(0.801) and the largest AUC.
Frontiers in Endocrinology 04
DCA (Figure 3C) demonstrated that RF and KNN provided the

greatest net clinical benefit across threshold probabilities. Feature

importance analysis (Figure 3D) highlighted the preoperative TSH

levels and intraglandular dissemination as the most influential

predictors across all models.
3.4 RF model validation

The RFmodel was validated in the test cohort, where it achieved an

accuracy of 0.808, an AUC of 0.893, a sensitivity of 0.776, and a

specificity of 0.841. The confusion matrix (Figure 4A) demonstrated

the model’s performance, and the ROC curve (Figure 4B) confirmed its

strong discriminative ability. The calibration curve (Figure 4C)
FIGURE 1

Flowchart of patient selection. A total of 12,362 individuals who underwent thyroid surgery were identified from the WHUH database. After applying
inclusion and exclusion criteria, 2,388 DTC patients were included in the study. DTC, differentiated thyroid cancer; WHUH, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology.
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TABLE 1 Demographic and clinicopathologic features of the patients grouped by recurrence.

Variable Levels Total (n=2388) Non-recurrence (n=2249) Recurrence (n=139) P-value

2388 2249 139

Age (%) <=55y 2107(88.23%) 1980(88.04%) 127(91.37%) 0.296

>55y 281(11.77%) 269(11.96%) 12(8.63%)

Gender (%) Female 1678(70.27%) 1588(70.61%) 90(64.75%) 0.170

Male 710(29.73%) 661(29.39%) 49(35.25%)

Marital status (%) No 368(15.41%) 341(15.16%) 27(19.42%) 0.320

Yes 2008(84.09%) 1896(84.3%) 112(80.58%)

Others 12(0.5%) 12(0.53%) 0(0%)

BMI (%) Low 121(5.07%) 116(5.16%) 5(3.6%) 0.507

Normal 1578(66.08%) 1489(66.21%) 89(64.03%)

High 689(28.85%) 644(28.63%) 45(32.37%)

Family history (%) No 2346(98.24%) 2212(98.35%) 134(96.4%) 0.094

Yes 42(1.76%) 37(1.65%) 5(3.6%)

Hypertensive (%) No 2258(94.56%) 2127(94.58%) 131(94.24%) 1.000

Yes 130(5.44%) 122(5.42%) 8(5.76%)

Diabetes (%) No 2355(98.62%) 2216(98.53%) 139(100%) 0.258

Yes 33(1.38%) 33(1.47%) 0(0%)

Hyperthyroidism (%) No 2357(98.7%) 2219(98.67%) 138(99.28%) 1.000

Yes 31(1.3%) 30(1.33%) 1(0.72%)

HT (%) No 2367(99.12%) 2234(99.33%) 133(95.68%) <0.001

Yes 21(0.88%) 15(0.67%) 6(4.32%)

FT3 (%) Low 26(1.09%) 24(1.07%) 2(1.44%) 0.672

Normal 2292(95.98%) 2160(96.04%) 132(94.96%)

High 70(2.93%) 65(2.89%) 5(3.6%)

FT4 (%) Low 86(3.6%) 79(3.51%) 7(5.04%) 0.213

Normal 2228(93.3%) 2103(93.51%) 125(89.93%)

High 74(3.1%) 67(2.98%) 7(5.04%)

Preoperative TSH levels (%) Low 104(4.36%) 79(3.51%) 25(17.99%) <0.001

Normal 2193(91.83%) 2081(92.53%) 112(80.58%)

High 91(3.81%) 89(3.96%) 2(1.44%)

Palpable nodule (%) No 740(30.99%) 686(30.5%) 54(38.85%) <0.05

Yes 1648(69.01%) 1563(69.5%) 85(61.15%)

Palpable LN (%) No 1942(81.32%) 1828(81.28%) 114(82.01%) 0.918

Yes 446(18.68%) 421(18.72%) 25(17.99%)

Nodule texture (%) Soft 219(9.17%) 196(8.71%) 23(16.55%) <0.05

Mediun 378(15.83%) 356(15.83%) 22(15.83%)

Hard 1791(75%) 1697(75.46%) 94(67.63%)

FNA (%) No 2064(86.43%) 1934(85.99%) 130(93.53%) <0.05

(Continued)
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TABLE 1 Continued

Variable Levels Total (n=2388) Non-recurrence (n=2249) Recurrence (n=139) P-value

Yes 324(13.57%) 315(14.01%) 9(6.47%)

US-detected bilateral
lesions (%)

No 1523(63.78%) 1426(63.41%) 97(69.78%) 0.153

Yes 865(36.22%) 823(36.59%) 42(30.22%)

US-detected
multifocality (%)

No 1461(61.18%) 1361(60.52%) 100(71.94%) <0.05

Yes 927(38.82%) 888(39.48%) 39(28.06%)

Regions of lymph node with
suspicion of metastasis on

US (%)

No 1351(56.57%) 1273(56.6%) 78(56.12%) <0.05

Central LN 228(9.55%) 216(9.6%) 12(8.63%)

Cervical LN 637(26.68%) 607(26.99%) 30(21.58%)

Central LN
+cervical LN

106(4.44%) 93(4.14%) 13(9.35%)

Central LN +bilateral
cervical LN

66(2.76%) 60(2.67%) 6(4.32%)

US-detected capsular
invasion (%)

No 2338(97.91%) 2201(97.87%) 137(98.56%) 1.000

Yes 50(2.09%) 48(2.13%) 2(1.44%)

cN1 (%) No 1392(58.29%) 1311(58.29%) 81(58.27%) 1.000

Yes 996(41.71%) 938(41.71%) 58(41.73%)

ETE (%) No 2070(86.68%) 1959(87.11%) 111(79.86%) <0.05

Yes 318(13.32%) 290(12.89%) 28(20.14%)

High-risk subtype (%) No 2258(94.56%) 2122(94.35%) 136(97.84%) 0.083

Yes 130(5.44%) 127(5.65%) 3(2.16%)

Bilateral lesions (%) No 1418(59.38%) 1343(59.72%) 75(53.96%) 0.210

Yes 970(40.62%) 906(40.28%) 64(46.04%)

Involvement of the thyroid
isthmus (%)

No 2301(96.36%) 2169(96.44%) 132(94.96%) 0.173

Yes 83(3.48%) 77(3.42%) 6(4.32%)

Only isthmus 4(0.17%) 3(0.13%) 1(0.72%)

Intraglandular
dissemination (%)

No 1484(62.14%) 1436(63.85%) 48(34.53%) <0.001

Yes 904(37.86%) 813(36.15%) 91(65.47%)

maximum tumor size (%) ≧1cm 944(39.53%) 902(40.11%) 42(30.22%) <0.05

≦4cm 1376(57.62%) 1287(57.23%) 89(64.03%)

>4cm 68(2.85%) 60(2.67%) 8(5.76%)

CLNM (%) No 494(20.69%) 455(20.23%) 39(28.06%) <0.05

Yes 1894(79.31%) 1794(79.77%) 100(71.94%)

LLNM (%) No 1392(58.29%) 1328(59.05%) 64(46.04%) <0.05

Yes 996(41.71%) 921(40.95%) 75(53.96%)

US-detected nodule count
(mean (SD))

2.19(1.12) 2.19(1.12) 2.12(1.15) 0.286

US-detected >1cm nodule
count (mean (SD))

1.01(0.76) 1(0.76) 1.16(0.8) <0.05

US-detected calcified nodule 0.93(0.91) 0.94(0.9) 0.79(1.02) <0.05

(Continued)
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indicated good agreement between the predicted and observed

recurrence probabilities.
3.5 Web-based calculator

An interactive web calculator (https://leekeeee.shinyapps.io/

DTC_Reccurence_Prediction_Model/) was developed using the R

Shiny package to facilitate clinical application of the RF model. The

calculator allows clinicians to input eight variables, including HT,

US-detected mutifocality, intraglandular dissemination, regions of

lymph node with suspicion of metastasis on US, nodule texture, US-

detected >1cm nodule count, total tumor size, and preoperative

TSH levels, to estimate recurrence risk (Figure 5). This tool provides

an accessible means of supporting personalized management of

patients with DTC.
4 Discussion

This study, based on a comprehensive retrospective analysis of

2,388 DTC patients, identifies and validates risk and protective

factors for recurrence. Guided by two criteria—(1) low

multicollinearity (pairwise correlation coefficients <0.3, ensuring

statistical independence) and (2) clinical relevance rooted in thyroid

pathology evidence—our findings reaffirm established predictors

(e.g., intraglandular dissemination) while uncovering novel

associations (e.g., CLNM as a protective factor). Despite initial

counterintuitive trends, these inclusions minimized redundancy

and enhanced model robustness, ultimately enriching mechanistic

insights into DTC recurrence.

Among the risk factors, intraglandular dissemination emerged

as the most significant, reflecting the heightened invasive and

metastatic potential associated with tumor cell spread within

thyroid tissues. This finding highlights the necessity of meticulous

surgical and pathological evaluations to identify and manage these
Frontiers in Endocrinology 07
disseminated foci (17–19). Moreover, the association between HT

and recurrence risk supports the hypothesis that chronic

inflammation fosters a pro-tumorigenic microenvironment

(11, 20–26), likely mediated by inflammatory cytokines and

immune cell infiltration (24, 27). Such mechanisms may promote

tumor proliferation and invasion, warranting further exploration of

inflammatory biomarkers in recurrence prediction. Total tumor

size, as an indicator of tumor burden, underscores the increased

likelihood of residual disease and metastasis, corroborating prior

findings (28–30). Conversely, the appearance of softer or

moderately textured nodules was observed to confer a protective

effect, which may indicate less aggressive tumor behavior or benign

pathological characteristics.

Additionally, imaging features played a pivotal role in

recurrence prediction. Parameters such as the number of nodules

>1 cm (3, 31, 32) and the size of suspicious metastatic LN regions

highlight the relevance of comprehensive preoperative evaluation.

These findings underscore the complex relationship between US

characteristics and recurrence risk assessment (33, 34), suggesting

the potential for US data to enhance the precision of imaging-based

scoring systems. Notably, patients with US-detected multifocality

were significantly more likely to undergo total thyroidectomy

(90.23% vs. 84.49% in unifocal cases, P < 0.001)—an aggressive

surgical approach that likely reduced residual disease risk. This

clinical decision may have artifactually contributed to the observed

“protective” association of multifocality in our model, illustrating

how treatment patterns can indirectly shape predictive outcomes.

A particularly novel finding of this study is the protective role of

normal or elevated preoperative TSH levels against recurrence. While

this observation establishes a relationship between TSH levels and

recurrence risk, it is inconsistent with most existing studies (21, 35–37),

which often associate higher TSH levels with increased tumor

aggressiveness or recurrence likelihood. The discrepancy in findings

may be attributed to variations in study design, patient population

characteristics, or other factors. Specifically, patients with lower

baseline TSH might not have received more aggressive TSH
TABLE 1 Continued

Variable Levels Total (n=2388) Non-recurrence (n=2249) Recurrence (n=139) P-value

US-detected LN with
suspicion of metastasis

(mean (SD))

0.72(1.05) 0.71(1.03) 0.82(1.3) 0.645

Number of mixed-echogenic
nodules (mean (SD))

0.03(0.19) 0.03(0.2) 0.01(0.12) 0.349

Number of solid
hypoechoic nodules

0.66(1.09) 0.67(1.09) 0.54(1.14) <0.05

Total tumor size (mm,
mean (SD))

18.84(13.81) 18.63(13.6) 22.21(16.59) <0.05

CLNR (mean (SD)) 0.41(0.3) 0.41(0.3) 0.44(0.33) 0.282

LLNR (mean (SD)) 0.26(0.23) 0.26(0.23) 0.27(0.24) 0.849

LNR (mean (SD)) 0.31(0.27) 0.31(0.27) 0.32(0.23) 0.877
BMI, Body Mass Index; FT3, Free Triiodothyronine; FT4, Free Thyroxine; CLNM, Central Lymph Node Metastases; LLNM, Lateral Cervical Lymph Node Metastases; CLNR, Central Lymph
Node Ratio; LLNR, Lateral Cervical Lymph Node Ratio; LNR, Lymph Node Ratio; Normal-BMI (18.0<= BMI <25.0), Low-BMI (BMI <18.0), and High-BMI (BMI >=25.0); Normal TSH level:
0.35–4.94 mIU/ml; Normal FT3 level: 2.63–5.70 pmol/L; Normal FT4 level: 9.00–19.18 pmol/L; FNA (%) indicates the proportion of patients undergoing preoperative fine-needle aspiration.
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suppression therapy (e.g., high-dose thyroid hormone replacement or

targeted pharmacological interventions), potentially reflecting a clinical

preference for conservative management in perceived low-risk cohorts

rather than an intrinsic biological effect of TSH levels.

Another intriguing result is the identification of CLNM as a

protective variable. This may be attributed to the extensive surgical

clearance often performed in cases with central LN involvement,

thereby reducing the residual tumor burden and potentially

lowering recurrence risk. Alternatively, it could reflect a bias

introduced by the closer postoperative monitoring and tailored

treatment strategies these patients may receive. However, given that

this finding contradicts the usual understanding of LN metastasis as

a risk factor (38–41), it underscores the need for further

investigation through larger, multicentric datasets to confirm its

validity and clarify its clinical implications. The biological

mechanisms underlying these paradoxical associations remain
Frontiers in Endocrinology 08
uncertain, highlighting the imperative for mechanistic

investigations to differentiate between treatment-driven biases and

authentic disease prognosis pathways.

From a methodological standpoint, the RF model demonstrated

superior predictive performance compared to other ML algorithms.

With AUC values of 0.875 and 0.893 in the training and validation

cohorts, respectively, the RF model proved highly effective in

recurrence prediction. Notably, clinical utility analysis further

highlighted RF’s superiority across various decision thresholds.

Among the features contributing most significantly to the model’s

performance, preoperative TSH levels and intraglandular

dissemination stood out, reflecting their clinical relevance and

potential as actionable targets in recurrence prevention strategies.

Despite its strengths, this study has several limitations. As a

single-center retrospective analysis, it is susceptible to selection bias,

limiting the generalizability of the findings. Due to retrospective
FIGURE 2

Feature selection. Forest plot of univariate (A) and multivariate (B) analyses identifying factors predicting recurrence. (C) Correlation analysis of
selected factors. FNA, Fine-Needle Aspiration; HT, Hashimoto’s thyroiditis; ETE, extrathyroidal extension; LLNM, lateral cervical lymph node
metastasis; CLNM, central lymph node metastasis.
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data limitations, detailed post-surgical management variables (e.g.,

RAI dosage, TSH suppression intensity) were not available for

analysis, which may confound the interpretation of recurrence

predictors. Additionally, while data resampling techniques were

employed to address class imbalance, external validation in

multicentric cohorts is essential to confirm these results.

Moreover, the absence of molecular biomarkers (e.g., BRAF,

TERT) and advanced radiomic data in the current analysis limits

the model’s precision and applicability. Future research should

integrate these dimensions to enhance predictive accuracy and

uncover deeper biological insights into recurrence mechanisms.
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Another notable limitation of this study lies in our exclusive

inclusion of surgically confirmed recurrence cases, which may

introduce potential selection bias. While such rigorous criteria

enhance diagnostic specificity, they may systematically exclude

subclinical recurrence patients who did not undergo reoperation

(e.g., those opting for conservative management or with surgical

contraindications), potentially leading to underestimation of true

recurrence rates and associated risk factors. Furthermore, reliance

on surgical confirmation might obscure the heterogeneous

biological characteristics of different recurrence patterns (e.g.,

local infiltration versus distant metastasis). To address this
FIGURE 3

Machine Learning model performance. (A) Comparison of sensitivity, specificity, accuracy, and AUC across six ML models. (B) ROC curves for each
ML model. (C) Decision curve analysis (DCA) illustrating clinical benefit of the models. (D) Feature importance of models built with recurrence for the
six models. ROC, receiver operating characteristic; KNN, K-nearest neighbors; DT, decision trees; SVM, support vector machines; XGBoost, extreme
gradient boosting; LR, logistic regression; RF, random forest; AUC, area under the curve.
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constraint, we propose that future investigations adopt multimodal

diagnostic frameworks integrating dynamic imaging assessments

(e.g., contrast-enhanced MRI/PET-CT), liquid biopsy technologies

(e.g., ctDNA monitoring), standardized clinical symptom scoring

systems, and AI-assisted thyroid nodule diagnosis models, which

have demonstrated superior performance in analyzing ultrasound

images by identifying subtle morphological features and echogenic

patterns often overlooked by human observers (42–44). Such

multidimensional validation strategies would not only improve

recurrence detection sensitivity but also facilitate the deciphering

of molecular evolution patterns in micrometastatic lesions, thereby

informing more precise timing for personalized interventions.
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In conclusion, this study identifies key recurrence risk factors in

DTC using advanced machine learning, enabling personalized

clinical strategies. While the ROSE method effectively mitigated

class imbalance through synthetic data generation, its use highlights

limitations in single-institution datasets with low recurrence rates. To

enhance clinical applicability, future work must prioritize larger,

multi-institutional cohorts with higher recurrence incidence,

reducing reliance on synthetic augmentation and strengthening

model generalizability. Cross-institutional collaboration and

standardized recurrence monitoring protocols will be critical to

validate these models across diverse populations, ensuring equitable

integration into global healthcare systems. This approach bridges
FIGURE 4

Performance of the Random Forest (RF) model on validation cohorts. (A) Confusion matrix for the internal validation cohort. (B) ROC curve for the
internal validation cohort. (C) Calibration curve for the internal validation cohort.
FIGURE 5

Web-based calculator for recurrence prediction. An interactive tool developed using the R Shiny package allows clinicians to input eight variables to
estimate DTC recurrence risk. Accessible at https://leekeeee.shinyapps.io/DTC_Recurrence_Prediction_Model/. DTC, differentiated thyroid cancer;
TSH, thyroid-stimulating hormone; LN, lymph node.
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ML-driven insights with real-world data, advancing precision in

DTC management.
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