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Network analysis of cognitive
function, glycemic–lipid profiles,
and hepatic–renal function in
individuals with diverse drinking
patterns
Shuqi Xu1,2,3,4†, Ranran Zhao1,2,3†, Jincheng Wang1,2,3,
Xue Yang1,2,3, Lan Wang1,2,3, Cuixia An1,2,3, Xueyi Wang 1,2,3*

and Ran Wang 1,2,3*

1Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China,
2Mental Health Center, Hebei Medical University, Shijiazhuang, Hebei, China, 3Hebei Clinical Research
Center of Mental Disorders, Institute of Mental Health, Shijiazhuang, Hebei, China, 4Department of
Psychiatry, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou,
Zhejiang, China
Background: Harmful drinking habits can have a profound effect on individual

health. However, there is currently a lack of network analysis studies on clinical

indicators related to drinking population. The aim of this study was to investigate

the relationships among drinking characteristics, cognitive functions, liver and

kidney functions, and glucose and lipid levels in alcohol drinkers through the

application of network analysis.

Method: We conducted a stratified random sampling survey of 1,432 male

employees in Gaocheng District, Hebei Province, in 2016. The Alcohol

Dependence Scale (ADS) and the Alcohol Use Disorders Identification Test

(AUDIT) were utilized to evaluate alcohol-related behaviors. Cognitive

functions were assessed via the Hopkins Verbal Learning Test (HVLT), the Brief

Visuospatial Memory Test (BVMT), Digit Symbol Coding Test (DSCT), and Digit

Span Test (DST). Additionally, biochemical indicators such as blood glucose and

lipid levels and hepatic and renal functions were measured. Analyses were

performed to identify central symptoms and bridge symptoms of this network.

Results: In our network analysis, the nodes representing TC, AST, AST/ALT, and

ALT had the highest strength centrality. TC and AST presented the highest

expected influence centrality. The closeness centrality indices for all the

indicators performed well. The node DSCT ranked highly in terms of

betweenness centrality.
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Conclusion: Correlations may exist among cognitive function, glycemic and lipid

profiles, and hepatic–renal function in individuals with varying alcohol

consumption patterns. Lipid and liver function indicators were identified as the

most central factors in the network model. In the clinic, practitioners may focus

on these abnormal central indicators as potential intervention targets to enhance

the quality of life in alcohol drinkers.
KEYWORDS
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1 Introduction
Alcohol is the most widely consumed addictive substance

globally, with the World Health Organization (WHO) estimating

that more than two billion people consume alcoholic beverages

daily. Individuals over 15 years of age globally consume an average

of 6.2 liters of pure alcohol per year (1), and excessive alcohol

consumption can increase the risk of alcohol use disorders (AUDs).

In recent years, the rate of high-risk drinking has significantly

increased, with one in eight adults reporting such consumption

within 12 months (2). Excessive drinking leads to a range of health,

social, and behavioral problems, imposing a significant burden on

families and societies.

Studies have shown that moderate alcohol consumption (up to

3 drinks/day) can reduce the risk of cognitive impairment by 30%,

but it does not decrease the risk of cognitive decline (3). Compared

to abstaining, drinking more alcohol was tied to a greater chance of

abnormally rated hippocampal atrophy (4). Further findings

revealed that heavier alcohol consumption (7 drinks per week)

significantly lowers verbal fluency, although it does not markedly

affect word memory or semantic fluency.

In addition to affecting cognitive functions, alcohol also

significantly impacts liver and kidney functions as well as glucose

and lipid levels. Evidence suggests that alcohol intake is positively

correlated with biomarkers of liver damage, such as alanine

aminotransferase (ALT), aspartate aminotransferase (AST), and g-
glutamyltransferase (GGT) (5). High-risk drinking behaviors can

lead to alcohol-related liver damage, including alcoholic hepatitis,

liver fibrosis, cirrhosis, and liver cancer (6), which are often the

primary causes of alcohol-related deaths (7). Liver failure associated

with drinking can result in hepatic encephalopathy, causing motor

coordination and cognitive deficits (8). Chronic alcohol

intoxication also affects renal filtration, leading to rapid

deterioration of kidney function (9). Studies have revealed

elevated levels of urea nitrogen, creatinine, and uric acid in heavy

drinkers (10). Kidney dysfunction is linked to impairments in

episodic memory, medial temporal lobe atrophy, and cortical

thickness (11).
02
Cohort studies have confirmed that moderate drinking lowers

the risk of type II diabetes, whereas high-risk drinking can increase

the risk of metabolic syndrome (12, 13). Some research indicates

that poor blood sugar control, including above-average levels and

increased fluctuations, increases the risk of cognitive dysfunction

(14, 15), although some longitudinal studies do not support this

finding (16). Observational studies have demonstrated that

excessive drinking causes abnormal lipid levels, with a dose–

response relationship between alcohol intake and lipid levels,

especially concerning high-density lipoprotein (HDL)-cholesterol

(HDL-C), low-density lipoprotein (LDL)-cholesterol (LDL-C), and

triglycerides (TGs) (17). In a 20-year follow-up study, individuals

with higher lipid levels presented more significant cognitive decline

than did those with healthy lipid levels (18). These dimensions are

interconnected and influence each other, forming a complex clinical

presentation, particularly in the central nervous system.

Although alcohol consumption directly and indirectly impacts

brain function through the above multiple pathways, previous

studies typically assessed this relationship via multivariate linear

regression analysis after eliminating confounding factors (19, 20);

however, evidence suggests that indicators influence each other,

exhibiting complex interrelations (21). In the present study, we used

network analysis, a novel visualization tool in which indicators

serve as nodes and the relationships between them as edges, to

construct a network for testing the above association. By calculating

node and edge properties, among other network metrics, network

analysis can be used to identify core influencing factors and

bridging elements, accounting for partially controlled

correlational links among conceptualized variables (22). Studies

have shown that changes in the severity of certain indicators within

the network can trigger changes in related symptoms (23), and

interventions in core indicators can significantly affect the network

structure, improving symptom prognosis (22).

Most prior empirical studies have used social network analysis

to explore alcohol use among adults (24–27), focusing on how

various characteristics of social network structures (e.g., homophily,

popularity, transitivity) relate to individual drinking behaviors and

exploring the impact of social mixing patterns on alcohol

consumption. Moreover, some studies have utilized network
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analysis to investigate the relationships among lipoprotein profiles,

cognitive functions, and symptoms of depression (28). However,

there is currently a lack of network analysis research on the

common cl inical indicators among alcohol drinkers .

Consequently, evidence for the relationship between the clinical

characteristics of alcohol drinkers and alcohol consumption

is limited.

The aim of this study was to investigate the relationships among

drinking characteristics, cognitive functions, liver and kidney

functions, and glucose and lipid levels in alcohol drinkers through

the application of network analysis. This study’s results aid in

revealing the pathophysiological mechanisms involving multiple

systems in alcohol drinkers. Furthermore, identifying core and

bridging factors within the network may help pinpoint key

intervention directions for cognitive and physiological disorders

in alcohol drinkers, with the aim of mitigating the adverse effects of

unhealthy drinking patterns on cognitive and physiological health.
2 Methods

2.1 Participants

By employing stratified random sampling methods, a survey

related to alcohol consumption was conducted from January to

December 2016 among male employees in Gaocheng District,

Shijiazhuang City, Hebei Province. First, the 13 towns in

Gaocheng District were stratified by economic level, and four

towns (Gangshang, Lianzhou, Qiutou, and Nanying) were

randomly selected using simple random sampling via a random

number table. Subsequently, factories in these towns were stratified

by size, from which 10 factories were randomly selected using

simple random sampling. Finally, 1,539 male employees were

randomly surveyed with stratification by job position. After 107

individuals with incomplete information were excluded, 1432

participants were deemed eligible for this study. The inclusion

criteria were as follows: (1) male employees in active service; (2)

aged over 18 years; (3) had a history of alcohol consumption; and

(4) had undergone relevant physical and laboratory examinations.

The exclusion criteria were inability to understand the content of

the questionnaire and inability to participate and complete the

survey and evaluation. The participants were informed of the

specific details of the study prior to their involvement and, upon

mutual agreement, signed written informed consent forms. This

research project was approved by the Ethics Committee of the First

Hospital of Hebei Medical University (No. 2015042) and clinical

trial registration number is ChiCTR-ICC-15007244.
2.2 Measures

In this study, participants underwent assessments via structured

questionnaires to gather comprehensive data on sociodemographic

characteristics. The Alcohol Dependence Scale (ADS) (29) was used

to evaluate the degree of individual alcohol dependence. The
Frontiers in Endocrinology 03
Alcohol Use Disorders Identification Test (AUDIT) (30),

recommended by the WHO, was employed to assess the drinking

behavior of participants in the past year, categorizing them into

high-risk (AUDIT ≥ 8) and low-risk (AUDIT < 8) drinking groups

on the basis of a threshold of 8 points. The assessments were

conducted by psychiatrists from the First Hospital of Hebei Medical

University, with all the evaluators passing a consistency assessment

test, resulting in an interrater reliability coefficient of 0.87.

Various scales were employed for a comprehensive evaluation

of the cognitive functions of the participants: the Hopkins Verbal

Learning Test (HVLT) (31), which includes total and delayed

scores, assesses verbal learning and memory abilities, and

provides insights into participants’ performance in vocabulary

learning, immediate memory, delayed memory, and recognition

memory. The Brief Visuospatial Memory Test (BVMT) (32), which

includes total and delayed scores, was used to measure visuospatial

memory function and reflects participants’ ability to encode, store,

and recall visual information. The Digit Symbol Coding Test

(DSCT) (33), a psychological test assessing processing speed and

working memory, involves the pairing of numbers with

corresponding symbols within a designated time, which indicates

participants’ information processing speed and attention. The Digit

Span Test (DST) (34), which is primarily used to evaluate short-

term and working memory abilities, includes forward (DST-F) and

backward (DST-B) tasks and involves the assessment of

participants’ memory storage and manipulation abilities through

the recall of number sequences. Biochemical indicators for glycemic

and lipid levels included fasting blood glucose (GLU), total

cholesterol (TC), TG, HDL, and LDL levels. The hepatorenal

function indicators included ALT, AST, the AST/ALT ratio, GGT,

blood urea nitrogen (BUN), creatinine (Cr), and uric acid (UA).
2.3 Data analysis

2.3.1 Network estimation
We constructed a network model using data from 1,432

participants and carried out network analysis employing several R

packages (35), including “bootnet,” (36) “dplyr,” (37)”magrittr,”

(38)”psych,” (39)and “qgraph. “ (40) The network was estimated via

the extended Bayesian information criterion (EBIC) Glasso method

and Spearman correlation analysis (41). Visualization of the

network was performed via the Fruchterman-Reingold algorithm

(42), which positions nodes with more connections centrally within

the network, arranges nodes closer to each other on the basis of

stronger interconnections, and depicts stronger correlations with

thicker edges. Edge stability within the network was assessed via the

bootnet function with 1,000 bootstrap samples (43). Furthermore,

node stability was evaluated by calculating the correlation stability

coefficient (CS-C) through a case-dropping bootstrap approach

with 2,500 samples, whereby stability was measured by

systematically removing samples (44). A CS-C value exceeding

0.25 suggests moderate stability, whereas a value above 0.5

indicates strong stability (43).
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2.3.2 Network properties
In our study, we utilized node metrics to assess the importance

and potential clinical associations of each node. This approach

incorporates several common centrality indices: strength, closeness,

betweenness, and expected influence. These indices enabled us to

quantify the relationships and network structure related to

participants’ alcohol consumption characteristics, glycolipid levels,

and hepatic and renal functions, as well as their cognitive abilities.

Strength refers to the sum of the weights of edges connected to a

node. A higher strength value suggests that the node has stronger or

more numerous connections, potentially influencing a greater

number of neighbors, thereby indicating its importance. Closeness

centralitymeasures the proximity of a node to all other nodes in the

network. It is calculated as the inverse of the sum of the shortest

path lengths from the node to all others, implying that nodes with

higher closeness centrality can interact or communicate more

efficiently with others, signifying a more central position in the

network. Betweenness centrality quantifies the frequency with which

a node acts as a bridge along the shortest path between two other

nodes. This reflects the degree to which a node lies on paths

connecting other network components. Nodes with high

betweenness can significantly influence the flow of information

within the network, as they link different parts of it. Expected

influence accounts for both the strength and direction of

connections associated with a node, predicting the extent of a

node’s projected impact on others.

2.3.3 Network comparison
We employed the “NetworkComparisonTest” package in R to

analyze the network differences between the high-risk drinking

(HRD) group and the low-risk drinking (LRD) group. This analysis,

which was executed with a total of 1000 iterations, facilitated a

comprehensive comparison of network structures and strengths

among individuals grouped by different levels of drinking risk,

providing insights into the network invariance and global strength

invariance between the two groups.
3 Results

3.1 Participant characteristics

In the present study, we examined a cohort of 1,539

participants. Some participants were excluded due to incomplete

data from specific scales; therefore, a total of 1,432 individuals were

incorporated into the network analysis. Among them, 828 (57.82%)

were categorized as low-risk drinkers, whereas 604 (42.18%) were

identified as high-risk drinkers. The demographic and clinical

characteristics of the study population are presented in Table 1.
Frontiers in Endocrinology 04
One-way ANOVA revealed that there were no significant

differences in these characteristics among the three groups (p>0.05).
3.2 Correlations of cognitive function,
glycemic–lipid profiles and hepatic–renal
function

The strong correlations (i.e. r > 0.7) were found between AST

and ALT, LDL and TC, and GGT and ALT as we expected. The

moderate correlation (i.e. 0.3< r <0.7) was seen in TG and TC, TC

and GGT, and AST and GGT. However, no correlation was found

in the cognitive function indicators. The detailed results are shown

in Supplementary Figure 1.
3.3 Network structure

The network diagram in Figure 1 illustrates the correlations

among participants’ cognitive functions, alcohol consumption

status, glucose–lipid levels, and hepatic–renal functions. In the

diagram, each circle symbolizes a named node within the network.

The connecting lines indicate the intensity of the relationships

between these nodes. The nodes AST/ALT and ALT had the

strongest connections.

In the network characterizing the features of individuals who

consume alcohol, measures of centrality delineate the strength,

closeness, betweenness, and expected influence value of each

node. Elevated values suggest a more central position of the item

within the network. The TC, AST, AST/ALT, and ALT nodes

presented the highest strength in centrality indices. This signifies

that the total weights of the links directed toward these four nodes

were predominant. The GGT node exhibited the greatest closeness,

indicating that this liver function parameter was instrumental in

linking other symptoms that lacked direct connections in the

network. Among the betweenness centrality indices, the DSCT,

GGT, and Cr nodes were the most prominent. These three nodes,

which served as significant mediators, acted as bridges linking other

symptoms. The TC and AST nodes presented the greatest expected

influence, suggesting their strong positive relationships with

other nodes.

As shown in Figure 1, the ALT (strength = 1.870; betweenness =

14) and the AST/ALT ratio (strength = 1.853; betweenness = 10)

nodes presented the highest strength values. Additionally, TC

(strength = 1.758; betweenness = 30) and AST (strength = 1.687;

betweenness = 10) also demonstrated elevated strength parameters.

Notably, these four nodes were identified as having the highest

nodal strength in the network. However, regarding the expected

influence, only the indices for TC (1.738) and AST (1.546) showed a

significant predominance over the other metrics. Intriguingly, the
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expected influence values for HDL and the AST/ALT ratio were

absent. Considering that expected influence usually denotes a

node’s prospective impact within a network, this absence might

indicate a relative lack of influence of these two nodes within the

network context.
3.4 Network stability analysis

As shown in Figure 2, the bootstrap results demonstrated that

the 95% confidence intervals for the edge weights are relatively

narrow, indicating high edge stability in the network. As depicted in
Frontiers in Endocrinology 05
Figure 3, the application of the bootnet function with a case-

dropping bootstrap method revealed that the CS-C values are all

above 0.5, suggesting excellent node stability in the network.
3.5 Comparison of networks between the
HRD and LRD groups

Our analysis did not reveal significant differences in the overall

structure or global strength between the HDR and LDR networks

(see Supplementary Figure 2). The results of the network invariance

test and the global strength invariance test indicated that there were
TABLE 1 Demographic and clinical characteristics of different alcohol consumption risk groups.

Indices Total (n=1432) Low-risk drinking group (n=828) High-risk drinking group (n=604)

Age, year 36.67 ± 10.36 35.81 ± 10.11 37.86 ± 10.59

Education, year 3.75 ± 0.99 3.72 ± 0.97 3.79 ± 1.01

Cognitive Function

HVLT-Total 23.63 ± 6.68 23.86 ± 5.72 23.42 ± 5.26

HVLT-Delay 8.56 ± 2.46 8.68 ± 2.42 8.47 ± 2.47

BVMT-Total 25.59 ± 8.86 25.65 ± 7.62 25.29 ± 7.37

BVMT-Delay 10.25 ± 2.51 10.33 ± 2.48 10.22 ± 2.55

DSCT 53.97 ± 15.35 54.45 ± 14.45 53.26 ± 15.44

DST-F 7.62 ± 6.70 7.14 ± 1.45 7.09 ± 1.49

DST-B 5.51 ± 6.84 5.00 ± 1.52 5.07 ± 1.39

Alcohol Consumption

AUDIT 6.97 ± 5.59 3.1 ± 2.48 11.88 ± 3.48

ADS 2.80 ± 3.68 1.26 ± 2.02 4.56 ± 4.11

Glycolipid Levels

GLU, mmol/L 5.35 ± 1.23 5.30 ± 1.32 5.40 ± 1.06

TC, mmol/L 4.65 ± 0.99 4.55 ± 0.96 4.79 ± 1.03

TG, mmol/L 1.67 ± 4.10 1.47 ± 1.65 2.00 ± 6.36

HDL, mmol/L 1.24 ± 0.32 1.20 ± 0.27 1.29 ± 0.38

LDL, mmol/L 2.95 ± 0.81 2.92 ± 0.78 3.00 ± 0.86

Hepatorenal Function

ALT, U/L 29.15 ± 20.34 28.32 ± 19.38 30.53 ± 21.64

AST, U/L 24.32 ± 10.02 23.79 ± 8.56 25.08 ± 11.97

AST/ALT 1.01 ± 0.42 1.02 ± 0.45 0.97 ± 0.37

GGT, U/L 33.53 ± 31.12 27.63 ± 21.76 42.32 ± 38.71

BUN, mmol/L 5.23 ± 10.17 4.96 ± 1.18 5.69 ± 16.55

Cr, mmol/L 76.22 ± 11.83 76.76 ± 11.64 75.49 ± 11.91

UA, mmol/L 347.96 ± 88.79 340.84 ± 85.64 356.93 ± 93.04
Data are mean ± SD. Some participants had missing data for related items. HVLT, Hopkins verbal learning test; BVMT, brief visuospatial memory test; DSCT, digit symbol coding test; DST-F,
digit span test in the forward condition; DST-B, digit span test in the backward condition; AUDIT, alcohol use disorders identification test; ADS, alcohol dependence scale; GLU, serum glucose;
TC, total cholesterol; TG, triglyceride; HDL, high-density lipoprotein; LDL, low-density lipoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, g-glutamyl
transferase; BUN, blood urea nitrogen; Cr, creatinine; UA, uric acid.
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no significant differences in the overall structure (M=0.532,

p=0.123) or global strength (S=2.679, p=0.381) between the two

groups of networks.
4 Discussion

The purpose of this study was to investigate the relationships

among the clinical characteristics, laboratory parameters, and

cognitive function of individuals who consumed alcohol. We

recruited 600–800 age-matched (mainly middle-aged, i.e., 30–40

years old) volunteers. We conducted a Spearman correlation

analysis, and the results showed that there was no significant

correlation between physiological indicators and cognitive
Frontiers in Endocrinology 06
function. However, when we integrated the various indicators

into the network analysis, we found some noteworthy results.

In our network analysis, the variability in node strength

centrality for the 21 indicators in alcohol drinkers was estimated.

“Strength” denotes the extent of interaction or connection between

nodes, providing insights into a node’s activity within the network

or its interaction intensity with other nodes. The nodes representing

TC, AST, AST/ALT, and ALT had the highest strength centrality,

indicating that these indicators are more closely connected with

other health parameters and play a key role in the overall symptom

network of alcohol drinkers. “Expected influence” quantifies a

node’s anticipated impact within the network. A high expected

influence of a node means that it affects not only its direct neighbors

but also the neighbors of its neighbors. Our results indicate that TC
FIGURE 1

Clinical characteristics, indicator network, and centrality measures of the whole study sample (N = 1432).
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and AST exhibited the highest expected influence centrality,

suggesting that interventions targeting lipid levels and liver

function may alleviate other symptoms within the glucose–lipid–

hepatic–renal–cognitive symptom network in alcohol drinkers (45).

However, the linkages of these central nodes with the cognitive

domain were significant but more modest than we expected. This

might be because we oversaw the cumulative effects of alcohol
Frontiers in Endocrinology 07
consumption over time as well as the types of alcohol consumed

(i.e., alcohol concentrations). In addition, some studies suggest that

high centrality may indicate that a symptom is the “causal endpoint

for many pathways in the data” (46) rather than the starting point,

implying that targeting that symptom may not necessarily improve

the entire network (46, 47). Thus, causal relationships among other

indicators in the network should be considered comprehensively
FIGURE 2

95% confidence intervals for edge weights in network analysis (bootstrap method). The red lines indicate the edge weight values, the black lines
represent the average edge weights under the bootstrap method, and the gray areas depict the 95% confidence intervals for the edge weights.
FIGURE 3

Node stability outcomes in network analysis. The horizontal axis represents the proportion of the sample included, whereas the vertical axis indicates
the correlation between the centrality measures of nodes in the original network and those in the network with a proportionally included sample.
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(46). With respect to these indices, future studies may be warranted

to clarify the impact of daily alcohol consumption on

cognitive functions.

The closeness centrality indices of all nodes showed consistent

patterns, as shown in Figure 1. “Closeness centrality” offers

positional information within the network; a node with higher

closeness suggests that it is, on average, less distant from other

nodes, implying ease in spreading information or being influenced

by others within the network.

Notably, the node representing the cognitive function—DSCT—

ranked highly in terms of betweenness centrality. Nodes with high

“betweenness centrality” act as bridges within the network, as many

information paths pass through these nodes. They hold significant

control within the network by frequently connecting different parts or

communities. The results indicate that DSCT acts as a “bridge” in the

network, playing a key role in transmitting information or signals. A

previous meta-analysis showed that DSCT is more sensitive for

detecting processing speed differences in subjects than other

cognitive domains, such as working memory and attention (48).

Impaired DSCT is also associated with cognitive dysfunction in

drinking populations (49). A longitudinal study showed that better

processing speed-related neurocognitive function increases the

likelihood of alcohol-dependent patients managing their addiction

through exercise coping strategies (50), whereas those with poorer

cognitive function require more complex training approaches, such

as multimodal and interactive methods. Therefore, in addition to

directly targeting central indicators for intervention, employing

appropriate coping strategy training may be a key approach to

improving the overall health of individuals who consume alcohol.

This study has several limitations that need to be acknowledged.

First, the use of cross-sectional data limits our ability to infer the

directionality of relationships between health indicators in alcohol

drinkers. Future research could employ longitudinal designs to

explore these candidate indicators and help assess potential causal

relationships, ultimately aiding the development of more effective

interventions. Second, our sample comprised individuals with

varying drinking patterns rather than a homogenous samples of

individuals with pathological drinking behaviors, limiting the

generalizability of the findings to AUD patients at different

clinical stages. Future studies should include larger-scale

investigations. Third, certain factors associated with cognitive

function in drinking populations were not included in the

network analysis. Future research should incorporate additional

neuropsychological variables, such as anxiety, depression, and social

functioning, for further analysis.

In conclusion, there may be significant but modest correlations

among cognitive function, glycemic and lipid profiles, and hepatic–

renal function in individuals with varying alcohol consumption

patterns. Lipid and liver function indicators were identified as the

most central factors in the network model. Both excessive and

moderate alcohol consumption can elevate these core

biomarkers.These central indicators may indirectly activate other

factors within the network, creating a self-reinforcing feedback loop
Frontiers in Endocrinology 08
(51, 52). Targeting key symptoms may influence this cycle and

presumably affect the overall disease state (53). Therefore, clinical

practice may focus on these abnormal central indicators as potential

intervention targets to increase the quality of life in alcohol

drinkers.However, current evidence suggests that alcohol

avoidance may be the only risk-free option.
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