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The gut microbiome plays an important role in the protection against various

systemic diseases. Its metabolic products profoundly influence a wide range of

pathophysiological events, including the regulation of bone health. This review

discusses the recently established connections between the gut microbiome and

bone metabolism, focusing on the impact of microbiome-derived metabolites

such as SCFAs, Bile Acids, and tryptophan to the control of bone remodeling and

immunoreactions. Recent advances in metagenomics and microbiome profiling

have unveiled new exciting therapeutic opportunities, ranging from the use of

probiotics, prebiotics, engineered microbes, and to fecal microbiota

transplantation. Understanding of the interplay among diet, microbiota, and

bone health provides new avenues for tailored interventions aimed at reducing

disease risk in osteoporosis and other related disorders. By drawing knowledge

from microbiology, metabolism, and bone biology, this review highlights the

potential of microbiome-targeted therapies to transform skeletal health and the

management of bone diseases.
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1 Introduction

Trillions of microorganisms live in the human gut, and they form a complex but highly

balanced ecosystem (1). Accumulating evidence demonstrates that disturbing this

complicated ecosystem profoundly affects bone density and may influence the risk of

osteoporosis (2, 3). Dysbiosis or gut microbiota imbalance has been strongly associated as

the cause of increased bone resorption and reduced bone formation through immune

modulation, inflammation, and impaired nutrient absorption. Menopause and aging are

particularly to blame for disturbances of microbiota, triggering inflammatory pathways that

increase osteoclast activity and bone loss (4–6). Emerging research also links gut microbiota

with inflammation that can affect conditions like rheumatoid arthritis (7). Various gut
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microbiome metabolic products such as short-chain fatty acids

(SCFAs), bile acids, and tryptophan metabolites significantly

influence bone metabolism and health (8, 9). SCFAs, including

acetate, propionate, and butyrate, directly inhibit osteoclastogenesis

and enhance osteoblast function, and hence maintain bone

structure and bone density. SCFAs facilitate the absorption of

calcium by lowering intestinal pH, enhancing calcium solubility,

and providing a mechanistic link between diet, microbiome

metabolism, and bone mineralization. Recent advances in

metagenomics and functional profiling introduce new concepts

toward how the gut microbiome may systemically influence

overall human health (10). For instance, metagenomics analysis

found some microbial gene clusters that are responsible for the

production of health-beneficial metabolites including SCFAs, and

this identified targeted possibilities of microbiome therapies in

osteoporosis (9, 11). Metagenomic sequencing, functional

metagenomics, and phylogenetic profiling provide a better

understanding of how the gut microbiome regulates bone

metabolism through diet, supplementation, or designed microbial

therapies. In this review, we discuss various microbiome-targeted

interventions such as probiotics, prebiotics, engineered microbes,

and fecal microbial transplantation (FMT) in the aspects of bone

health. Preclinical and clinical studies affirm the efficacy of these

interventions to restore microbiome balance, reduce inflammation,

and promote mineral absorption, all of which highlight their

therapeutic potential against osteoporosis (12, 13). We aim to

bring together different perspectives from the disciplines of

microbiology, metabolism, and bone biology with regard to gut

microbiome manipulation; it may well translate into new

opportunities to optimally manage skeletal health-related diseases

(7, 10).
2 Unraveling the gut microbiome

The human gut microbiome consists of hundreds of trillions of

microorganisms and plays a crucial role inmaintaining human health

by supporting digestion, immune function, metabolic balance, and

more (14). Disruptions in this huge and intricate microbial network

(dysbiosis) are associated with a variety of health conditions,

including inflammatory bowel disease (IBD), obesity, diabetes,

cardiovascular disease, neurological conditions like Alzheimer’s

disease, and autoimmune conditions like rheumatoid arthritis and

systemic lupus erythematosus (15–17). Microbiome-focused dietary

interventions supplemented with fermented foods significantly

increased microbial diversity and reduced markers of

inflammation. For instance, a 10-week study demonstrated that

subjects who consumed fermented foods experienced notable

increases in gut microbiota diversity accompanied by significant

reductions in 19 inflammatory cytokines, including IL-6, IL-10, and

IL-12b (18). Metagenomic DNA sequencing technologies have been

developed to study the diversity of gut microbes (19). Metagenomic

sequencing refers to a methodology used to examine genetic material

derived directly from microbial populations, enabling researchers to

identify microbial genes and their biochemical activities (20, 21). A
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study showed the alternative ways, through which the gut

microbiome has been influencing glycan, amino acid, and

xenobiotics metabolisms; such metabolism usually forms a pattern

of enrichment in Clusters of Orthologous Groups (22). Other studies

applied 16S rRNA gene sequencing to understand how a gut

microbiome could promote immune response and absorb food for

the liberation of nutrition to the human host (23). However,

differences in the efficiency of DNA extraction, sequencing depth,

and sample handling can lead to biases with the potential to cause

significant errors in the estimation of microbial abundance (24).

Separately, simulation studies support this approach because gene

functional prediction indicates specific pathways, providing

information on the connective chains of reactions expected to

occur for gene activity. Because phylogenetic profiling defines gene-

gene co-occurrence patterns across species, this method can be used

to see in what ways or where the absence or presence of a gene may

affect metabolic capabilities in prokaryotes (25). It shows the

importance of gene co-occurrence within a microbial network

where the interactions go beyond digestion and relate to

phenotypic traits (24). One can apply insights from these

technologies to work towards therapeutic interventions and diets

by the health-promoting properties of the gut microbiome (26).

These microbiome-targeted interventions show promising

preclinical efficacy and emerging clinical potential in treating

neurological disorders such as Alzheimer’s disease, Parkinson’s

disease, stroke, and epilepsy by modulating microbial composition

and metabolism, thereby influencing disease pathology (27).

The composition of the gut microbiome can predict the

susceptibility of a host to some diseases (28). The microbiome

uses colonization resistance to prevent infection in the host, where

the commensal microbiota of the microbiome competes against

invading microorganisms (29, 30). The gut microbiome is known to

act to modulate immune homeostasis and serve as a barrier from

several diseases at this gut-symbiosis interface (17). SCFAs

represent the major products of the gut microbiome and play an

essential role in gut homeostasis (30). Butyrate controls the adaptive

and innate immune cells, while SCFAs protect against dysbiosis and

maintain gut health (29). Finally, antigens are presented through

antigen-presenting cells to T cells and afterward may bias the T cells

into Th1, Th2, or Th17 cells (17). This interaction downregulates

gut macrophage activity and reduces inflammation through

modulation of T cell responses in the gut (30). The metabolic

activity of the gut microbiota regulates diseases beyond the gut

barrier and also serves as an indicator of the local immune system

(31). While the activation of the pattern-recognition receptors in

the gut controls the appropriate immune response, the barrier

function is a multi-step system of the gut that reduces the

adhesion of bacteria and regulates nutrition absorption (30). A

balanced gut microbiota notably regulates immune mediators in the

GIT and profoundly strengthens gut barrier function (29). In fact,

studies in mice have shown that proper mucus formation depends

on an actively growing, diversely structured microbiota (32). The

host gut microbiota regulates the secretion of mucosal digestive

enzymes, such as meprin-b, into the small intestine to modulate

mucus production (32). Furthermore, on a diet devoid of dietary
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fibers, the mucus layer is degraded when the bacteria-degrading

mucus thrives. On the other hand, leaky gut has recently been

associated with pathogenesis leading to several inflammatory

ailments (33). It is observed that a healthy gut mucus layer and

proper immune system depend on the proper interaction ability of

the gut microbes within their host (30). It is, therefore, important to

understand the complexity, composition, regulation, and

functioning of gut microbiota in order to achieve therapeutic

breakthroughs and develop the best microbiome-specific therapies

that would promote human health and prevent disease (17).

The diversity of the microbial community in the gut is a direct

result of the biochemical profile of food that the host uptakes (34).

Dysbiosis is caused by an unstable microbiome leading to changes

in composition and diversity of the gut microbiome, which has been

associated with a series of circumstances, including the loss of

balanced nutrition owing to high sugar and/or low fiber, which

leads to disruption to the host’s metabolism. In addition, antibiotic

overuse and the consequential antimicrobial resistance of gut

bacteria also cause dysbiosis (35, 36). This pathological situation

often results in an overgrowth of opportunistic pathogenic

microorganisms in conjunction with the loss of beneficial

microorganisms (35). Indeed, therapeutic strategies supporting

microbiome stability to restore its diversity have been found to

play key roles in maintaining proper immune function and long-

term health. This form of maintenance requires tailored therapeutic

strategies and includes a range of factors, including prebiotics and

probiotics, as well as changes in diet that foster microbial diversity

and overall health (37, 38). Importantly, currently available

microbiome-targeted therapies provide innovative means to

suppress dysbiosis and its role in numerous inflammatory

diseases (39, 40). Together, understanding the microbiome and its

interactions with diverse ranges of different hosts is essential to

prevent or intervene in dysbiosis (41).
3 Bone metabolism: foundations and
failures

Bone remodeling is a constantly ongoing critical homeostatic

process in the body throughout our lives (42). It is tightly regulated

by the precise continual resorption of the bone by the osteoclasts

and its counteracting, continual formation by the osteoblasts (43,

44). The receptor activator of nuclear factor (RANK) and its ligand,

RANKL, are crucial in the promotion of bone resorption by

osteoclasts (44). In addition, the balance between estrogen and

testosterone properly controls osteoclast activity, promoting bone

formation to help maintain bone mass, and also protect against

osteoporosis, most notably in postmenopausal women (45). This

suggests that an increase in osteoclast activity can be caused by

parathyroid hormone (PTH), which acts on osteoblasts and

influences the RANKL/Osteoprotegerin (OPG) signaling system

(46). Mechanically, following receptor binding of PTH, a signal

transduction cascade is initiated and alters the RANKL/OPG-

producing profile - with an increase in the RANKL profile and a

decrease in the OPG profile (47). This leads to the overall net effect
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that would favor osteoclast development and productivity levels. On

the other hand, calcitonin inhibits osteoclast activity by binding to

its cognitive receptors on osteoclasts and triggers the signaling

pathways that reduce their bone-resorbing ability. Moreover,

hormonal balancing mechanisms would render control over the

activity of osteoblasts and osteoclasts and properly maintain the

innate homeostasis in the processes essential for the formation and

function of bone (43). In the absence of such balance, bone loss will

accelerate and predispose to fracture (44). On the other hand,

overactivation of osteoblasts may lead to the overproduction of

bone and cause abnormalities in bones themselves and marrows

therein (48).

Several bone resistance training programs reported the ability to

improve bone mineral density (BMD) in postmenopausal women

with low bone mass (49–51). The interest in preventive strategies to

build bone mass and demand for adequate assessment tools to

properly calculate the risk for fractures have grown dramatically in

recent years (52). Accurately predicting bone health allows for

tailored therapies to address specific weaknesses, improving

osteoporosis management and reducing fracture risk (53, 54).

Trabeculae, the spongy part of bone, forms thin plates and rod-like

structures, enabling it to perform its function of bearing weight and

resisting forces more appropriately (55). Also, minerals in the matrix

of a healthy bone affect the strength of the bone, while collagen fibers

are arranged and cross-linked for the flexibility or bending ability of

the bone. Advanced imaging techniques like QCT, High-resolution

peripheral computed tomography (HR-pQCT), Trabecular Bone

Score (TBS), and Finite Element Analysis (FEA) provide precise

and immediate determination of multiple bone strength parameters,

such as cortical bone density, cortical thickness, cortical porosity, and

density (56). Spectroscopic tools like Fourier Transform Infrared

(FTIR) spectroscopy and Raman spectroscopy provide a deeper

understanding of the composition of bone with respect to mineral

and collagen properties than can be obtained with standard BMD

testing (57). These imaging techniques enhance the diagnosis of and

guide treatment strategies (58). However, despite these

advancements, metabolic failures remain the primary challenge in

bone health management.

Bone metabolic failures underlie bone conditions. Rheumatoid

arthritis (RA) and osteoarthritis (OA) point to the role of

imbalanced metabolism (59). The inflammatory cytokines in RA

cause disruption in the balance between RANKL and OPG,

triggering bone resorption with enhanced fracture risk (60). In

contrast, in OA, there is cartilage degradation and bone spur

development, illustrating how mechanical stress and abrasive

wear weaken bone (61). Also, hormonal imbalances with

reductions in estrogen enhance osteoclast-mediated activity,

leading to postmenopausal osteoporosis in women (62). The

treatment of these metabolic failures remains paramount despite

the availability of advanced diagnostic tools since viable

interventions are limited with these advanced diagnostic methods.

In RA, several cytokines have been identified to disrupt the

balance between RANKL, an activator of osteoclast activity, and its

inhibitor OPG, resulting in excessive bone resorption (63). Despite

the recent improvements in treatment, complete recovery of
frontiersin.org

https://doi.org/10.3389/fendo.2025.1553655
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Hwang et al. 10.3389/fendo.2025.1553655
damaged bones in RA remains unlikely, considering that

inflammatory cytokines persistently inhibit new bone formation

(63). However, in the case of patients with OA, cartilage wears down

slowly and results in a loss of elasticity and characteristics as a shock

absorber. As the cartilage degrades, it exposes the bone below and

results in the formation of bone spurs (64). A study outlined that

osteoarthritis is an outcome of physical trauma and day-to-day use

and wear of the joints (65). In comparison, the autoimmune

response characterizing RA tends to damage the bones. In this

process, immune cells invade the tissue membrane that triggers an

inflammatory response in the synovium and cause erosion of the

neighboring bones.

Numerous genetic factors, including Vitamin D receptor gene

polymorphisms, are known to interact with lifestyle choices to affect

bone health. Specific polymorphisms of genes of the Vitamin D

receptor, such as haplotype A-T-G for rs7975232, rs1544410, and

rs73731236, have been associated with low BMD, increased

susceptibility to osteoporosis, and other bone diseases (66).

Indeed, Vitamin D is a crucial nutrient and promotes calcium

absorption, and adequate Vitamin D levels help build strong bones

and reduce osteoporosis risk (67). Exercise also reduces bone loss in

older age. Regular activities stimulate the formation of bones and

likely reduce bone fractures with a significantly diminished chance

of developing osteoporosis (68). Smoking negatively affects the flow

of hormones and impairs calcium absorption and bone metabolism

(69). This leads to low bone mass and density and contributes to a

high fracture risk (69). On the other hand, sex hormones, important

for osteoblast activation, are negatively affected by smoking.

Moderate alcohol consumption has a complex impact on BMD

via direct effects on bone mineral metabolism. Moderate alcohol

consumption may have varying effects on bone density, especially in

postmenopausal women, although its impact on estrogen levels

remains complex. Acute alcohol intoxication may lead to the

development of transient hypoparathyroidism with consequent

hypocalcemia, whereas chronic alcoholism reduces levels of

vitamin D metabolites and impairs calcium absorption. Alcohol

blunts osteoblast activity, as low levels of osteocalcin, a protein

involved in new bone formation, are observed in alcoholics (69).

Some influences and risk factors important in determining the state

of health of our bones are genetically predetermined - phenomena

such as peak bone mass; most of the others will be determined by

the accumulation of lifestyle choices that we make over a lifetime

(68). Maintaining strong bone structure is essential for mobility,

independence, and overall well-being.

Most pathological conditions affecting the bone can benefit

from a comprehensive approach to treatment. Traditional

treatment methods include bisphosphonates, hormone

replacement therapy (HRT), and the supplementation of calcium

and vitamin D. Among the newer therapeutic options for

osteoporosis are teriparatide and romosozumab. Vitamin D

deficiency can delay fracture healing even when surgical

procedures are correctly performed (67). Bisphosphonates,

including alendronate and zoledronic acid, are used to deal with

osteoporosis. Binding to bone minerals inhibits osteoclast activity

and thus limits bone resorption. At menopause, reduced estrogen
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levels disrupt the balance of bone remodeling, which leads to

increased bone resorption followed by bone loss. HRT restores

estrogen levels, suppresses osteoclast activity, maintains osteoblast

function, and thus preserves bone mass in postmenopausal women

(70). However, although HRT helps retain bone density, its

widespread usage has been limited by its non-trivial adverse

effects, such as the occurrence of breast cancer and the potential

for stroke and clot formation. Thus, HRT has been very cautiously

prescribed to clearly specified patterns of patients in well-controlled

medical settings (71). New therapeutic possibilities include

romosozumab and anabolic agents such as teriparatide.

Romosozumab is a monoclonal antibody that targets a key

pathway involved in bone formation. A reduction in the risk of

fragility fractures was considerably noted in the romosozumab

group compared to that in the control patient population with

increased BMD at the lumbar spine, total hip, and femoral neck

among the skeletal sites (72). On the other hand, teriparatide is a

synthetic form of parathyroid hormone that stimulates new bone

formation by enhancing osteoblast activity, resulting in increased

BMD and reduced fracture risk (73).
4 Metabolic intersections: microbiome
and bone health

SCFAs inhibit osteoclast activity and bone resorption and, thus,

indirectly prevent bone loss. Mechanistically, they can also activate

GPR41 and GPR43 receptors on osteoclast precursors, preventing

their differentiation into mature bone-resorbing osteoclasts (74). In

a mouse study, gut dysbiosis lowered butyrate levels. FMT

upregulated GPR43 through the elevated levels of butyrate in the

bone tissue, leading to the suppression of the osteoclast genesis

process and heightened osteoblast function, thus reducing excessive

resorption (74). On the other hand, healthy bone promotion by

SCFAs is governed through the activation of Tregs. Tregs block the

excessive induction of inflammatory responses while polarizing

macrophages into an anti-inflammatory M2 phenotype. SCFAs

induce M2 macrophage anti-inflammatory polarization through

butyrate-mediated STAT6 activation. They also promote regulatory

T-cell differentiation, reduce exaggerated inflammatory responses,

and support the maintenance of bone mass (75, 76). Fiber-rich diets

help prevent bone loss and maintain balanced bone renewal (36,

77–79).

The gut microbiota converts primary bile acids into secondary

forms through various enzymatic processes in the intestines. And

bile acid signaling is known to play a role in bone metabolism

through receptors such as FXR and TGR5 (80). The interaction

between blood concentrations of bile salts and bone density suggests

that bile acid signaling directly affects bone metabolism. Dietary

fibers enhance the growth of beneficial gut microbiota and influence

bile acid metabolism, leading to altered bile acid pools. These

changes in the bile acid pool may influence bone health by

affecting receptor activation and calcium homeostasis. While

TGR5 and vitamin D receptor activation could play a role,

regulating the gut microbiota through FMT or probiotics may
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provide therapeutic potential for diseases related to dysregulated

bile acid metabolism (81, 82).

The kynurenine pathway metabolizes the major part of total

tryptophan into kynurenine in the liver through induction of the

rate-limiting enzyme indoleamine-2,3-dioxygenase or, to a lesser

extent, by induction of tryptophan 2,3-dioxygenase in other tissues

(83). Likewise, the gut microbiota metabolizes tryptophan into

various indoles, such as indole-3-acetic acid and indole-3-

aldehyde, which might be the ligands of the aryl hydrocarbon

receptor pathway in mediating bone health and homeostasis (84).

Indole is a potent AhR ligand that influences multiple metabolic

pathways relevant to bone health. It translocates into the nucleus,

where AhR heterodimerizes with the ARNT protein and binds to

the target gene promoter at XRE, and initiates the transcription of

XRE. Indole compounds such as indole-3-aldehyde and indole-3-

acetic acid increase bone mass by promoting osteoblast

differentiation and reducing bone resorption via the AhR pathway

(85). In addition, indoles activate microbiota-derived AhR and

promote intestinal health by regulating immune responses and

epithelial barrier function. AhR activation by microbial indoles

reduces the expression of pro-inflammatory cytokines, modulates

inflammation-mediated bone resorption and also supports bone

health by regulating osteoclast activity (86). A study showed that gut

microbiota metabolism of tryptophan-induced AhR signaling acted

as a master switch for renal fibrosis (87). This suggested that

microbial tryptophan metabolites modulate renal inflammation

and fibrosis through the AhR pathway. Moreover, high

kynurenine levels promote osteoclastogenesis by increasing the

RANKL expression, which is considered to be the major cytokine
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resorbs bone and enhances its resorption. However, kynurenine was

also known to negatively modulate osteoblast activity and bone

formation by suppressing anabolic pathways. Kynurenine induces

RANKL expression and promotes osteoclast differentiation while

inhibiting osteoblast activity. The imbalance will shift the normal

course to age-related osteoporosis and increase the risk of fractures

(86). Products of tryptophan metabolism by gut microbiome induce

the AhR and pregnane X receptor pathways. This allows them to

regulate gut barrier homeostasis and immune modulation (88). Gut

microbiota helps maintain gut barrier integrity and regulates

inflammatory responses through the metabolite activators of AhR.

Indeed, activation of AhR by some indole derivatives showed

neuroprotective and anti-inflammatory effects (89). Together, gut

microbiota metabolizes tryptophan into various active compounds,

including indoles and kynurenine, which play a key role in bone

health. Table 1 summarizes the effects of key microbiome-derived

metabolites on bone health.

During the past decade, the gut microbiome has emerged as one

of the most favorable therapeutic targets for interventions to

improve bone health and prevent osteoporosis. More research

discovers the intricate association between gut microbiota and

bone metabolism. Diet-based interventions, as well as probiotics

and prebiotics, proved to regulate the gut microbiome in ways

impacting bone density and skeletal health. Fiber, in conjunction

with calcium and probiotics, such as Lactobacillus and

Bifidobacterium, represent some of the dietary components that

can positively influence mineral absorption through the reduction

of inflammation (90). Prebiotics, such as primarily inulin-type
TABLE 1 Microbiome-derived metabolites and their effects on bone health (Section 3).

Metabolite Source Mechanism of action Impact on bone health References

Short-chain
fatty
acids (SCFAs)

Gut bacteria fermentation of dietary
fibers
(Lactobacillus, Bifidobacterium)

Modulate immune responses and stimulate
production of regulatory T cells (Tregs)

Support bone growth, inhibit resorption
of bone, improve bone mineral
density (BMD)

(76, 131, 132)

Bile acids (BAs) Modified by Clostridium and
Bacteroides in the liver

Activate FXR and TGR5 signaling cascades
and modulate calcium absorption
and homeostasis

Regulate bone remodeling, enable
mineralization, stimulate osteoblast

(133–135)

Tryptophan
metabolites

Gut microbiota degradation
(Clostridium, Bacteroides)

Activate AhR pathway, modulate immunity
and maintain epithelial barrier integrity

Increase osteoblast differentiation, inhibit
bone resorption, suppress

(89, 136–138)

Butyrate SCFA derived from
fiber fermentation

Activated STAT6 polarizes anti-inflammatory
M2 phenotype of macrophages

Causes inhibition of osteoclastogenesis,
increases bone formation

(76, 95, 139)

Indoles Secondary tryptophan
catabolic products

Activate AhR and inhibit production of pro-
inflammatory cytokines

Reduce bone resorption and add
bone mass

(86, 140)

Phenolic
compounds

Fermentation of polyphenols by gut
bacteria (Lactobacillus)

Regulate oxidative stress and inflammation Protect against bone resorption by
inhibiting oxidation damage

(141)

Hydrogen
Sulfide (H2S)

Breakdown of sulfur amino acids
by sulphate-reducing bacteria

Strictly controls bone resorption and
osteoclast differentiation

Suppresses bone weakening (142)

Secondary
Bile Acids

Conversion by gut microbiota of
primary bile acids

Bind to nuclear receptors, modulating
immune responses

Role in maintaining bone mineral density (143)

Sphingolipids Cellular metabolism (not
microbiota derived)

Bioactive lipids participating in cellular
signaling, specifically S1P signaling

Regulate osteoclast differentiation and
bone remodeling

(144)

Indolepropionic
Acid (IPA)

Tryptophan degradation by gut
bacteria (Clostridium sporogenes)

Antioxidant activity and gut
barrier modulator

Protects bone architecture by reducing
oxidative stress

(145)
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fructans, modulate calcium absorption and stimulate the

proliferation of beneficial bacteria that produce SCFAs (79).

Inulin-type fructans from sources such as chicory root and

Jerusalem artichokes are fermented by gut microbes into SCFAs,

which provide beneficial effects on bone by increasing calcium

absorption due to a lower gut pH. This supports conditions that

favor increased BMD and strength (91). It is reported that butyrate

and propionate have an inhibiting effect on osteoclast

differentiation and bone resorption. On the other hand, they

stimulate calcium absorption through the colon. Specific bacterial

groups known to be SCFA producers have now become targets to

harness the gut microbiome for skeletal health (92). Figure 1

summarizes the key ways in which gut microbiota and its

metabolites influence bone health.
5 Diet, microbiota, and bone: a
tripartite alliance

Higher-protein, animal-based diets can shift the gut microbiota

composition, as they increase bacteria like Bacteroides, Alistipes, and

Bilophilia, and also reduce beneficial microbes such as Lactobacillus

and Roseburia (93). Plant-based sources of lipids, nuts, and

vegetable oils seemed to favor this gut microbiota diversity (94).

In humans, long-term dietary habits are considered to have the

maximum impact on microbiota diversity in an individual during

neonatal life and thereafter. SCFAs produced within the

microbiome reduce the gut pH and have systemic effects that may

indirectly support bone health (95). Indeed, the balance between

healthy and harmful metabolites is determined by the type of diet

that one consumes. Studies showed that diets high in fiber elevate
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carbohydrate-active enzymes (CAZymes) in the gut and thus

reduce inflammation-related proteins (18). Relatively stable and

long-term dietary intake is a central determinant for establishing

the gut microbiota. However, short-term dietary changes can

rapidly alter microbiota, and some enterotypes remain stable over

time (93). Long-term dietary interventions seem to modulate bone

metabolism, consequently through changes in the gut microbiota

(6). Table 2 summarizes key bacterial genera and their roles in bone

health. Indeed, the quick changes in gut microbiota owing to

alteration in diet could provide an opening for developing dietary

interventions against bone disease. For example, calcium

supplementation supports bone health and may indirectly

influence gut microbiota and inflammation, which may unlock

the complex dietary interactions with gut microbiome metabolism

and bone health (95). Moving forward, more comprehensive and

integrated research is warranted to know the full impact of such

processes on bone health and the treatment of bone disease (92).

A diet rich in fruit, vegetables, grain, fish, nuts, and low-fat dairy

is generally associated with improved BMD (79). The best way to

illustrate the effects of diet on bones is by comparing Western and

Mediterranean diets. Long-term intake of Western diets has been

shown to lead to an increased risk for bone injuries, specifically hip

fractures (96). With a balanced proportion of Bacteroidetes and

Firmicutes, the Mediterranean diet helps reduce inflammation.

Nutritional intake in the traditional Mediterranean diet is

associated with a proper balance of calcium, vitamin D, and

protein, which can account for the low rate of osteoporosis in

Mediterranean Basin countries (97). However, a Western diet

directly increases the risk of fracture and bone resorption and

generally leads to osteoporosis (98). Studies have shown that

polyphenols used as a prebiotic substrate can stimulate the

development of Bifidobacteriaceae and Lactobacillaceae and
FIGURE 1

Gut microbiota influences bone health through metabolites and immune modulation, with diet and therapies like probiotics and FMT shaping
these effects.
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potentially inhibit the growth of Escherichia coli, Clostridium

perfringens, and Helicobacter pylori (99). A good diet

supplemented adequately with metabolites is also related to a

reduction in inflammatory processes and adequate provision of

calcium and magnesium. Finally, modulation of gut microbiota may

centrally regulate inflammation. In addition, a leaky gut may be

associated with systemic inflammation and osteoporosis; therefore,

protection from a leaky gut also ensures a wholesome state of the

bone (6). Due to dietary intake and probiotics supplementation,

healthy gut microbiota suppression of pro-inflammatory cytokines

protects against osteoporosis (2).

Prebiotics modulate the gut microbiota and intestinal function,

enormously impacting the gut and bone health (100). Prebiotics

trigger some helpful bacteria such as Bifidobacteria and Lactobacilli;

their fermentation products are mainly lactic acids which can push

away the attack by pathogenic microflora (101). Some studies have

shown that gut-derived butyrate led to an expansion of the bone

marrow’s regulatory T cells and, thus, participated in the

upregulation of bone anabolism (102). Other studies indicate that

prebiotic action helps bone strength, bone formation, or even

osteoblast/clast activity (103). McCabe et al. showed that pre-/

probiotic regulation on bone health and calcium levels in mice

(103). In chickens, inulin-induced treatment exhibited increased

bone mineralization (104). Several randomized clinical trials

present direct evidence of associations between dietary

modification and variation in gut microbiome composition and

structure. The results showed a significant change in the amount of

acetate, increased phyla diversity, an abundance of Firmicutes and
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Bacteroides, and reduced Actinobacteria (105). This apparently

indicated that massive nutrition had a robust effect on the gut

microbiota. Changes in metabolic profile support a potential benefit

of inulin enriched diet on bone health (106). Notably, So et al.

carried out a meta-analysis to investigate the intervention of dietary

fiber on gut microbiota. They reported an intervention with

fructans and galacto-oligosaccharides that resulted in a

significantly higher level of fecal Bifidobacterium and Lactobacillus

in their report (101). The increase can be related to the intestine-

mineral absorption-enhancing and short-chain fatty acid anti-

inflammatory activities (102). These studies have, more

importantly, identified a role for dietary ingredients in gut

microbiota health for nutritional guidelines concerning bone health.
6 Beyond probiotics: innovating
therapeutic strategies

Previous studies evaluated traditionally made doenjang

(fermented Korean food), a synbiotic food supplemented with

Baci l lus subti l is and other beneficial bacteria , in an

ovariectomized rat model for its efficacy (107). Rats fed with

doenjang for a certain period showed conserved BMD and

displayed distinct reduced bone resorption markers compared to

the control rat group (108). Another study also found that in

humans, a probiotic combination of three Lactobacillus strains

significantly reduced lumbar spine bone loss, especially in early

postmenopausal women (109). In the same study, however, the
TABLE 2 Summary of key bacterial genera and their Roles in bone health (Section 4).

Bacterial
genus

Relevant
metabolite

Key roles Impact on bone health Associated
diet/intervention

References

Lactobacillus SCFAs
(butyrate,
acetate)

Modulate immune responses and
reduce inflammation

Inhibit osteoclast activity and promote
bone formation

Fiber-rich diet,
probiotic supplements

(76, 146)

Bifidobacterium SCFAs
(butyrate,
propionate)

Enhancement of calcium absorption
gut barrier integrity

Increase BMD, decrease inflammation Prebiotic-rich diet;
inulin supplementation

(100)

Bacteroides Bile acids Influence FXR and TGR5 signaling Regulate calcium absorption and
increase bone remodeling

High-fiber diet, bile acid
related therapies

(133, 135, 147)

Clostridium Tryptophan
metabolites

Activate AhR and modulate
immune responses

Reduced bone resorption and increased
osteoblast differentiation

High protein diet,
tryptophan
supplementation

(86)

Roseburia SCFAs Maintenance of gut barrier function
and anti-inflammation

Supports bone mass and skeletal health Diet rich in resistant
starch and fiber

(148, 149)

Faecalibacterium Butyrate Anti-inflammatory effects and
improve gut homeostasis

Maintain bone integrity and prevent
bone loss

Prebiotics,
Mediterranean diet

(100, 148, 150)

Prevotella Bile acids Metabolize bile acids; modulate FXR
and TGR5 signaling

Maintain bone mineralization; regulate
activity of osteoblasts

High-fiber diet, low-
fat diet

(133, 135, 147)

Akkermansia Propionate Improve gut barrier and
reduce inflammation

Enhance bone strength and promote
mineral absorption

Polyphenol-rich diet (148, 151)

Escherichia coli Pathogenic
metabolites

Produces toxins that cause disease,
and impairs gut barrier function

Potentially harmful, as it increases bone
resorption under dysbiosis conditions

None. Has been
associated with
Western diets

(8, 152)
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combination, composed of Lactobacillus paracasei (DSM 13434)

and two Lactobacillus plantarum strains (DSM 15312 and DSM

15313), did not prevent further bone deterioration compared to

placebo. Moreover, it was found that certain probiotic strains work

only in specific health outcomes, showing rather limited effects

(110). Notably, one of the recent studies showed that multistrain

probiotics improved ulcerative colitis while uncovering a strong

need for site-specific probiotic therapies (111). It was also found

that the role of probiotics in inflammatory bowel disease (IBD) is

unexpectedly strain-specific. Indeed, when the probiotic mixture

was evaluated for its effects on antibiotic-associated diarrhea and

gastrointestinal symptoms at different escalating doses, the

incidence and severity of antibiotic-associated diarrhea were dose-

dependent, with the lowest incidence observed in the highest dose

group (110). While this points to a promising therapeutic

intervention for bone health, the application of probiotics faces

challenges related to strain specificity, viability, and colonization

efficiency (112). Table 3 compares therapeutic strategies targeting

the gut microbiome.

Synthetic biology holds great promise in therapeutic

applications based on genetically modified bacteria to achieve

beneficial activities, including targeted production of desired

metabolites, modulation of the immune system, and reduction of

inflammatory markers (113, 114). If probiotics could be engineered

by synthetic biology, they may prove more functional and potent in

targeted delivery. In recent years, synthetic biology has been

extensively used to create genetically modified bacteria for a

broad spectrum of therapeutic applications. For example,

exopolysaccharide (EPS) produced by the recombinant

Bifidobacterium longum 35624 has been shown to inhibit

osteoclast formation and thus increase bone formation in vitro

experiments (115). Moreover, orally administered B. longum 35624

could slow down bone loss in an ovariectomized mouse model.

However, although the engineered L. plantarum may target bone

health, the genes introduced as the result of engineering could

influence other gut bacteria in unintended ways (116). For example,

if antibiotic resistance genes are passed over to gut bacteria through

horizontal gene transfer, this could dangerously increase the chance
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of the emergence of new multidrug resistance strains (117). Such

situations would add antibiotic resistance to the emerging

multidrug-resistant bacteria and hence make it difficult to

eradicate using the currently available antibiotics (118). Indeed,

synthetic biology is a powerful technology that holds great promise

in tissue engineering and biomedicine, especially when alluding to

the possibility of developing bespoke therapeutic approaches to

bone health using engineered probiotics. Realizing this potential

requires carefully balanced methods that address related safety and

ethical issues. Particular attention should be paid to collateral

horizontal gene transfer in food bacteria and the potential

induction of antibiotic resistance (119). Bioethical guidelines on

synthetic biology regarding the development of technologies that

could limit our fight against dangerous pathogens should be

properly established and accrue to everybody transparently with

public participation and fair access. Discussion on critical concerns

and heightened views among participating scientists, ethicists,

stockholders of policies, and the public needs to keep going. This

collaboration will ensure the development and implementation of

probiotics in a responsible and safe manner and reduce their

risks (120).

Initially developed for gastrointestinal disorders, FMT is being

explored for systemic diseases, including potential impacts on bone

health. FMT is a method of introducing healthy fecal material into a

recipient to restore a balanced and healthy gut microbiota

ecosystem. Recent studies suggest that FMT could be useful to

manage bone health disorders. The female rats in an aging model,

when obesity was established with accumulated gut alterations,

received FMT from young female rats. The control group had no

therapy and was analyzed for the small intestines, bone samples,

and gut bacteria at weeks 12 and 24 after the intervention by

intragastric FMT. At 24 weeks, the bone quantity in terms of

volume, fraction, and thickness across the FMT group was

noticeably higher than that across the control group (121). These

findings indicate that improvements in gut microbiome

composition and gut barrier function could be effective means to

ameliorate age-related bone loss. Such promising results suggest

that FMT could become one of the ways to fight age-related
TABLE 3 Comparison of therapeutic strategies targeting the gut microbiome (Section 5).

Therapeutic
strategy

Description Advantages Challenges References

Probiotics Living bacteria to improve gut
microbial composition

Safe, easily available, strengthens
immune system

Strain-specific effects, viability,
colonization efficacy

(153–155)

Prebiotics Indigestible fibers with growth
of favorable bacteria

Increase production of SCFA and
diminish inflammation

Dose-dependent, with individual variability (104, 156, 157)

Fecal Microbiota
Transplantation
(FMT)

Donor microbiota are
transferred to the recipient

Restores microbial diversity, and this may be
beneficial as a possible approach against bone
loss due to aging

Having some infection risks; also variability
between donors, and no standardization
of procedures.

(121, 158)

Engineered
probiotics

Genetically modified bacteria
that target specific
metabolic pathways

Tailored to cause specific health effects,
including bone health

Bioethical considerations, horizontal gene
transfer risks, and regulation

(159, 160)

Diet-
based
interventions

Personalized high-fiber,
prebiotic, and probiotic diets

Relatively simple to implement and with large
microbial diversity reach and
SCFA production

Require long-term adherence; variability
among individuals in response

(101, 157, 161)
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osteoporosis in the future. Separately, the outcomes in formula-fed

piglets have shown restored gut health through scaling up the

beneficial use of gut bacteria from FMT; such normalization of

gut biology and barrier function has suppressed inflammatory

responses (122). These findings also emphasize the impact of

early-life microbiota modification on systemic health, including

bone homeostasis.

FMT influences bone health through complex interactions

involving the gut microbiome, immune system, and bone

metabolism. Recently, one publication further showed that FMT

reconstituted the bone mass in osteoporotic mice, interpreted to

relate to changes in gut microbiota composition and metabolic

activity (123). A number of its metabolites seem to act directly on

the bone cells, while others do by modulating the host immune

response to bone resorption and formation (124). Similarly, FMT-

mediated changes in the gut microbiome will have an indirect

influence on bone metabolism through the regulation of the

immune system (125). The gut microbiome is considered to play

an important basic role in modulating immune responses and

systemic inflammation at levels and along pathways with

consequences for bone health (126). Inflammatory processes are

involved in bone conditions such as osteoporosis in many ways. A

recent review underlined factors in inflammation, namely the

modality of action of cytokines and inflammatory osteoclasts

(127). In this process of inflammation, a disturbed balance in the

balance between the formation and resorption of bone, therefore,

predisposes them to frail bones and osteoporosis. As a treatment

technique targeting the gut microbiome, one would expect both

systemic and local effects of FMT on inflammation, which could be

rather important in modulating bone health (128).

A surprising connection, which is being identified between the

gut microbiome and health, is becoming more and more linked to

the results coming from microbial metabolism studies. This has

thus led to therapy that incorporates the direct supplementation of

metabolites implicated in bone health, particularly microbial

metabolites. As SCFAs and other microbial metabolites present

enormous promise for bone health, several challenges must be

addressed in order to allow the current potential to manifest in

practical life (95). There may be many differences in the individual

responses to metabolite supplementation. The crucial aspect is

being aware of and recognizing these complexities in order to

adjust appropriate treatment options. A proper understanding of

the metabolite effects on bone metabolism will thus be central to the

development of targeted therapies, such as possible interactions

between metabolites, gut microbiota, and bone cells or even more

systemic effects of metabolite supplementation across the body (8).

Unlike traditional pharmaceuticals, microbiome-based

therapeutics entail living organisms or complex microbial groups,

making the regulatory classification quite a challenge (129). This

complexity is further increased by the development of standardized

manufacturing processes. The establishment of product stability

and consistency are critical approval requirements. Variables like

diet and lifestyle should be taken into consideration when designing

clinical trials for new microbiome-based therapies, which also

involve the need for proper control groups and robust analysis
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methods for acquired data (130). An important obstacle in

undertaking such studies is to choose appropriate endpoints and

suitable biomarkers. These will better show the therapeutic effects

on both the microbiome and the human host. Other variables

include the intrinsic variability in the composition of microbiomes

among people. Importantly, individual human microbiome varies

depending on diet, lifestyle, and antibiotic history (130). These are

key variables that need to be controlled and considered for

designing clinical trials. Thus, innovative designs of trials and

analytic methods would be critical as both the potential

therapeutic impacts and their associated risks are rising. New

approaches are needed to extract the effects of microbiome-based

interventions from the compounding variables (129). Notably, the

regulatory and clinical trial landscape for therapeutics developed

from the microbiome changes daily, calling for regulatory bodies

to work with scientific experts to address these challenges and

establish specific guidelines to evaluate therapeutic microorganisms.

Precise guidelines, superior analytics, and innovative collaboration

between regulators and scientists would establish the continued

exploration of microbiome-based therapeutics, enabling these

therapeutics as safe and effective treatments for a wide range of

bone conditions.
7 Conclusion

The gut microbiota has become a significant determinant of

bone health, directly modulating skeletal metabolism through

intricate biochemical and immune-regulating mechanisms. Gut

microbiota modulation could be an innovative strategy with

potential as a treatment option for osteoporosis and other bone

disorders. Interventional methods like probiotics, prebiotics, fecal

microbiota transplantation (FMT), and synthetic biology are highly

prospective measures to improve bone mineral density (BMD) and

reduce fracture risk by modulating inflammatory mechanisms,

enhancing calcium absorption, and inhibiting osteoclast activity.

There is evidence from preclinical and clinical trials that probiotic

strains such as Lactobacillus and Bifidobacterium may favorably

modulate bone turnover, whereas SCFAs, bile acids, and microbial

metabolite-derived tryptophan are able to suppress bone resorption

and stimulate osteogenesis. Furthermore, innovative methods such

as engineered probiotics and microbiome-specific dietary

interventions hold promise as new horizons for individualized

therapies. However, to transfer these advances into clinical

application, these challenges must first be tackled: individual

microbiomes are highly variable, long-term efficacy of

interventions remains unproven, and there are issues of

regulation over microbiome-based therapies. Future investigation

needs to aim to optimize strain-specific effects, improve

colonization efficiency, and establish standardized protocols in

order to maximize therapeutic benefit. Unlocking the potential of

the gut microbiome to manage osteoporosis not only presents a new

avenue of therapy but also lays the ground for precision bone health

medicine. Combining microbiome science with bone metabolism

can transform the prevention and treatment of osteoporosis and
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hold the promise of more personalized and effective methods in

skeletal care.
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