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metabolic syndrome: evidence
from the China health and
retirement longitudinal study
Huiyi Liu1†, Shuai Mao1,2†, Yunzhang Zhao1,2†, Lisha Dong1,2,
Yifan Wang1,2, Chao Lv1 and Tong Yin1,2*

1Institute of Geriatrics, Beijing Key Laboratory of Research on Comorbidity in the Elderly, National
Clinical Research Center for Geriatric Diseases, Second Medical Center of Chinese PLA General
Hospital, Beijing, China, 2Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
Background: Cardiovascular-kidney-metabolic (CKM) syndrome reflects the

interplay among metabolic risk factors, chronic kidney disease, and

cardiovascular disease (CVD). While the hemoglobin glycation index (HGI) has

demonstrated prognostic value for cardiovascular events, its clinical utility

remains unexplored in early-stage CKM syndrome.

Methods: Participants with early-stage CKM syndrome (stage 0-3) were

recruited from the China Health and Retirement Longitudinal Study (CHARLS)

database. Using k-means clustering analysis, the participants were classified

according to the values of HGI measured at baseline and 3 years later,

respectively. The primary outcome was self-reported CVD during the follow-

up of at least 3 years. Extreme gradient boosting (XGBoost) algorithm was

applied, with the Shapley additive explanation (SHAP) method used to

determine feature importance. Multivariable logistics proportional regression

analysis the association between HGI and CVD, and restricted cubic spline

(RCS) regression assessed potential nonlinear relationships.

Results: A total of 4676 eligible participants were included in the final analysis,

with 944 (20.19%) progressed to CVDwithin 10 years. Among the baseline clinical

features, HGI ranked the second for the impact on the occurrence of CVD.

According to the changes of HGI values, the participants were clustered into 4

classes. Compared to the class 1 with lower level of HGI, higher risk of CVD was

observed in class 3 (adjusted OR: 1.34, 95% CI: 1.06-1.69, P = 0.013) and class 4

(adjusted OR: 1.65, 95% CI: 1.01-2.45, P = 0.025) with higher and rapidly

increasing level of HGI. RCS analysis showed cumulative HGI and the risk of

CVD were linearly related (P for nonlinearity = 0.967). Subgroup analyses

confirmed the stability of the association. Additionally, the SHAP plot revealed

that HGI were the more important features than traditional risk factors such as

FBG for predicting CVD.
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Conclusion: HGI is associated with an elevated risk of CVD in participants with

early-stage CKM syndrome. HGI can serve as an independent biomarker for

guiding clinical decision-making and managing patient outcomes.
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1 Introduction

Cardiovascular disease (CVD), chronic kidney disease (CKD),

diabetes, and obesity are pathophysiologically interrelated that

concurrently affect adult population with the prevalence of 5% in

the United States (1), and 15% in China (2). In 2023, the American

Heart Association defined this systemic condition as

Cardiovascular-Kidney-Metabolic (CKM) syndrome, which may

lead to premature mortality and increased morbidity (3). As

reported, the combination of CKD and diabetes escalated the 10-

year mortality rate markedly to 31.1% (4). The risk of CVD

determines the staging and prognosis of CKM syndromes.

Central to the CKM framework is the emphasis on risk-based

primary prevention of CVD for individuals in CKM stages 0 to 3

(5). However, the prediction of the risk of CVD in the early stages of

CKM syndromes is by far a challenge (6).

For patients with CKM syndromes, it is crucial to effectively

control blood sugar levels and use reliable indicators to minimize

diabetes-related complications and mortality (7). Glycosylated

hemoglobin A1c (HbA1c) is strongly associated with the

development of both microvascular and macrovascular

diseases, likely due to its involvement in protein glycation (8).

Despite standardized assays, discrepancies between HbA1c and

other glycemic measures are well-documented and can affect the

accuracy of glycemic control and management (9, 10). The mean

erythrocyte lifespan, differences in cell membrane glucose

transmembrane gradients and enzyme abnormalities can

independently impact the reliability of HbA1c (11–13). Other

genetic factors like genetic variation in hemoglobin can also

affect the association of HbA1c with “true” average glucose

exposure, particularly in the low (no diabetic) range (14). For

most patients with metabolic disorders, a more tailored and

individualized approach should be implemented to prevent

vascular complications (10).

To solve these problems, the hemoglobin glycation index (HGI)

was developed to directly reflect the individual glycemic variability

by quantifying the difference between HbA1c and plasma glucose

concentration (15). HGI could predict the risk of diabetic

complications, including CVD, microvascular diseases, and

mortality in patients with diabetes mellitus (16, 17). Presently,

there have been few research that examined the correlation in

patients with complex metabolic abnormalities. Prior research has

shown that HGI was positively associated with the incidence of
02
obesity, increased levels of low-density lipoprotein, triglyceride, and

postprandial glycemic excursion, respectively (18). Therefore, in

this study, we aimed to examine the association between HGI and

the risk of CVD in the early stages of CKM syndromes.
2 Methods

2.1 Data source and study population

This prospective study used data from the China Health and

Retirement Longitudinal Study (CHARLS), which includes clinical

information from participants aged 45 years in China from 2011 to

2012 were considered as baseline (Wave 1), and follow-up each two

years. Up to now, CHARLS has released three waves of follow-up

data (Wave 2 in 2013, Wave 3 in 2015 and Wave 4 in 2018). The

protocol of CHARLS study was approved by the Ethical Review

Committee of Peking University (IRB00001052-11015). Informed

consent was obtained in writing from all participants prior to

their inclusion.

In the study, 17,635 individuals who completed the baseline

survey were included in the analysis. We excluded 12,959

individuals for the following reasons: (1) lack of information on

age and gender, (2) participants younger than 45 years, (3) absence

of information on cardiovascular disease and chronic kidney

disease, (4) participants with CKM stage 4 at baseline, already

diagnosed with CVD, (5) participants with less than 3 years of

follow-up, (6) lack of data on FBG or HbA1c. Ultimately, a total of

4,676 individuals were included in the analysis (Figure 1).
FIGURE 1

Flowchart of the study population.
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2.2 Deriving HGI from the HbA1c versus
FBG regression equation

HGI was calculated following the methodology established by

Hempe et al. (19). To estimate the inter-individual variance in

HbA1c levels, we utilized baseline FBG and HbA1c data for our

calculations. The predicted HbA1c level was calculated for each

participant through linear regression analysis (HbA1c = 0.017 ×

FBG + 3.41). HGI was then defined as the difference between the

measured HbA1c and the predicted HbA1c (HGI = measured

HbA1c – predicted HbA1c). Cumulative HGI was calculated

using hematological data from Waves 1 and 3, derived with the

formula: (HGI2012 + HGI2015)/2 × time.
2.3 Determination of endpoints

The primary outcome was the incidence of CVD, adhering to

the previous protocols established with the CHARLS dataset. It was

ascertained by the question “Did your doctor tell you that you have

been diagnosed with a heart attack, angina pectoris, coronary heart

disease, heart failure, or other heart problem?” (6).
2.4 Data collection and definitions

Baseline data regarding socio-demographic status and disease-

related information were collected through in-person interviews

conducted by trained interviewers using a structured questionnaire.

The socio-demographic information gathered included age, gender,

education, and marital status. Disease-related factors encompassed

body mass index (BMI), systolic blood pressure (SBP), diastolic

blood pressure (DBP), hypertension, dyslipidemia, diabetes, lifestyle

factors (such as smoking and alcohol consumption). Participants

were required to fast for at least 12 hours prior to the measurement

of FBG, triglycerides (TG), total cholesterol (TC), high-density

lipoprotein cholesterol (HDL-C), and low-density lipoprotein

cholesterol (LDL-C). BMI was calculated as weight (kg) divided

by height squared (m²). Participants were categorized into three

groups based on their BMI: as normal weight (< 25 kg/m2),

overweight (25–29.9 kg/m2), and obesity (≥ 30 kg/m2) (20).

Hypertension was defined as a history of diagnosis, the use of

antihypertensive medication, systolic blood pressure ≥140 mmHg,

or diastolic blood pressure ≥ 90 mmHg (21). Diabetes was defined

as self-reported diagnosis history, use of any insulin or oral

hypoglycemic agents, and fasting glucose ≥ 7.0 mmol/L or an

HbA1c of ≥ 6.5% at baseline (22). Dyslipidemia was defined by

lipid abnormalities, including TC ≥ 240 mmol/L, LDL-C >160

mmol/L, TG>150 mmol/L, or HDL-C < 40 mmol/L or use of any

lipid-lowering treatment (23).

The classification of CKM syndrome, as outlined in the AHA

Statement, provides a comprehensive framework for the early

assessment of risk factors and disease progression. Stage 0 is

defined as the absence of CKM syndrome risk factors in healthy
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subjects. Stage 1 is characterized by overweight, abdominal obesity

(waist circumference ≥ 80 cm in women and ≥ 90 cm in men), or

prediabetes. Stage 2 involves the presence of at least one metabolic

risk factor (such as hypertriglyceridemia, dyslipidemia,

hypertension, metabolic syndrome, diabetes) or CKD. Stage 3

encompasses subclinical cardiovascular disease with a high

predicted CVD risk calculated using the Framingham risk score.

The estimated glomerular filtration rate (eGFR) was calculated

using the Chinese Modification of Diet in Renal Disease (C-

MDRD) equation to classify renal function according to the

Kidney Disease Improving Global Outcomes (KDIGO) (3).
2.5 Statistical analysis

This study investigated HGI changes participants from Wave 1

and Wave 3 using k-means clustering within a logistic regression

equation. K-means clustering, an unsupervised machine learning

technique, groups data by minimizing distances within clusters,

thereby partitioning the dataset into K distinct classes (24, 25). Each

cluster was represented by a clustering center, defined as the mean

value of all points within that cluster. The inflection point on the

curve is considered the optimal number of clusters, representing the

best division of the dataset. In our analysis, when K = 4, the curve

tends to be steady (Supplementary Figure S1), so a four-cluster

solution provided the optimal fit compared to other cluster counts

(Figure 2). Data were presented as means ± standard deviation (SD)

or median and interquartile range for continuous variables and

percentages for categorical variables. Based on the result, we

classified the participants into four groups: sustained low level

(Class1); sustained medium level (Class2); high level and stable

increasing (Class3); high level and fasting increasing (Class4). In

Class 1 (n = 1305), the HGI ranged from -0.53 ± 0.39 in 2012 to 0.43

± 0.46 in 2015, and the cumulative HGI was -0.10 ± 0.49,

representing a consistently low and stable HGI; for Class 2

(n = 2334), the HGI ranged from 0.03 ± 0.25 in 2012 to 0.79 ±

0.31 in 2015, and the cumulative HGI was 0.82 ± 0.29, representing

a sustained moderate HGI; for Class 3 (n = 902), the HGI ranged

from 0.46 ± 0.44 in 2012 to 1.38 ± 0.49 in 2015, and the cumulative

HGI was 1.83 ± 0.47, representing a high HGI with a slowly

increasing trend (Figure 2). For Class 4 (n = 135), the HGI ranged

from 1.51 ± 1.11 in 2012 to 3.46 ± 1.26 in 2015, and the cumulative

HGI was 4.97 ± 1.36, representing a consistently high and fast

increasing trend HGI.

Before investigating the association between HGI and incident

CVD, we first employed machine learning algorithms for feature

selection to determine their importance in the prognostic model

(26). To improve the accuracy of feature selection, the eXtreme

Gradient Boosting (XGBoost) model combined with SHapley

Additive extension (SHAP) values was employed for feature

screening and dimensionality reduction through Python package

(version 3.11.10), identifying key features associated with CVD

incident. The importance and the contribution of each feature can

be directly observed by plotting the SHAP summary plot. Multiple
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imputations were used to fill in missing data to maximize statistical

power and mitigate any bias that may result from missing data (27).

Two logistic regression models were used to estimate the association

between changes and cumulative measures in HGI with CVD,

quantified through odds ratio (ORs) and 95% confidence

intervals (CIs).

To investigate potential nonlinear associations between

cumulative HGI and CVD events, we employed a RCS regression

model with four knots. Interaction analyses were conducted to

determine whether the association between cumulative HGI and

CVD varied across covariates.

Mediation analysis was conducted to determine whether this

association was mediated by risk factors, such as BMI and

triglyceride glucose (TyG) index (28). Mediation analysis was

performed using the ‘mediation’ package.

All statistical analyses were performed using R version 4.3.3

software (http://www.R-project.org/). Statistical significance was set

as a two-sided p value < 0.05.
3 Result

3.1 Baseline characteristics of participants

In this study, a total of 4,676 participants were included for

analysis. The mean age at baseline was 58.62 ± 8.65 years, with 2,170

participants (46.41%) identifying as men. The mean HGI was 0.00 ±

0.58 in 2012 and 0.88 ± 0.71 in 2015. Table 1 presents the baseline

characteristics of participants in each group based on the

cluster analysis.

Participants with higher and rapidly increasing levels of HGI

were more likely to be female, older, and obese. Those also exhibited

a greater prevalence of metabolic disorders, with significantly

elevated levels of serum creatinine (Scr), serum uric acid (UA),

TC, LDL-C, FBG, and HbA1c compared to participants in the

lower-level clusters.
Frontiers in Endocrinology 04
3.2 Association between the changes of
HGI and CVD risk

The incidence of 944 CVD during the follow-up period was

presented in Table 2. The regression models were developed based

on clinical expertise and feature importance selection results from

the XGBoost algorithms, as shown in Figure 3. After adjusting for

age, gender, smoking status, drink status, education, SBP, TG, TC,

UA, platelet (PLT), Scr, blood urea nitrogen(BUN), FBG, and C-

reactive protein (CRP) in Model 2, the multivariate-adjusted OR

and 95% CI from lowest stable group to highest rapid increasing

group were1.00 (reference), 0.97 (0.80, 1.18), 1.32 (1.05, 1.67), and

1.63 (1.01, 2.64), respectively.
3.3 Association between the value of
cumulative HGI and CVD risk

Multivariable logistic regression analyses also indicated a

positive relationship between the cumulative HGI and CVD risk,

with an adjusted OR of 1.08 (95% CI: 1.04, 1.13) (Table 2). RCS

regression analysis further confirmed the linear increase in CVD

risk associated with higher values of the cumulative HGI (P for

nonlinearity = 0.967, Supplementary Figure S2).

Subgroup analyses and interaction tests were conducted to

evaluate the consistency of the association between cumulative

HGI and the risk of CVD across various individual subgroups,

including age, gender, smoking status, hypertension, diabetes,

dyslipidemia, and stage of CKM. Interaction terms were utilized

to assess heterogeneity within each subgroup. No statistically

significant interactions were identified regarding the association

between cumulative HGI and CVD (Figure 4 and Supplementary

Table S1).

Overall, our results indicated that the positive association

between cumulative HGI and CVD risk remains consistent across

different population subgroups and is applicable in various settings.
FIGURE 2

(A) The HGI clustering by k-means; (B) The trend of HGI changes in different clusters.
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TABLE 1 Baseline characteristics of participants classified according to the changes of HGI.

Variables
Total

(n = 4676)
Class 1

(n = 1305)
Class 2

(n = 2334)
Class 3
(n =902)

Class 4
(n = 135)

P value

Age, years 58.62 ± 8.65 57.84 ± 8.63 58.59 ± 8.77 59.82 ± 8.31 58.80 ± 7.97 <0.001

Gender, n (%) <0.001

Male 2170 (46.41) 658 (50.42) 1096 (46.96) 363 (40.24) 53 (39.26)

Female 2506 (53.59) 647 (49.58) 1238 (53.04) 539 (59.76) 82 (60.74)

Education, n (%) 0.005

Middle school and above 1409 (30.13) 428 (32.80) 711 (30.46) 235 (26.05) 35 (25.93)

No completion of
middle school

3267 (69.87) 877 (67.20) 1623 (69.54) 667 (73.95) 100 (74.07)

Smoking status, n (%) 0.051

Yes 1802 (38.54) 532 (40.77) 905 (38.77) 316 (35.03) 49 (36.30)

No 2874 (61.46) 773 (59.23) 1429 (61.23) 586 (64.97) 86 (63.70)

Drinking status, n (%) <0.001

More than monthly 1211 (25.90) 383 (29.35) 619 (26.52) 187 (20.73) 22 (16.30)

Less than monthly 393 (8.40) 127 (9.73) 186 (7.97) 66 (7.32) 14 (10.37)

Never 3072 (65.70) 795 (60.92) 1529 (65.51) 649 (71.95) 99 (73.33)

Hypertension, n (%) <0.001

Yes 1700 (36.35) 493 (37.78) 781 (33.46) 347 (38.47) 79 (58.52)

No 2976 (63.65) 812 (62.22) 1553 (66.54) 555 (61.53) 56 (41.48)

Dyslipidemia, n (%) <0.001

Yes 2214 (47.35) 630 (48.28) 1014 (43.44) 474 (52.55) 96 (71.11)

No 2462 (52.65) 675 (51.72) 1320 (56.56) 428 (47.45) 39 (28.89)

Diabetes, n (%) <0.001

Yes 709 (15.16) 244 (18.70) 149 (6.38) 201 (22.28) 115 (85.19)

No 3967 (84.84) 1061 (81.30) 2185 (93.62) 701 (77.72) 20 (14.81)

BMI, kg/m2 23.55 ± 3.79 23.35 ± 3.61 23.40 ± 3.81 23.95 ± 3.86 25.71 ± 3.69 <0.001

SBP, mmHg 128.16 ± 41.18 129.84 ± 46.12 126.74 ± 37.18 126.46 ± 19.58 147.92 ± 106.47 <0.001

DBP, mmHg 75.83 ± 12.89 74.68 ± 12.39 75.98 ± 13.15 76.49 ± 12.95 79.98 ± 11.39 <0.001

TC, mg/dl 193.81 ± 38.27 189.95 ± 38.71 193.34 ± 37.57 198.72 ± 38.65 206.52 ± 37.85 <0.001

HDL-C, mg/dl 51.37 ± 15.44 50.65 ± 16.23 52.26 ± 14.95 50.96 ± 15.39 45.63 ± 14.57 <0.001

LDL-C, mg/dl 116.83 ± 34.89 110.31 ± 35.52 118.04 ± 33.98 121.46 ± 34.16 127.90 ± 38.95 <0.001

TG, mg/dl 130.62 ± 106.18 145.28 ± 146.64 119.29 ± 77.71 134.24 ± 95.96 160.64 ± 108.10 <0.001

BUN, mg/dl 15.59 ± 4.36 15.82 ± 4.38 15.52 ± 4.33 15.51 ± 4.35 15.17 ± 4.57 0.126

Scr, mg/dl 0.76 ± 0.17 0.77 ± 0.17 0.77 ± 0.17 0.76 ± 0.18 0.75 ± 0.19 0.253

Uric acid, mg/dl 4.38 ± 1.22 4.44 ± 1.25 4.37 ± 1.20 4.36 ± 1.21 4.11 ± 1.25 0.019

CRP, mg/dl 2.55 ± 6.86 2.20 ± 5.95 2.57 ± 6.71 3.01 ± 8.45 2.68 ± 5.44 0.056

WBC, ×109/L 6.21 ± 1.88 6.02 ± 1.78 6.21 ± 1.88 6.41 ± 2.01 6.87 ± 1.74 <0.001

PLT, ×109/L 212.68 ± 73.90 207.33 ± 72.44 210.87 ± 73.74 224.81 ± 75.94 214.77 ± 68.42 <0.001

HGI2012, % 0.00 ± 0.58 -0.53 ± 0.39 0.03 ± 0.25 0.46 ± 0.44 1.51 ± 1.11 <0.001

(Continued)
F
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3.4 Mediation analysis

In mediation analysis, it was suggested that BMI partially

mediates the relationship between the cumulative HGI index and

CVD, accounting for approximately 18.6% of the effect. The

mediating role of the TyG index in the association was 6.9%.

Dyslipidemia also played a significant role in mediating the

association between the HGI index and new-onset CVD,

contributing approximately 11.0% to the effect. However,

diabetes, hypertension, and the chronic inflammation biomarker

CRP did not demonstrate a significant mediating effect (Table 3).

These findings emphasize the necessity of considering BMI and

insulin resistance (IR) as an important risk factors in the

development of strategies for preventing CVD in individuals with

early-stage CKM syndrome, in conjunction with lipid control.
4 Discussion

This large prospective cohort study, based on data from

CHARLS, is the first to investigate the association between HGI

and the risk of CVD in early-stage CKM syndrome. Patients with

CKM stages 0–3 who have not yet developed cardiovascular disease

exhibit significant differences in clinical and metabolic
Frontiers in Endocrinology 06
characteristics across various groups. Individuals with high and

rapidly increasing HGI levels demonstrate a greater prevalence of

cardiovascular risk factors, leading to more complex comorbidities.

HGI were the more important features than traditional risk factors

such as FBG for predicting CVD. Additionally, we enhanced the

understanding of the linear relationship between cumulative HGI

and the incidence of CVD. TyG index, BMI and dyslipidemia

showed potential mediating roles in the association between

cumulative HGI and CVD. These findings further emphasize the

crucial role of longitudinal monitoring of HGI in predicting CVD.

For patients with metabolic disorders, blood glucose levels are

closely associated with the incidence and progression of vascular

diseases. Hyperglycemia accelerates the non-enzymatic glycation of

crucial proteins, causing the formation of glycated proteins. In

addition to hemoglobin, other structural proteins are also

susceptible to non-enzymatic glycation, leading to the formation of

advanced glycation end products (AGEs) (29). AGEs trigger

inflammatory signaling, enhance oxidative stress, and ultimately

contribute to the development of atherosclerosis by damaging

arterial endothelial cells and accelerating lipid oxidation (30).

Although HbA1c remains a crucial tool for managing metabolic

disorders, its limitations must be acknowledged. HGI could minimize

clinical errors and optimize patient treatment, as a more personalized

approach (19). Enhancing the management of HGI may not only

help confirm the role of glycemic variability in the prevention and

management of CKM syndrome, but also help make early lifestyle

adjustments such as controlling glucose and cholesterol level.

This study is the first to investigate the association between

cumulative HGI and CVD in a CKM syndrome population. Our

results show that high cumulative level and rapidly growth of HGI is

positively linked to the risk of CVD, consistent with previous research

on single-measure HGI (31). In the Action to Control Cardiovascular

Risk in Diabetes (ACCORD) trial, individual with high HGI values

had a higher incidence of CVD (15). The ACCORD trial suggested

that HGI could serve as a reference for adjusting treatment options to

achieve improved CVD outcomes. Another study from Korea

suggested that the development of CVD was significantly associated

with baseline HGI in patients with type 2 diabetes (HR, 1.74; 95% CI,

1.08-2.81) (32). Due to the inter-individual variability of HGI, the

large-scale studies are required to determine whether HGI can serve

as a universality marker to assess CVD risk.
TABLE 1 Continued

Variables
Total

(n = 4676)
Class 1

(n = 1305)
Class 2

(n = 2334)
Class 3
(n =902)

Class 4
(n = 135)

P value

HGI2015, % 0.88 ± 0.71 0.43 ± 0.46 0.79 ± 0.31 1.38 ± 0.49 3.46 ± 1.26 <0.001

Cumulative HGI, % 0.88 ± 1.06 -0.10 ± 0.49 0.82 ± 0.29 1.83 ± 0.47 4.97 ± 1.36 <0.001

CVD, n (%) 716 (15.31) 184 (14.10) 331 (14.18) 171 (18.96) 30 (22.22) <0.001
SBP: systolic blood pressure; DBP: diastolic blood pressure; BMI: body mass index; BUN: blood urea nitrogen; FBG: fasting blood glucose; TC: total cholesterol ; TG: triglyceride; HDL-C: high-
density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; CRP: C-reactive protein; HbA1c: hemoglobin A1C; UA: uric acid; Scr: serum creatinine; WBC: white blood cell count;
PLT: platelet count; HGI: hemoglobin glycation index; CVD: cardiovascular disease
Notes: Continuous variables were expressed as mean ± standard deviation (SD) in case of normal distribution and compared between two groups by Kruskal-Wallis rank sum test. If the count
variable had a theoretical number < 10, Fisher’s exact probability test was used. Categorical variables are presented as counts (percentages) and compared by Chi-square test.
TABLE 2 Association between HGI and the risk of CVD in patients with
early-stage CKM syndrome.

Cluster
of HGI

Crude Model 1 Model 2

OR (95% CI)
P value

OR (95% CI)
P value

OR (95% CI)
P value

Class 1 Reference Reference Reference

Class 2 1.01
(0.83,1.22) 0.946

0.98
(0.81,1.20) 0.877

1.00
(0.82,1.22) 0.992

Class 3 1.43
(1.13,1.79) 0.002

1.34
(1.06,1.69) 0.013

1.35
(1.07,1.70) 0.012

Class 4 1.74
(1.13,2.69) 0.012

1.65
(1.06,2.55) 0.025

1.57
(1.01,2.45) 0.045
Model I, adjusted for age, gender.
Model II, adjusted for important feature calculated by XGBoost algorithm including: gender,
age, education, smoking status, drink status, SBP, UA, Scr, TC, TG, BUN, PLT, FBG, CRP.
OR, odd ratio; CI, confidence interval.
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Asian populations bear a disproportionately high burden of

diabetes and cardiovascular diseases. Due to genetic, dietary, and

lifestyle factors, the relationship between HbA1c and blood glucose

levels may exhibit unique characteristics in these populations (33).
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Longitudinal monitoring of the HGI can more accurately reflect

glycemic variability and reduce the errors associated with relying

solely on HbA1c. Our analysis also revealed this critical finding that

the cumulative HGI demonstrated superior predictive capacity for
FIGURE 3

(A) Featured clinical variables screened by SHAP calculated by XGBoost model. Distribution of the impact of each feature on the model output. Each
dot represents a patient in a row. The colors of the dots represent the feature values: red represents larger values and blue represents lower values.
(B) The vertical axis shows the name of each variable, whereas the horizontal axis represents the feature value of each variable.
FIGURE 4

Forest plot of association between HGI and CVD in different subgroups.
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CVD risk stratification in patients with CKM syndrome compared

to conventional glucose metrics, including FBG. Some patients with

diabetes exhibit higher postprandial glucose fluctuations and lower

HbA1c levels, which may lead to an increased risk of inadequate

glycemic control. By promoting the use of HGI monitoring, more

precise glycemic assessment and personalized treatment strategies

can be provided for Asian populations, thereby reducing the risk of

cardiovascular diseases associated with CKM syndrome and

minimizing potential harm caused by inaccurate glycemic

evaluation and inappropriate therapeutic interventions.

Our findings revealed no statistical association between the HGI

and CVD incidence during the ultra-early stages of CKM syndrome

(stages 0 to 1). In individuals at stages 2 and 3 with elevated

metabolic risk factors, the association between cumulative HGI and

CVD incidence was more pronounced. This may be attributed to

the fact that, metabolic disturbances in individuals may not yet

reach the threshold level required to trigger cardiovascular risk in

the early stages of CKM. Specifically, studies have shown that

metabolic abnormalities, such as insulin resistance and chronic

inflammation, need to accumulate to a certain extent before they

can significantly impact vascular function and tissue damage (34).

As an indicator reflecting long-term glycemic variability and

hemoglobin glycation heterogeneity, HGI may lack sufficient

sensitivity in the early stages when metabolic disturbances are

relatively mild. This hypothesis is consistent with previous

research, which indicates that the predictive ability of HbA1c and

HGI is weaker in the prediabetic or early metabolic syndrome stages

but becomes significantly enhanced as the disease progresses (35).

During CKM stages 0-1, individuals may partially offset the vascular

damage caused by glycemic fluctuations through compensatory

mechanisms, such as enhanced insulin secretion or antioxidant

capacity, thereby masking the predictive value of HGI. As the

disease progresses to CKM stages 2-3, the decline in metabolic

compensatory capacity allows the association between HGI and

CVD risk to become more apparent. The latter stages of CKM are
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often accompanied by more pronounced chronic inflammation and

oxidative stress, which may amplify the predictive role of HGI in

CVD risk.

Reduced insulin sensitivity is considered as a significant risk

factor for atherosclerotic disease (36), and serves as a central

contributor to cardiovascular risk factors such as visceral obesity,

atherogenic dyslipidemia, and hypertension, which frequently co-

occur in individuals with metabolic disorders (37). In our study, an

essential finding is that IR related indicators (TyG), BMI and

dyslipidemia partially mediated the relationship between

cumulative HGI and CVD. There is evidence that elevated HGI

relate to the IR and increased risk of vascular atherosclerosis (38).

The promotion of AGEs may alter insulin receptor signaling and

impair glucose-uptake. In animal models, oral advanced AGEs have

been shown to induce insulin resistance, contributing to metabolic

disorders and lipid toxicity (39, 40).

IR can affect glucose metabolism through inflammatory factors,

macrophage and adipocyte activation, and the renin–angiotensin–

aldosterone system, can contribute to cardiac dysfunction and

myocardial injury, ultimately leading to various cardiovascular

diseases. Previous research has established that individuals with a

metabolically healthy obesity phenotype face a higher risk of CVD

compared to those with a metabolically healthy normal-weight

profile (41). Marini et al. reported that elevated HGI may reflect

the risk of metabolic disease associated with obesity (38). Our

research further corroborates this finding. A study involving

patients in American showed that BMI interacts with HGI, such

that lower levels are associated with cardiovascular benefits (42).

Regarding blood pressure, previous studies confirmed that BP status

significantly modified the associations between cardiometabolic risk

factors and CVD (43). HGI was found to be linked to arterial

stiffening, independent of diabetes status (44).

With the progression of population aging, declining metabolic

function and heightened chronic inflammatory states may amplify

the impact of glycemic variability on CVD risk (45). Age is a non-
TABLE 3 Mediation analysis for the associations between Cumulative HGI and CVD in patients with early-stage CKM syndrome.

Independent
variable

Mediator

Total effect Indirect effect Direct effect Proportion
mediated, %
(95% CI)

Coefficient
(95% CI)

P
value

Coefficient
(95% CI)

P
value

Coefficient
(95% CI)

P
value

Cumulative HGI BMI 0.009 (0.003, 0.015) 0.016 0.002 (0.001, 0.003) <0.001 0.007 (0.001, 0.013) 0.020 18.6 (8.0, 54.6)

Cumulative HGI TyG 0.010 (0.004, 0.015) <0.001 0.001 (0.000, 0.001) 0.036 0.009 (0.004, 0.015) <0.001 6.9 (0.4, 19.8)

Cumulative HGI Dyslipidemia 0.010 (0.004, 0.016) <0.001 0.001 (0.000, 0.002) 0.032 0.009 (0.004, 0.015) <0.001 7.8 (0.6, 26.7)

Cumulative HGI CRP -0.011
(-0.017, -0.006)

<0.001 0.001 (-0.001, 0.001) 0.380 -0.011
(-0.017, -0.006)

<0.001 5.0 (-0.7, 2.9)

Cumulative HGI Hypertension 0.010 (0.004, 0.016) <0.001 0.001 (-0.000, 0.002) 0.128 0.009 (0.003, 0.015) <0.001 10.7 (-3.0, 28.1)

Cumulative HGI Diabetes 0.010 (0.004, 0.016) <0.001 0.000 (-0.001, 0.001) 0.608 0.010 (0.004, 0.016) <0.001 2.4 (-8.0, 22.1)
Adjusted for gender, age, education, smoking status, drink status, SBP, UA, Scr, TC, TG, BUN, PLT, FBG, CRP. The stratified variable was not included in the model when stratifying by itself.
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modifiable risk factor for vascular diseases such as coronary heart

disease and stroke, but metabolic abnormalities may represent critical

modifiable targets for risk reduction (46). In age-stratified analyses,

although the interaction P-value did not reach statistical significance,

it is noteworthy that the strength of the association between HGI

levels and CVD risk was more pronounced in the older age group

compared to the middle-aged group. Based on the CHARLS database

of older adults, this study demonstrates that HGI serves as a robust

independent predictor of coronary heart disease risk. Given the

accelerating global aging population, HGI is expected to play an

increasingly significant role in risk stratification, offering valuable

insights for early identification of high-risk individuals and the

development of personalized intervention strategies.

To our knowledge, this is the first study to explore the

mediating effects of these risk factors in the relationship between

the HGI and adverse health outcomes. Although CRP was not

identified as mediators in this association, this does not negate their

potential relationship with HGI and CVD.

The potential limitations of this study should not be overlooked.

First, the exclusion of individuals without FBG and HbA1c

measurements led to the omission of a significant portion of the

diabetic metabolic population, which may affect the findings. Second,

CVD diagnoses in CHARLS were self-reported, and no further

adjudication of CVD events was conducted. Third, HbA1c

measurements in CHARLS were only taken at two time points (2012

and 2015), which may not adequately capture short-term fluctuations

or the complete metabolic trajectory, potentially influencing the

observed relationship. Fourthly, due to the limited variables available

in the database, residual confounding from unmeasured inflammatory

mediators or adipose-derived hormones might partially mediate the

observed HGI-CVD association. Lastly, since HGI may have ethnic

variability, multinational multicenter validation studies are necessary to

establish its broader clinical applicability.
5 Conclusion

This study found that a rapidly increasing and high cumulative

level of HGI was associated with an elevated risk of CVD

progression in individuals with early-stage CKM syndrome. This

association was partially mediated by BMI, TyG and dyslipidemia.

HGI can serve as an independent predictor for assessing

cardiovascular risk in patients with CKM syndrome. Our findings

offer new insights into the potential relationship between blood

glucose control, insulin resistance, lipid metabolism, and CVD in

individuals with CKM syndrome. Clinicians should consider

regular HGI monitoring to facilitate timely lifestyle interventions

or therapy adjustments.
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Alonso de la Peña C, et al. Influence of the glycation gap on the diagnosis of type 2
diabetes. Acta Diabetol. (2015) 52:453–9. doi: 10.1007/s00592-014-0666-z

36. Rutter MK, Meigs JB, Sullivan LM, D’Agostino RBSr., Wilson PW. Insulin resistance,
the metabolic syndrome, and incident cardiovascular events in the Framingham Offspring
Study. Diabetes. (2005) 54:3252–7. doi: 10.2337/diabetes.54.11.3252

37. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease.
Diabetes. (1988) 37:1595–607. doi: 10.2337/diab.37.12.1595

38. Marini MA, Fiorentino TV, Succurro E, Pedace E, Andreozzi F, Sciacqua A, et al.
Association between hemoglobin glycation index with insulin resistance and carotid
atherosclerosis in non-diabetic individuals. PloS One. (2017) 12:e0175547. doi: 10.1371/
journal.pone.0175547

39. Felipe DL, Hempe JM, Liu S, Matter N, Maynard J, Linares C, et al. Skin intrinsic
fluorescence is associated with hemoglobin A(1c)and hemoglobin glycation index but
not mean blood glucose in children with type 1 diabetes. Diabetes Care. (2011)
34:1816–20. doi: 10.2337/dc11-0049

40. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end
products: sparking the development of diabetic vascular injury. Circulation. (2006)
114:597–605. doi: 10.1161/circulationaha.106.621854

41. Eckel N, Li Y, Kuxhaus O, Stefan N, Hu FB, Schulze MB. Transition from
metabolic healthy to unhealthy phenotypes and association with cardiovascular disease
risk across BMI categories in 90 257 women (the Nurses’ Health Study): 30 year
follow-up from a prospective cohort study. Lancet Diabetes Endocrinol. (2018) 6:714–
24. doi: 10.1016/s2213-8587(18)30137-2

42. Basu S, Raghavan S, Wexler DJ, Berkowitz SA. Characteristics associated with
decreased or increased mortality risk from glycemic therapy among patients with type 2
diabetes and high cardiovascular risk: machine learning analysis of the ACCORD trial.
Diabetes Care. (2018) 41:604–12. doi: 10.2337/dc17-2252
frontiersin.or
g

https://doi.org/10.1001/jamacardio.2023.3241
https://doi.org/10.3389/fendo.2022.968766
https://doi.org/10.1161/cir.0000000000001184
https://doi.org/10.1681/asn.2012070718
https://doi.org/10.1161/cir.0000000000001191
https://doi.org/10.1161/cir.0000000000001191
https://doi.org/10.1186/s12933-024-02352-6
https://doi.org/10.1186/s12933-024-02352-6
https://doi.org/10.2337/dc23-S002
https://doi.org/10.2337/diacare.15.12.1835
https://doi.org/10.1136/jclinpath-2017-204755
https://doi.org/10.1258/acb.2008.007259
https://doi.org/10.1258/acb.2008.007259
https://doi.org/10.2337/db07-1820
https://doi.org/10.1196/annals.1333.094
https://doi.org/10.1126/scitranslmed.aaf9304
https://doi.org/10.1089/dia.2023.0146
https://doi.org/10.2337/dc14-1844
https://doi.org/10.2337/dc14-1844
https://doi.org/10.1136/bmjdrc-2021-002339
https://doi.org/10.1097/cm9.0000000000002717
https://doi.org/10.1097/cm9.0000000000002717
https://doi.org/10.1016/j.diabres.2021.109039
https://doi.org/10.1016/s1056-8727(01)00227-6
https://doi.org/10.1186/s12933-024-02248-5
https://doi.org/10.1186/s12933-024-02248-5
https://doi.org/10.1186/s12933-024-02244-9
https://doi.org/10.1186/s13098-023-00992-4
https://doi.org/10.1186/s12933-023-01983-5
https://doi.org/10.1186/s12933-023-01983-5
https://doi.org/10.1126/science.1242072
https://doi.org/10.1016/j.jhazmat.2024.137071
https://doi.org/10.3389/ftox.2024.1461587
https://doi.org/10.3389/ftox.2024.1461587
https://doi.org/10.1002/nur.10015
https://doi.org/10.1186/s12933-024-02173-7
https://doi.org/10.1111/j.1463-1326.2006.00595.x
https://doi.org/10.1155/2019/9570616
https://doi.org/10.1111/dom.15541
https://doi.org/10.1016/j.jdiacomp.2018.08.007
https://doi.org/10.4239/wjd.v8.i6.297
https://doi.org/10.1016/j.jacc.2024.02.053
https://doi.org/10.1007/s00592-014-0666-z
https://doi.org/10.2337/diabetes.54.11.3252
https://doi.org/10.2337/diab.37.12.1595
https://doi.org/10.1371/journal.pone.0175547
https://doi.org/10.1371/journal.pone.0175547
https://doi.org/10.2337/dc11-0049
https://doi.org/10.1161/circulationaha.106.621854
https://doi.org/10.1016/s2213-8587(18)30137-2
https://doi.org/10.2337/dc17-2252
https://doi.org/10.3389/fendo.2025.1554032
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2025.1554032
43. QiuW, Cai A, Nie Z, Wang J, Ou Y, Feng Y. Cardiometabolic factors and population
risks of cardiovascular disease in community-dwelling adults with varied blood pressure
statuses. Diabetes Obes Metab. (2024) 26:3261–71. doi: 10.1111/dom.15653

44. Nagayama D, Watanabe Y, Yamaguchi T, Saiki A, Shirai K, Tatsuno I. High
hemoglobin glycation index is associated with increased systemic arterial stiffness
independent of hyperglycemia in real-world Japanese population: A cross-sectional study.
Diabetes Vasc Dis Res. (2020) 17:1479164120958625. doi: 10.1177/1479164120958625
Frontiers in Endocrinology 11
45. Dahlquist KJV, Camell CD. Aging leukocytes and the inflammatory
microenvironment of the adipose tissue. Diabetes. (2022) 71:23–30. doi: 10.2337/
dbi21-0013

46. Lucke-Wold BP, Logsdon AF, Turner RC, Rosen CL, Huber JD. Aging, the
metabolic syndrome, and ischemic stroke: redefining the approach for studying the
blood-brain barrier in a complex neurological disease. Adv Pharmacol. (2014) 71:411–
49. doi: 10.1016/bs.apha.2014.07.001
frontiersin.org

https://doi.org/10.1111/dom.15653
https://doi.org/10.1177/1479164120958625
https://doi.org/10.2337/dbi21-0013
https://doi.org/10.2337/dbi21-0013
https://doi.org/10.1016/bs.apha.2014.07.001
https://doi.org/10.3389/fendo.2025.1554032
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Association between hemoglobin glycation index and the risk of cardiovascular disease in early-stage cardiovascular-kidney-metabolic syndrome: evidence from the China health and retirement longitudinal study
	1 Introduction
	2 Methods
	2.1 Data source and study population
	2.2 Deriving HGI from the HbA1c versus FBG regression equation
	2.3 Determination of endpoints
	2.4 Data collection and definitions
	2.5 Statistical analysis

	3 Result
	3.1 Baseline characteristics of participants
	3.2 Association between the changes of HGI and CVD risk
	3.3 Association between the value of cumulative HGI and CVD risk
	3.4 Mediation analysis

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


