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Myokines as potential mediators
of changes in glucose
homeostasis and muscle mass
after bariatric surgery
Laura Orioli 1,2* and Jean-Paul Thissen1,2

1Research Laboratory of Endocrinology, Diabetes, and Nutrition, Institute of Experimental and Clinical
Research, UCLouvain, Brussels, Belgium, 2Department of Endocrinology and Nutrition, Cliniques
Universitaires Saint-Luc, Brussels, Belgium
Myokines are bioactive peptides released by skeletal muscle. Myokines exert

auto-, para-, or endocrine effects, enabling them to regulate many aspects of

metabolism in various tissues. However, the contribution of myokines to the

dramatic changes in glucose homeostasis and muscle mass induced by bariatric

surgery has not been established. Our review highlights that myokines such as

brain-derived neurotrophic factor (BDNF), meteorin-like protein (Metrnl),

secreted protein acidic and rich in cysteine (SPARC), apelin (APLN) and

myostatin (MSTN) may mediate changes in glucose homeostasis and muscle

mass after bariatric surgery. Our review also identifiesmyonectin as an interesting

candidate for future studies, as this myokine may regulate lipid metabolism and

muscle mass after bariatric surgery. These myokines may provide novel

therapeutic targets and biomarkers for obesity, type 2 diabetes and sarcopenia.
KEYWORDS

glucose homeostasis, myokines, myostatin, muscle mass, obesity, sarcopenic obesity,
sarcopenia, type 2 diabetes
1 Introduction

Skeletal muscle was first proposed as an endocrine organ more than two decades ago,

based on evidence that human skeletal muscle releases interleukin (IL)-6 into the

circulation during exercise (1, 2). Since then, numerous bioactive molecules, including

proteins, exosomes, metabolites and microRNAs, have been identified as part of the human

muscle secretome using computational and -omics approaches (2–6). Specifically, proteins

secreted by skeletal muscle are called myokines (7, 8). More than 600 myokines have been

identified in conditioned media from human muscle cells using mass spectrometry, the

most accurate and specific method currently available for secretome analysis (9). Myokines

exert auto-, para- or endocrine effects, enabling them to regulate many aspects of

metabolism in various tissues (2, 8, 10, 11). Some myokines are released in response to

muscle contraction, leading to the concept of exerkines (12–15). Emerging evidence

suggests that certain myokines/exerkines may contribute to the metabolic and
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cardiovascular benefits of exercise by facilitating communication

between muscle and other organs, such as the liver, adipose tissue,

heart, brain, and pancreas (2, 15, 16). However, the exact

mechanisms underlying the actions of myokines and the extent of

their influence remain areas of ongoing research.

Obesity and type 2 diabetes (T2D) are closely related conditions

that represent significant global health problems due to their

increasing prevalence and comorbidities (17). Both conditions are

linked to alterations in muscle metabolism and function, which may

contribute to age-related decline in muscle health (18–20). The

underlying mechanisms are complex and include structural and

metabolic changes in muscle tissue, altered myogenesis, fat

infiltration (i.e. myosteatosis) and muscle inflammation (20–26).

Together, these disorders can lead to a vicious cycle of muscle

fatigue, decreased physical activity and energy expenditure, further

fat gain, ultimately leading to sarcopenic obesity (18–20). The

contribution of myokines to altered muscle metabolism and

function in people with obesity and T2D is not well understood.

Bariatric surgery is effective for treating obesity and T2D, leading to

the concept of metabolic surgery (27–29). Bariatric surgery has many

beneficial effects on skeletal muscle metabolism and function. Most

importantly, bariatric surgery improves or even reverses muscle insulin

resistance after significant weight loss (30–32). However, bariatric

surgery induces a significant loss of muscle mass, mainly due to

profound calorie and protein restriction (33, 34). Despite reduced

muscle mass, muscle function and quality (i.e. muscle strength to

muscle mass ratio) improve after bariatric surgery (35, 36). The

underlying mechanisms include extensive changes in the insulin

signaling cascade, improved muscle oxidative capacity and

mitochondrial function, as well as intramyocellular lipid depletion,

reduced muscle inflammation and fibrosis (32, 37–39). The

contribution of myokines to changes in glucose homeostasis, muscle

mass and function after bariatric surgery remains poorly understood.

In this review, we will comprehensively discuss the potential

role of myokines in changes in glucose homeostasis and muscle

mass after bariatric surgery.
Abbreviations: ADAMTS9, ADAMmetallopeptidase with thrombospondin type

1 motif 9; APLN, Apelin; BDNF, Brain-derived neurotrophic factor; BMI, Body

mass index; BMP, Bone morphogenetic protein; CX3CL1, C-X3-C motif

chemokine ligand 1 (fractalkin); ECM, Extracellular matrix; FGF, Fibroblast

Growth Factor; FNDC5, Fibronectin type III domain-containing protein 5; FST,

Follistatin; GDF-8, Growth differentiation factor 8 (myostatin); GSIS, Glucose-

stimulated insulin secretion; HbA1c, Glycated hemoglobin A1c; HEC,

Hyperinsulinemic-euglycemic clamp; IL, Interleukin(s); IGF-I, Insulin-like

growth factor I; LGR5, Leucine-rich repeat-containing G protein-coupled

receptor 5; MCP-1, Monocyte chemotactic protein-1; Metrnl, Meteorin-like

protein; MSTN, Myostatin; PGC1A, Proliferator-activated receptor gamma

coactivator 1-alpha; PPAR, Peroxisome proliferator-activated receptors;

SPARC, Secreted protein acidic and rich in cysteine; SPINK5, serine protease

inhibitor Kazal-type 5; T2D, Type 2 diabetes; TGF, Transforming growth factor;

TNF-a, tumor necrosis factor alpha; TRIM72, Tripartite motif containing 72

(mitsugumin, MG53); XYLT1, xylosyltransferase 1.
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2 An overview of changes in myokines
in obesity and type 2 diabetes

The muscle secretome is altered in people with obesity and T2D.

These alterations include an increased release of ILs, including IL-6,

IL-8 and IL-15, and pro-inflammatory cytokines, such as tumor

necrosis factor alpha (TNF-a) and monocyte chemotactic protein-1

(MCP-1) (40, 41). Increased release of follistatin (FST) and

myostatin (MSTN), which have opposing effects on muscle mass,

has also been reported (40, 41). Altered myokine secretion may be an

intrinsic property of muscle in people with obesity and T2D due to

genetic or epigenetic factors (42). Alternatively, altered myokine

secretion may result from muscle exposure to obesity-related

metabolic factors, such as lipotoxicity and inflammation, which

impair muscle insulin sensitivity (43–45). In addition, insulin itself

regulates myokine secretion by muscle cells directly (46) and

indirectly by increasing the expression of type IIx muscle fibers,

whereas some myokines are type II fiber-specific (e.g., IL-6,

angiogenin, osteoprotegerin) (47–50). Therefore, hyperinsulinemic

states such as obesity and T2D are likely to affect myokine expression

and secretion.

In turn, altered myokine secretion in obesity and T2D is likely to

affect glucose homeostasis and muscle mass. Indeed, conditioned

medium from insulin-resistant human myotubes blunts glucose-

stimulated insulin secretion (GSIS) and increases beta cell apoptosis

(43). Similarly, conditioned medium from inflamed myotubes

induces muscle cell inflammation and insulin resistance (51). Pro-

inflammatory myokines such as IL-1b, IL-6, IL-8, TNF-a, C-C motif

chemokine 5 (CCL5), MCP-1, and C-X-C motif chemokine 10

(CXCL10) are likely mediators of these detrimental effects on beta

cells and muscle cells (43, 51). In addition, conditioned medium from

myotubes derived from humans with extreme obesity inhibits

proliferation of C2C12 myoblasts, an effect that is abolished in the

presence of an anti-MSTN antibody (41). On the other hand,

increased expression and secretion of myokines such as fractalkine,

osteoprotegerin, chitinase-3-like protein 1, irisin, and FST by insulin-

resistant inflamed human myotubes may represent an autoprotective

mechanism counteracting inflammation, insulin resistance, beta cell

dysfunction, and sarcopenia (8, 40, 41, 43, 52). Thus, some myokines

may contribute to the changes in glucose homeostasis and muscle

mass observed in people with obesity and T2D.
3 Changes in myokines following
bariatric surgery related to glucose
homeostasis and muscle mass

The four most common types of bariatric surgery were included

in this review: laparoscopic adjustable gastric banding, sleeve

gastrectomy, Roux-en-Y gastric bypass, and biliopancreatic

diversion. These procedures will be referred to hereafter as

bariatric surgery.

Overall, bariatric surgery alters the circulating levels and muscle

expression of specific myokines (53–56). The main effects of these
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myokines on metabolism and muscle mass are illustrated in

Figure 1. Changes in some of these myokines may be associated

with improved glucose homeostasis after bariatric surgery, which

includes improved systemic and tissue-specific insulin sensitivity

and beta-cell function (Table 1) (30, 57, 58). In addition, some of

these myokines may be associated with changes in muscle mass

after bariatric surgery (Table 1).
3.1 Fractalkine

Fractalkine, also known as C-X3-C motif chemokine ligand 1

(CX3CL1), is the only member of the CX3C chemokine family (59).

Fractalkine is initially synthesized in a plasma membrane-bound form,

and its soluble form is released by enzymatic cleavage (59). Fractalkine

is the specific ligand for a G protein-coupled receptor called CX3CR1,

which mediates its effects on chemotaxis, cell adhesion, and increased

cell survival during inflammation (59). Fractalkine is secreted by

human muscle cells, although it has a low tissue specificity (12, 43,

60, 61). Contraction upregulates fractalkine expression in human

muscle cells and tissue and increases its circulating levels (12–14).

Fractalkine may have beneficial metabolic effects, particularly

on beta cells. Indeed, CX3CR1 knockout mice have impaired GSIS,

which is also observed in isolated pancreatic islets from these mice

(62). In contrast to CX3CR1 knockout mice, wild-type mice treated
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with fractalkine show improved glucose tolerance and GSIS, while

fractalkine also potentiates GSIS in mouse and human islets (62).

Similarly, chronic administration of a long-acting form of

fractalkine improves glucose tolerance in obese rodents, as

evidenced by improved GSIS and hepatic insulin sensitivity (63).

In addition, fractalkine protects rodent beta cells from apoptosis

and GSIS from pro-inflammatory cytokines (59, 62). Fractalkine

expression in islets is reduced in mice fed a high-fat diet and in

obese mice, suggesting that reduced fractalkine signaling may

contribute to beta cell dysfunction in people with obesity and

T2D (62). In addition, administration of purified fractalkine

directly into skeletal muscle of mice modulates mitochondrial

metabolism and shifts substrate preference toward glucose, again

suggesting that fractalkine signaling is involved in the regulation of

muscle insulin sensitivity (64). These promising data in rodent

models have led to the identification of several compounds such as

ZINC000032506419 with a strong binding affinity for CX3CR1

(65). However, the effects of these compounds on glucose

homeostasis are currently unknown. Data on fractalkine in

humans are variable. Some studies have reported higher

circulating fractalkine levels in people with obesity and T2D,

while others have not (8, 66, 67). Data on fractalkine expression

in muscle of people with obesity and T2D are also conflicting (8).

Nevertheless, we showed that circulating fractalkine levels

increased by 7% three months after bariatric surgery, while
FIGURE 1

Main known effects of myokines altered by bariatric surgery on glucose homeostasis and muscle mass. ↑, increase; ↓, decrease. Green, beneficial
effects; Red, detrimental effects. ADAMTS9, ADAM metallopeptidase with thrombospondin type 1 motif 9; ANG, angiogenin; APLN, apelin; BDNF,
brain-derived neurotrophic factor; GSIS, glucose-stimulated insulin secretion; FGF21, fibroblast growth factor 21; FST, follistatin; GLP-1, glucagon-
like peptide 1; IL, interleukin; Metrnl, meteorin-like protein; MG53, mitsugumin (or Tripartite motif containing 72, TRIM72); MMP-2, 72 kDa type IV
collagenase; MSTN, myostatin; OPG, osteoprotegerin; SPARC, secreted protein acidic and cysteine-rich (osteonectin); WAT, white adipose tissue.
Created in https://BioRender.com.
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fractalkine mRNA expression increased by 73% in the vastus

lateralis, suggesting that muscle may contribute to the changes in

circulating levels (54). Furthermore, the amplitude of these changes

is comparable to those observed at circulatory and muscle levels

after acute exercise, suggesting a potential beneficial effect of
Frontiers in Endocrinology 04
increased fractalkine on glucose homeostasis after bariatric

surgery similar to exercise (13–15). To our knowledge, our study

is among the first to explore the relationship between bariatric

surgery and fractalkine. However, we did not find an association

between changes in circulating or muscle fractalkine and changes in
TABLE 1 Changes in myokines after bariatric surgery and their potential contribution or association to changes in glucose homeostasis and muscle
mass after bariatric surgery based on reported associations or known effects on glucose homeostasis or muscle mass.

Myokine Changes after bariatric surgery Potential effects of changes in myokines

Fractalkine ↑ circulating levels ↑ GSIS

↑ muscle mRNA ↑ muscle insulin sensitivity through
shift in substrate use toward glucose in muscle

BDNF ↓ circulating levels ↓ anorectic stimulus
association with ↓ compensatory hyperinsulinemia

↑ muscle mRNA ↑ muscle insulin sensitivity
↑ muscle strength/myogenesis

MSTN ↓ circulating levels ↑ muscle insulin sensitivity
↑ muscle mass

↓ muscle mRNA

Irisin ↓; ↔; ↑ circulating levels ? changes in energy expenditure

↓ muscle mRNA ↓ muscle mass

IL-6 ↓; ↔ circulating levels ↑ muscle insulin sensitivity
↑ muscle strength/myogenesis

↑ muscle mRNA

FGF21 ↑ circulating levels ↑ muscle insulin sensitivity
↓ muscle mass

Metrnl ↓; ↔; ↑ circulating levels ? changes in energy expenditure
↑ Metrnl inversely associated with ↓ HOMA-IR

Myonectin
↔; ↑ circulating levels ↑ muscle insulin sensitivity

↑ muscle mass

APLN ↓ circulating levels ? muscle insulin sensitivity
↓ muscle mass

↔ muscle mRNA

SPARC ↓ circulating levels ↑ muscle insulin sensitivity
↓ muscle mass
association with ↓ HOMA-IR

MMP-2 ↓; ↑ circulating levels ? muscle insulin sensitivity through ECM remodeling

FST

↓; ↔; ↑ circulating levels Surgery alone with exercise:
counter-regulation of MSTN

Surgery alone:
↓ muscle mRNA
Surgery with exercise:
↑ muscle mRNA

ADAMTS9 ↑ muscle mRNA ? muscle insulin sensitivity through ECM remodeling

MG53 ↑ muscle mRNA ? muscle insulin sensitivity

ANG ↑ muscle mRNA ↑ GSIS

OPG ↑ muscle mRNA ↑ GSIS

ANG ↑ muscle mRNA ↑ GSIS

IL-8 ↔ circulating levels ? muscle insulin sensitivity though muscle angiogenesis

(↑ secretion by myotubes)
↑, increase/increased; ↓, decrease/decreased; ADAMTS9, ADAM metallopeptidase with thrombospondin type 1 motif 9; ANG, angiogenin; APLN, apelin; BDNF, brain-derived neurotrophic
factor; GSIS, glucose-stimulated insulin secretion; FGF21, fibroblast growth factor 21; FST, follistatin; IL, interleukin; Metrnl, meteorin-like protein; MG53, mitsugumin (or Tripartite motif
containing 72, TRIM72); MMP-2, 72 kDa type IV collagenase; MSTN, myostatin; OPG, osteoprotegerin; SPARC, secreted protein acidic and cysteine-rich (osteonectin).
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glucose homeostasis as assessed by the Homeostasis Model

Assessment (HOMA) test (54). We believe future studies should

evaluate the relationship between fractalkine and glucose

homeostasis using more sophisticated methods to assess changes

in muscle insulin sensitivity and beta cell function after bariatric

surgery (30, 58).
3.2 Brain-derived neurotrophic factor

Brain-derived neurotrophic factor (BDNF) is mainly expressed in

the central and peripheral nervous system, where it acts as a potent

neuronal survival factor and modulator of synaptic plasticity (60, 61,

68). In humans, 70-80% of circulating BDNF originates from the

brain (8). However, BDNF is also secreted by human muscle cells,

which qualifies BDNF as a myokine (5, 12, 68). Contraction

upregulates BDNF mRNA expression in human muscle tissue and

cells (12, 14, 68–71). In humans, acute exercise increases circulating

BDNF levels, whereas chronic exercise training does not change,

increases, or even decreases circulating BDNF levels (15, 71). There

are two major isoforms of the mammalian BDNF receptor TrkB,

including TrkB.T1, which is expressed in the human pancreas (68).

BDNF has beneficial metabolic effects on skeletal muscle and

beta cells (Figure 2). Systemic BDNF injections in mouse models of

obesity and diabetes decrease blood glucose levels by enhancing
Frontiers in Endocrinology 05
muscle glucose uptake (68, 72, 73). However, BDNF has no direct

effect on glucose uptake in muscle cells in vitro (8, 74). In contrast,

BDNF increases fatty acid oxidation in muscle by activating AMPK

(8, 69). In addition, pancreatic BDNF-TrkB.T1 signaling increases

GSIS in human pancreatic islets (68). Muscle-specific BDNF

knockout mice have reduced circulating BDNF levels,

demonstrating that muscle is also a source of circulating BDNF

(68). In addition, these mice exhibit glucose intolerance and blunted

GSIS, suggesting that BDNF is a myokine that acts in an endocrine

manner on beta cells (68). Finally, mice and humans heterozygous

for mutations that inactivate BDNF or TrkB develop hyperphagic

obesity (68), suggesting a role for BDNF in inhibiting

hunger (Figure 2).

BDNF has long been thought to serve only as a retrograde

trophic factor for innervating motor neurons and stabilization of

neuromuscular junctions in muscle (71, 75). However, mouse and

cell models have shown that BDNF is expressed in satellite cells

promoting myogenic differentiation (75) (Figure 2). Hence, muscle-

damaging exercise in healthy people is associated with increased

muscle BDNF expression and satellite cell proliferation (76). These

data suggest that BDNF plays an important role in mediating

satellite cell activation to muscle injury (11). However, BDNF

overexpression in mouse muscle does not alter muscle mass (77).

In line with this, BDNF is associated with muscle strength rather

than muscle mass in humans (78).
FIGURE 2

Actions of central and myocyte-specific brain-derived neurotrophic factor (BDNF) on glucose homeostasis. In humans, most circulating BNDF
originates from the brain (70-80%) and platelets. Muscle also contributes to circulating levels. BDNF expression is upregulated in muscle by acute
exercise which increases BDNF circulating levels. BDNF actions at the central and peripheral levels may decrease food intake, stimulate glucose
uptake and fatty acid oxidation by muscle, and enhance glucose-stimulated insulin secretion by pancreas. These actions should collectively improve
glucose homeostasis. Black arrows indicate the relative contribution of the brain, platelets and muscle to BDNF circulating levels.
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Circulating BDNF levels are decreased in people with T2D

independently of obesity and associated with impaired glucose

homeostasis (8, 79). Reduced BDNF levels could contribute to

beta cell dysfunction, reduced muscle oxidative capacity, and

altered eating behavior promoting obesity and T2D. People with

obesity carrying some specific variants of the BDNF gene achieve

greater weight loss after bariatric surgery (80). We are not aware of

any human BDNF analogs or agonists of its receptors. In contrast,

circulating BDNF levels increase after exercise training in people

with obesity and T2D and correlate positively with muscle strength

in lower limbs (78). In older people, those with frailty (i.e., muscle

weakness, slow walking speed, and low physical activity) have lower

circulating BDNF levels than those without, and lower BDNF levels

are associated with frailty regardless of age (81). Circulating BDNF

levels correlate with exercise capacity and muscle strength, but not

with muscle mass in people with heart failure (82). Thus, BDNF

may be used as a biomarker of muscle strength rather than muscle

mass and decreased BDNF levels in people with obesity and T2D

may promote or reflect sarcopenic obesity.

Several studies, including ours, have shown decreased

circulating BDNF levels three months to one year after bariatric

surgery (54, 83, 84). In our study, decreased BDNF levels were

associated with decreased steady-state estimate of beta cell function

(i .e. , HOMA2-%B), reflecting decreased compensatory

hyperinsulinemia as expected from improved insulin sensitivity

after bariatric surgery (54, 58). In contrast, we showed an

upregulation of BDNF mRNA expression in vastus lateralis three

months after bariatric surgery with an amplitude comparable to that

observed after acute exercise (69). Interestingly, upregulation of

muscle BDNF was associated with decreased insulin resistance (i.e.,

HOMA2-IR), suggesting a potential insulin-sensitizing effect of

BDNF (54). Muscle BDNF is thought to act in an autocrine/

paracrine manner to positively regulate muscle insulin sensitivity

(68). Finally, upregulation of BDNF mRNA expression was

negatively associated with the magnitude of fat-free mass loss,

suggesting that upregulation of BDNF mRNA expression may be

a mechanism aimed at maintaining muscle mass after bariatric

surgery (54), whereas decreased circulating BDNF levels after

bariatric surgery could reflect decreased muscle strength.

Supervised exercise is recommended after bariatric surgery (85),

as it has an additive effect to surgery in improving insulin sensitivity

(32) and may improve muscle strength (86), cognition (87) and

brain networks involved in regulating food intake (88). Higher

circulating BDNF levels have been reported two years after bariatric

surgery, together with sustained cognitive improvement, suggesting

that changes in BDNF may be associated with cognitive

improvement after bariatric surgery (87). The interaction between

bariatric surgery and exercise may be highly relevant to BDNF

actions as both upregulate BDNF in muscle. However, we are not

aware of any studies that have examined the effects of both

interventions combined on BDNF. Based on previous

experimental evidence, we hypothesize that the reduction in

circulating BDNF levels early after bariatric surgery may serve as

a counter-regulatory response to sustained caloric restriction,

weight loss and improved insulin sensitivity, whereas increased
Frontiers in Endocrinology 06
BDNF later after bariatric surgery may help improve obesity-related

neurocognitive disorders and regulate food intake. However, this

remains to be confirmed and further studies are needed to test

these hypotheses.
3.3 Myostatin

MSTN, also known as growth differentiation factor 8 (GDF-8),

is a member of the transforming growth factor (TGF)-beta

superfamily that is secreted primarily by skeletal muscle and to a

lesser extent by adipose tissue (4, 89). MSTN is expressed as a full-

length precursor form, processed to latent MSTN by removal of its

signal peptide, and subsequently activated by proteolytic cleavage

by members of the bone morphogenetic protein (BMP)-1 family of

metalloproteases (89). Mature MSTN is regulated extracellularly by

several binding proteins, including FST (89). MSTN acts as a direct

negative regulator of muscle mass through activin type II receptors

and SMAD2-3 transcription factors, preventing pathological muscle

hypertrophy (11, 89). Indeed, MSTN gene knockout in mice results

in muscle hypertrophy, whereas MSTN overexpression in skeletal

muscle results in muscle atrophy (89). On the one hand, MSTN

activates FOXO-dependent transcription of atrogens (e.g., MURF-

1, MAFbx/atrogin-1), leading to activation of muscle protein

degradation and inhibition of myogenesis (11, 41). On the other

hand, MSTN inhibits muscle protein synthesis by suppressing Akt-

mediated mTORC1 activation (11, 90, 91). It has been suggested

that MSTN may contribute to muscle wasting in diverse conditions

in humans, including sarcopenic obesity (18, 92–97). In contrast,

exercise decreases circulating levels and muscle expression of

MSTN in humans, promoting increases in muscle mass and

strength (13, 14, 98, 99).

Although MSTN is best known as a negative regulator of muscle

mass, animal and cell models suggest that MSTN plays a pathogenic

role in insulin resistance in obesity and T2D. Indeed, MSTN inhibition

protects rodents from obesity and insulin resistance (100). Specifically,

MSTN inhibition increases insulin-dependent and -independent

glucose uptake and glycogen synthesis in muscle of normal chow-fed

mice (100). This effect is likely mediated by increased GLUT1 and

GLUT4 protein levels and increased muscle mass (100). MSTN

inhibition also improves muscle glucose uptake in obese high-fat

diet-fed mice by stimulating fatty acid metabolism and

mitochondrial function, independently of muscle hypertrophy (101).

In contrast, MSTN impairs insulin signaling, decreases AMPK activity,

and inhibits GLUT4 expression in muscle cells, thereby impairing

muscle glucose uptake and insulin sensitivity (102).

Circulating MSTN levels and muscle MSTN expression are

typically higher in people with obesity and T2D than in healthy

people (41, 103–106). Increased levels and phosphorylation of

SMAD2-3 transcription factors have also been reported in muscle of

people with obesity and T2D, altering myogenesis (20, 41, 103–105).

There is a positive correlation between circulating MSTN levels or its

muscle expression and insulin resistance in people with obesity and

T2D (41, 104–106). Myotubes from insulin-resistant women with

extreme obesity show increased MSTN secretion, suggesting that
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muscle is a source of increased circulating MSTN levels during obesity

and T2D (41). In contrast, bimagrumab, a fully human monoclonal

antibody that inhibits activin type II receptors, results in significant fat

mass loss, increased lean mass, and improved insulin sensitivity in

people with obesity and T2D (107, 108). Other compounds including

Trevogrumab and Garetosmab are in the pipeline for muscle wasting

conditions in humans (109).

Our research and that of others has shown that MSTN decreases

at circulating and muscle levels after bariatric surgery (53, 54, 110).

Kumar et al. have shown a 22% reduction in circulating MSTN

levels six months after bariatric surgery in adolescents (53). Milan

et al. have reported a 60% reduction in quadriceps MSTN mRNA

expression eighteen months after bariatric surgery (110). We have

also reported a significant reduction of MSTN in plasma (-32%) and

vastus lateralis (-45% mRNA expression) three months after

bariatric surgery, suggesting that decreased MSTN expression is

responsible for decreased circulating MSTN levels (54). Like others,

we did not find an association between changes in circulating or

muscle MSTN and changes in glucose homeostasis as assessed by

the HOMA test (53, 54), whereas decreased MSTN would be

expected to improve muscle insulin sensitivity, independently of

changes in muscle mass. In contrast, Milan et al. have found a

positive correlation between decreased MSTN mRNA in vastus

lateralis and decreased fat-free mass after bariatric surgery (110).

We have also shown that decreased circulating MSTN levels were

positively associated with decreased muscle mass after bariatric

surgery, but inversely associated with sarcopenic obesity after

bariatric surgery (55). In fact, a positive correlation between

circulating MSTN levels and muscle mass or strength has been

shown in various conditions, using recent immunoassays detecting

active MSTN only (55, 111–118). Overall, these data suggest that

decreased circulating MSTN levels after bariatric surgery may

reflect decreased muscle and that circulating MSTN levels may be

used as a biomarker of muscle mass. However, we also hypothesize

that circulating MSTN does not play a major pathogenic role in

muscle wasting after bariatric surgery. Decreased MSTN muscle

expression and circulating levels after bariatric surgery may

represent a counter-regulatory mechanism to preserve muscle

mass during profound calorie and protein restriction (55, 110).

Future studies should evaluate the relationship between MSTN and

glucose homeostasis using more sophisticated methods to assess

changes in muscle insulin sensitivity after bariatric surgery (30, 58).
3.4 Irisin

Irisin is produced by cleavage of the membrane protein

fibronectin type III domain-containing protein 5 (FNDC5) (119).

Although irisin is difficult to detect using commercially available

ELISA kits, irisin has been detected in human plasma using mass

spectrometry (120). Circulating irisin levels increase in response to

acute exercise (10, 15, 121). However, FNDC5 mRNA is not

induced after acute exercise in healthy human muscle (14).

FNDC5 mRNA expression is higher in human muscle than in
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liver and adipose tissue, suggesting that muscle may be an

important source of circulating irisin (122).

Irisin may have beneficial effects on skeletal muscle and beta cells.

Mice fed a high-fat diet are protected against obesity and diabetes by

irisin treatment (2, 119). Similarly, irisin treatment reduces body

weight and blood glucose levels in rats with T2D (123). Muscle cells

incubated with irisin show increased AMPK-mediated glucose uptake

and fatty acid oxidation, suggesting a direct effect of irisin on muscle

(10, 124, 125). In addition, irisin treatment improves GSIS in mice by

increasing insulin biosynthesis and beta cell mass (126). Human beta

cells and islets incubated with irisin are protected from palmitate-

induced apoptosis, suggesting that irisin may protect beta cells from

lipotoxicity in obesity (2, 126). In addition, irisin treatment induces a

white-to-brown shift in mouse adipose tissue by increasing

uncoupling protein (UCP) 1 expression, which increases whole-

body energy expenditure (8, 119). Finally, muscle cells incubated

with irisin show increased mitochondrial uncoupling and increased

expression of UCP3, peroxisome proliferator-activated receptor

gamma coactivator 1-alpha (PGC1A), and mitochondrial fusion

genes, resulting in increased oxidative metabolism (127).

Several lines of evidence suggest that irisin promotes muscle

hypertrophy (11). Irisin expression and secretion increase during

myogenic differentiation in human primary myotubes (128). Irisin

also induces myogenic differentiation of muscle cells by stimulating the

expression of pro-myogenic genes (129). In addition, treatment of

human primary myotubes with irisin results in muscle cell hypertrophy

through downregulation of MSTN and upregulation of insulin-like

growth factor I (IGF-I), a well-known anabolic factor (128). Mice

injected with irisin exhibit muscle hypertrophy and improved grip

strength due to activation of satellite cells and increased muscle protein

synthesis (129). Finally, intraperitoneal irisin administration to aged

mice mitigates age-related muscle atrophy (130). Overall, current

experimental data on irisin suggests its potential for therapeutic

purposes in sarcopenia. In humans, circulating irisin levels are

positively correlated with muscle mass adjusted for body weight in

postmenopausal women, and inversely associated with sarcopenia

(131). In addition, irisin expression decreases with age in human

muscle (130). These data suggest that irisin may positively regulate

muscle mass in humans. Indeed, low circulating irisin levels are a

predictive factor for sarcopenic obesity (132).

Some studies and a recent meta-analysis have reported lower

circulating irisin levels in people with obesity and T2D than in

healthy people (133–138). In these studies, circulating irisin levels

were inversely correlated with body mass index (BMI) and insulin

resistance in healthy and obese people (133–136). In contrast, several

studies have reported higher circulating irisin levels in people with

obesity (139, 140) and increased irisin secretion by insulin-resistant

human myotubes (126). Consistent with these latter observations,

FNDC5 mRNA expression in muscle is positively correlated with

BMI (122). In addition, human visceral and subcutaneous adipose

tissues secrete irisin and may contribute to higher circulating irisin

levels in people with obesity (139, 140). Thus, decreased irisin could

be associated with decreased oxidative metabolism and insulin

sensitivity in muscle during obesity, whereas increased irisin could
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be interpreted as a counterregulatory mechanism to overcome insulin

resistance. Overall, current experimental data on irisin suggests its

potential for therapeutic purposes, especially in T2D and obesity, as

irisin shares some metabolic effects with incretin hormones (141).

However, considerable uncertainty remains regarding the reliability

and accuracy of methods used to quantify circulating irisin, which

may partly explain the discrepancies between studies (142) and

possibly the cautious approach of pharmaceutical companies

towards this myokine. We are not aware of any development of

irisin analogs or agonists of its receptor.

Changes in circulating irisin levels after bariatric surgery show

no discernible pattern (143), which may be related to discrepancies

between commercial ELISA kits. Kumar et al. have reported

increased circulating irisin levels in adolescents six months after

bariatric surgery (53). However, no association was found with

changes in HOMA-IR. In other studies, circulating irisin levels

remained unchanged or even decreased from one month to one year

after bariatric surgery in people with or without T2D at baseline

(122, 136, 144, 145). In contrast, we and others have consistently

found decreased FNDC5 mRNA expression in vastus lateralis 3-6

months after bariatric surgery (54, 122). Decreased irisin expression

may be related to a transient decrease in mitochondrial function

and oxidative metabolism in muscle early after bariatric surgery

(31). Based on the documented anabolic effect of irisin on muscle

cells, decreased irisin expression in muscle after bariatric surgery

may contribute to muscle mass loss. However, the inconsistent

results of circulating irisin levels after bariatric surgery preclude

meaningful speculation about its role in this context in humans.

Future studies should use validated ELISA techniques for irisin

quantification to provide more reliable data.
3.5 Interleukin-6

Skeletal muscle is considered the main source of increased

circulating IL-6 levels during exercise (1, 15). Contraction indeed

upregulates IL-6 expression and secretion by human muscle cells

and muscle tissue (1, 12–14, 50). Type II muscle fibers produce

more IL-6 than type I muscle fibers during contraction (50).

IL-6 release from contracting muscle has been proposed to mediate

some of the benefits of exercise on glucose homeostasis (2, 15).

Indeed, acute infusion of IL-6 enhances insulin-stimulated glucose

uptake in healthy humans, while chronic exposure to IL-6 increases

glycogen synthesis and lipid oxidation through AMPK activation in

primary human myotubes (146). In addition, acute IL-6 infusion

stimulates lipolysis and fatty acid oxidation in muscle from healthy

humans (147–149). IL-6 also enhances insulin secretion by increasing

glucagon-like peptide-1 secretion from intestinal L cells and pancreatic

alpha cells, suggesting that IL-6 may mediate muscle-gut-pancreas

crosstalk (150).

The role of IL-6 in the regulation of muscle mass appears to be

complex. IL-6 is produced transiently by growing muscle fibers and

satellite cells (151). IL-6 gene deletion in mice blunts muscle

hypertrophy in response to overload (151). Recovery of muscle

mass after hindlimb suspension is also absent in IL-6 knockout mice
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because of reduced IGF-I expression and Akt/mTOR signaling in

muscle (152). IL-6 appears to play a positive role in muscle growth,

which would be consistent with elevated circulating IL-6 levels

during exercise. In fact, genetic polymorphisms in the promoter

region of the IL-6 gene that increase IL-6 levels have been linked to

increased fat-free mass in men (153). The IL-6–STAT3 signalling

may contribute to some muscle adaptations occurring after training,

such as the induction of mitochondrial biogenesis and increased

mitochondrial activity. However, this effect appears to be restricted

to specific muscle tissues (153). In contrast, recombinant human IL-

6 injected subcutaneously into rats causes muscle wasting (154). In

addition, IL-6 overexpression from birth in mice reduces muscle

growth during postnatal life, causing muscle atrophy (155).

Similarly, a 3-hour infusion of recombinant human IL-6 in

healthy people causes a significant reduction in muscle protein

turnover and plasma amino acids (156). These observations suggest

that locally produced IL-6 may have an anabolic effect on muscle in

response to physiological stimuli (e.g., exercise), whereas

chronically elevated levels of IL-6 may be detrimental to muscle

mass. In fact, the effect of IL-6 on muscle mass and function may

differ under physiological and pathological conditions that affect IL-

6 signaling. Briefly, classical IL-6 signaling involves the binding of

IL-6 to the membrane-bound IL-6 receptor alpha-subunit and

glycoprotein 130 signal-transducing subunit. In contrast, IL-6

trans-signaling, which has emerged as the predominant pathway

by which IL-6 promotes disease pathogenesis, involves the binding

of complexes of IL-6 and the soluble form of IL-6 receptor to

membrane-bound gp130 (157, 158).

Circulating IL-6 levels are chronically elevated in people with

obesity and T2D but are still much lower than that in people with

cancer and muscular dystrophy (8, 31, 155, 159, 160). Adipose tissue,

rather than muscle, is considered the primary source of chronically

elevated circulating IL-6 and other pro-inflammatory factors (e.g.,

TNF-a) levels in obesity (23, 24). However, humanmyotubes exposed

to TNF-a show increased IL-6 secretion, suggesting that muscle may

also contribute to increased circulating IL-6 levels in people with

obesity and T2D (43). Mice fed a high-fat diet exhibit obesity-related

systemic insulin resistance and elevated circulating IL-6 levels, while

blockade of excessive IL-6 signaling improves systemic insulin

sensitivity illustrated by upregulated skeletal muscle glucose uptake

(161). In humans, subcutaneous administration of recombinant IL-6

induces dose-dependent increase in fasting blood glucose in healthy

people, probably by stimulating glucagon release and/or by inducing

peripheral insulin resistance (162), whereas IL-6 blockade improves

glycated hemoglobin A1c (HbA1c) in people with T2D (163). In

addition, skeletal muscle response to IL-6 is blunted in people with

T2D. Indeed, acute IL-6 infusion/treatment does not increase glucose

uptake in people with T2D or myotubes from people with T2D,

conversely to healthy people (164, 165). Thus, on one hand,

chronically elevated circulating IL-6 levels may contribute to

impaired glucose homeostasis in obesity. On the other hand, acute

IL-6 may be effective in preventing T2D by increasing muscle glucose

uptake, an effect that is lost in people with T2D (10). In contrast,

acute IL-6 infusion still stimulates lipolysis and fatty acid oxidation in

muscle from people with T2D, as observed in healthy people (149).
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Interestingly, plasma levels and muscle expression of IL-6 increase

robustly but transiently in response to acute exercise in people with

T2D similarly to healthy people (166), suggesting that IL-6 may still

exert beneficial actions in muscle during T2D. On the other hand,

exercise training (including aerobic exercise and resistance training)

decreases basal plasma IL-6 levels in people with T2D, which is

associated withmetabolic improvement (167, 168). Regarding muscle

mass, human studies have suggested a possible association between

elevated circulating IL-6 levels and age-related decline in muscle mass

and strength (155). Indeed, older people with sarcopenia have higher

IL-6 levels than those without, and IL-6 levels are associated with

sarcopenia (159). In addition, higher circulating IL-6 levels in older

people are associated with impaired muscle response to exercise

training, and impaired physical performance (169). Therefore,

chronically elevated IL-6 may be an important contributor to the

decline in muscle mass, strength, and function in people with obesity

and T2D (169), potentially contributing to sarcopenic obesity.

Kumar et al. have reported reduced circulating IL-6 levels in

adolescents six months after bariatric surgery (53). However, no

association was found with HOMA-IR. Similarly, Villarreal-

Calderon et al. found reduced circulating IL-6 levels six months

after bariatric surgery, while metabolic improvement was evident as

early as three months (170). In contrast, Sajoux et al. reported

unchanged circulating IL-6 levels after bariatric surgery (145).

Overall, decreased circulating IL-6 may indicate decreased

adipose tissue and muscle inflammation (171). However, we have

reported increased IL-6 mRNA expression in vastus lateralis three

months after bariatric surgery, although with a lower amplitude

than after acute exercise (54). Although we did not find an

association between changes in IL-6 mRNA expression and

changes in glucose homeostasis or fat-free mass (54), we

hypothesize that increased IL-6 mRNA expression in muscle after

bariatric surgery may locally exert beneficial effects on glucose and

lipid metabolism as well as anabolism.
3.6 Fibroblast growth factor 21

Fibroblast growth factor (FGF) 21, a member of the FGF19

subfamily, is mainly an hepatokine, but also an adipomyokine

(56, 172). FGF21 binds to the beta-Klotho complex, a FGF co-

receptor that is highly expressed in metabolically active tissues

such as the pancreas (173). Several observations support the role

of FGF21 in glucose homeostasis. FGF21 treatment in both

regular chow- and high-fat diet-fed mice improves hepatic and

muscle insulin sensitivity, by decreasing hepatocellular and

intramyocellular diacylglycerol content (174). Systemic FGF21

administration lowers blood glucose levels in monkeys with

diabetes (173). In addition, incubation of human myotubes with

FGF-21 increases basal and insulin-stimulated glucose uptake by

upregulating GLUT1 expression, suggesting a direct effect of FGF21

on muscle (175). FGF21 also protects beta cells from apoptosis,

possibly by reducing glucolipotoxicity (173).

FGF21 expression is very low in healthy muscle (176). However,

cellular stressors including fasting, endoplasmic reticulum stress,
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mitochondrial myopathies, and metabolic disorders induce FGF21

release from muscle (176, 177). Muscle-specific FGF21 knockout

mice have similar muscle fiber size than control mice, indicating that

FGF21 does not control muscle mass under basal conditions (176). In

contrast, FGF21 knockout mice are protected against starvation-

induced muscle atrophy, whereas FGF21 overexpression in muscle

induces muscle atrophy by activating autophagy (176). Similarly,

systemic FGF21 treatment in female mice induces muscle atrophy,

possibly through glucocorticoid signaling (178). In contrast, skeletal

muscle-specific Akt1 transgenic mice which are characterized by

muscle fiber hypertrophy exhibit increased FGF21 muscle expression

and circulating levels (179). Taken together, these data suggest that

muscle is a source of circulating FGF21 and that FGF21 promotes

muscle atrophy in the context of cellular stress.

Increased circulating FGF21 levels have been reported in people

with prediabetes and T2D, which may be a consequence of metabolic

imbalance and/or FGF21 resistance (173, 175, 180). Circulating FGF21

levels correlate with fasting insulin, insulin resistance, and BMI in

people with T2D but not in healthy people (175). However, muscle

FGF21 mRNA expression is similar in people with T2D and healthy

people (175), suggesting that increased circulating FGF21 levels do not

originate from muscle. Plasma FGF21 levels increase after acute

exercise (15). However, FGF21 analogs have shown little or no

efficacy in improving body weight, blood glucose, and HbA1c in

people with obesity and T2D (181). Regarding muscle mass, older

people with sarcopenia have higher circulating FGF21 levels than those

without (182). In addition, FGF21 levels were found to be associated

with an increased likelihood of sarcopenia, low muscle mass, and low

muscle strength, independent of sex, age, and BMI (182). However, a

meta-analysis found no difference in circulating FGF21 levels between

people with and without sarcopenia, and no strong correlation between

the onset of sarcopenia and circulating FGF21 levels (183).

Nevertheless, these data suggest that elevated FGF21 levels in people

with obesity may be associated with sarcopenic obesity.

A steep increase in circulating FGF21 levels has been observed

within weeks after bariatric surgery, followed by a slight decrease

over time (184–186). These changes may be related to initial muscle

wasting in response to caloric restriction, which tends to decrease

over time. No association was found between changes in circulating

FGF21 levels and HOMA-IR early after bariatric surgery (184). At

longer term, people with T2D who had undergone bariatric surgery

12 years earlier exhibited similar circulating FGF21 levels than those

who had not undergone bariatric surgery, despite lower BMI (187).

Increased FGF21 expression in muscle after bariatric surgery would

be expected to improve muscle insulin sensitivity, possibly through

intramyocellular lipid depletion and restored adiponectin

expression in adjacent adipocytes (174, 188). However, muscle

data in humans are currently lacking to establish that changes in

circulating FGF21 after bariatric surgery originate from muscle.
3.7 Meteorin-like protein

Meteorin-like protein (Metrnl) (also known as subfatin) is a

neurotrophic factor homologous to meteorin that is abundant in
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cerebrospinal fluid and plays a role in neuroblast migration and

neuroprotection (189). In addition, Metrnl is a cold- and caloric

restriction-induced adipokine and a contraction-induced myokine

that has been detected in conditioned media from muscle cells

(45, 189–191). Resting muscle cells express only low levels of

Metrnl, while its expression is upregulated by exercise along with

PGC1A expression in human muscle tissue (13, 191). Consistently,

plasma Metrnl levels increase after acute and chronic exercise (15).

Several observations support that Metrnl may have beneficial

effects on glucose homeostasis. Metrnl treatment in mice increases

the expression of genes associated with beige fat thermogenesis, as

well as the expression of anti-inflammatory cytokines in white

adipose tissue (191). In addition, Metrnl promotes adipocyte

differentiation and lipid storage, likely by acting through

induction of the transcription factor peroxisome proliferator-

activated receptors (PPAR) gamma, the key regulator of adipocyte

differentiation (191). Adipocyte-specific Metrnl knockout in mice

exacerbates high-fat diet-induced insulin resistance, whereas

adipocyte-specific transgenic Metrnl overexpression prevents

high-fat diet-induced insulin resistance (192).

Data on circulating Metrnl levels in people with obesity and

T2D are conflicting (189). Some studies have reported higher

circulating Metrnl levels in people with obesity and T2D (193),

while other studies have found lower Metrnl levels which negatively

correlated with HbA1c (189, 194).

Data on changes in circulating Metrnl levels after bariatric

surgery are also conflicting. Pellitero et al. found increased

circulating Metrnl levels 12 months after bariatric surgery, which

were inversely associated with HOMA-IR (194). These data suggest

a potential insulin-sensitizing effect of Metrnl, which is consistent

with experimental observations (192). In contrast, Schmid et al.

reported decreased circulating Metrnl levels within days of bariatric

surgery, followed by a progressive return to baseline (189).

Decreased circulating Metrnl levels after bariatric surgery were

also observed in rats, while Metrnl expression was increased in

muscle and white adipose tissue (195). In contrast, liver Metrnl

expression is reduced in humans after bariatric surgery, suggesting

that tissues other than muscle and adipose tissue may contribute to

changes in circulating Metrnl levels after bariatric surgery (196).

Muscle data in humans are currently lacking to establish that

changes in circulating Metrnl after bariatric surgery originate

from muscle.
3.8 Myonectin

Myonectin (also known as erythroferrone or CTRP15) is a C1q/

TNF-related protein that is predominantly expressed by skeletal

muscle and is robustly secreted by muscle cells (197). Higher

myonectin mRNA expression was found in slow-twitch and

oxidative muscles compared to fast-twitch and glycolytic muscles

in mice (197). Myonectin is tightly regulated by metabolic state,

with fasting suppressing circulating myonectin and refeeding

dramatically increasing both circulating and muscle mRNA levels
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(197). Similarly, diet-induced obesity decreases circulating and

muscle mRNA levels of myonectin, whereas voluntary exercise

increases both circulating and muscle mRNA levels (197).

Administration of myonectin to mice reduces circulating levels of

free fatty acids without altering adipose tissue lipolysis and

enhances fatty acid uptake in cultured adipocytes and hepatocytes

(197). Consistent with this, myonectin knockout mice have

impaired lipid clearance from the blood and insulin resistance

when fed a high-fat diet (198). In contrast, myonectin does not

lower blood glucose levels (197). Collectively, these data suggest that

myonectin links skeletal muscle to lipid homeostasis in liver and

adipose tissue in response to changes in energy status (197).

In addition, myonectin may mitigate muscle atrophy (11).

Indeed, disruption of myonectin exacerbates muscle atrophy and

mitochondrial dysfunction related to age, sciatic denervation and

dexamethasone in mice (199). In contrast, treatment with

myonectin attenuates or suppresses muscle atrophy in these

murine models via activation of AMPK/PGC1A signaling (199).

Slow-twitch muscle fibers exhibit higher myonectin expression than

fast-twitch muscle fibers, suggesting that myonectin may control

mitochondrial biogenesis and muscle function (197).

Data on circulating myonectin levels in people with obesity and

T2D are conflicting. Several studies have found lower circulating

myonectin levels in people with obesity compared to healthy people,

as well as a negative association between myonectin and indicators

of metabolic risk, including BMI, visceral fat content, and indexes

of insulin resistance (200, 201). In contrast, other studies have

found higher circulating myonectin levels in people with obesity

and T2D, as well as a positive association between myonectin,

fat mass, and insulin resistance (202). Exercise training increases

circulating myonectin levels in people with obesity, as observed

in mice (15, 203).

Data on myonectin after bariatric surgery is limited. Li et al.

demonstrated increased circulating myonectin levels six months

after bariatric surgery (200). Although circulating myonectin levels

were negatively associated with HOMA-IR at baseline, no

association with HOMA-IR after bariatric surgery was reported in

this study. In contrast, Butler et al. showed that people who had

undergone bariatric surgery had similar circulating myonectin levels

to those who had not undergone bariatric surgery, even though BMI

was lower after bariatric surgery (187). However, these data were

obtained 12 years after bariatric surgery. Increased myonectin levels

after bariatric surgery could be interpreted as a mechanism to

promote lipid uptake in tissues such as liver and muscle during

caloric restriction. In addition, increased circulating myonectin

levels after bariatric surgery may contribute to attenuating the

decline in muscle mass and mitochondrial function observed at

early time points after bariatric surgery. However, to our knowledge,

associations between changes in myonectin and changes in muscle

mass after bariatric surgery have never been reported. In our

opinion, myonectin is an interesting candidate for future studies

because its changes at circulating and muscle levels may be related

to changes in lipid metabolism and muscle mass after

bariatric surgery.
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3.9 Apelin

Apelin (APLN) is a 36 amino acid peptide and the endogenous

ligand of the G-protein coupled receptor APJ receptor. APLN is

secreted by human muscle cells and various tissues, including

adipose tissue (204, 205). APLN expression increases in response

to insulin in adipocytes and to contraction in human muscle cells

and tissue (204, 206). Muscle APLN expression increases after

exercise and is associated with improved whole-body insulin

sensitivity (204). In addition, treatment of APLN-null or obese

insulin-resistant mice with APLN restores glucose tolerance by

improving muscle glucose uptake and oxidation (207–209).

In addition, APLN plays a critical role in muscle physiology

during aging (210). In the heart, APLN deficiency leads to

premature cardiac aging (210, 211). In skeletal muscle, APLN

deficiency (whole body and muscle-specific) or APLN receptor

deficiency leads to muscle atrophy and functional changes in

mice (210). In contrast, APLN treatment in aged mice reverses

age-related sarcopenia by improving various processes associated

with muscle rejuvenation in an AMPK-dependent manner, leading

to muscle hypertrophy and strength recovery (210). In young and

aged primary human myotubes, APLN treatment induces the

activation of anabolic pathways that promote protein synthesis

(AKT, mTOR, P70S6K and 4E-BP1). In addition, APLN inhibits

the activation of age-related proteolysis players such as FOXO3a in

aged human primary myotubes (210). Furthermore, APLN

treatment induces muscle cell differentiation, thereby enhancing

myogenesis (210). These data suggest that the development of

agonists for the APLN receptor warrants further investigation as

pharmacological strategies for sarcopenia.

Circulating APLN levels are higher in people with obesity and

T2D and inversely associated with insulin sensitivity, suggesting

either APLN resistance or increased secretion from adipose tissue

(205, 206, 212, 213). Indeed, muscle APLN expression is similar

between healthy people and those with T2D (204). In contrast,

adipose tissue APLN expression is increased in people with T2D,

suggesting that adipose tissue is responsible for increased circulating

APLN levels in obesity and T2D (205, 208). Plasma APLN levels are

independently associated with age-related sarcopenia (210).

Furthermore, muscle APLN production in response to exercise is

reduced with aging (210). Indeed, aging is associated with loss of

skeletal muscle APLN and APLN receptor mRNA expression, as

observed in mice and cultured primary human myotubes. Thus,

APLN could be used as a biomarker of sarcopenia (210).

Decreased circulating APLN levels have been reported seven to

twelve months after bariatric surgery and decreased APLN levels are

associated with improved insulin sensitivity (205, 212, 213).

Decreased APLN levels may also reflect or contribute to skeletal

muscle mass loss after bariatric surgery, but data are lacking to

confirm this hypothesis. We have shown that APLN mRNA

expression in vastus lateralis is unchanged three months after

bariatric surgery, which does not exclude changes in other muscle

groups (54). In contrast, APLN expression in adipose tissue is

reduced after bariatric surgery, which likely contributes to reduced
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circulating APLN levels and may be associated with improved

glucose homeostasis (205). Thus, current data suggest that

decreased circulating APLN contributes to or reflects improved

insulin sensitivity after bariatric surgery. However, it has not been

established that the changes observed at the circulating level

originate from muscle.
3.10 Secreted protein acidic and rich
in cysteine

Secreted protein acidic and rich in cysteine (SPARC or

osteonectin) is a glycoprotein that regulates cell-extracellular

matrix (ECM) interactions and exerts profibrotic effects in various

tissues, including muscle (214, 215). In addition, SPARC is

expressed in satellite cells and stimulates myogenesis (216–218).

As a result, SPARC knockout mice have decreased muscle mass and

impaired force recovery (216, 217, 219). In fact, reduced SPARC

expression in mouse muscle upregulates atrogens, increases TGF-

beta signaling, and decreases myofiber size, suggesting that SPARC

deficiency leads to muscle atrophy (218). In contrast, SPARC

treatment in young rats was found to be effective in promoting

myogenesis (218). These data suggest that SPARC plays a role in the

regulation of satellite cell function and protects against muscle

atrophy. Paradoxically, SPARC is expressed in myotubes,

myofibers, and satellite cells in several inherited and idiopathic

muscle wasting diseases (216). In fact, transient increase in SPARC

expression occurs during muscle regeneration and correlates with

the expression of myogenic muscle factors (220). Therefore,

increased SPARC expression in myopathies can be interpreted as

a mechanism aimed at muscle repair.

Circulating levels and muscle mRNA expression of SPARC are

higher in people with obesity and T2D than in lean people (214).

Similarly, circulating levels of MMP-2 (72 kDa type IV collagenase),

a key metalloproteinase involved in the removal of excess

ECM (215), are higher in people with obesity than in lean people

(145). People with sarcopenia have higher circulating SPARC levels

than those without (221). This also suggests that SPARC can serve

as a potential biomarker for sarcopenia.

Lee et al. have shown decreased circulating SPARC and MMP-2

levels nine months after bariatric surgery (215). Changes in

circulating SPARC levels, but not MMP-2, correlated significantly

with changes in HOMA-IR, suggesting that reduced SPARC is

associated with improved insulin sensitivity after bariatric surgery

(215). In contrast, Sajoux et al. have reported increased circulating

MMP-2 levels six months after bariatric surgery (145), which may

contribute to a healthier ECM phenotype in muscle. Notably,

resistance exercise also increases circulating MMP-2 levels in

humans (145). These data suggest that SPARC and MMP-2 may

play opposing roles in the ECM remodeling during obesity and after

bariatric surgery, thereby regulating muscle insulin sensitivity.

Despite the documented effects of SPARC on muscle mass, data

are lacking to determine its potential contribution to changes in

muscle mass after bariatric surgery.
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3.11 Follistatin

FST is a glycoprotein mainly secreted by the liver that is also

detected in conditioned media from humanmyotubes, which qualitfies

FST as a myokine (40). FST inhibits several members of the TGF-beta

family, including MSTN (222). Muscles of FST heterozygous knockout

mice exhibit reduced size and force production, and impaired muscle

repair (222). In contrast, FST overexpression induces muscle

hypertrophy through proliferation of satellite cells (i.e., muscle fiber

precursors) and inhibition of MSTN and activin A (222). Circulating

FST levels are usually higher in people with insulin resistance and T2D

than in healthy people (223, 224). FST and MSTN secretion are both

increased by primary myotubes from people with obesity and T2D,

suggesting that muscle may contribute to increased circulating FST

levels (40). In addition, increased FST at circulating and muscle levels

could be interpreted as a compensatory mechanism to counteract

increased MSTN during obesity. However, circulating FST levels

are negatively associated with muscle mass, strength, and function in

older women, suggesting that FST may be used as a biomarker

of sarcopenia (225, 226).

The effects of bariatric surgery on circulating FST levels are

inconsistent. Some studies have reported increased circulating FST

levels after bariatric surgery (227, 228), while others have reported

decreased or unchanged levels (228–230). Changes in circulating FST

after bariatric surgery are likely of hepatic origin, as the liver is the

major contributor to FST levels both at rest and during exercise (231).

Nevertheless, Dantas et al. have shown that exercise training combined

with bariatric surgery further decreases TGF-beta signaling, MSTN

expression, SMAD 2-3 phosphorylation but increases FST expression

in muscle, compared to bariatric surgery alone, which decreases FST

expression (32). Thus, the interaction between bariatric surgery and

exercise may be relevant to the auto- and paracrine actions of FST.

Increased FST expression in muscle after bariatric surgery may help

preserve muscle mass or muscle strength (85), although this remains to

be confirmed.
3.12 Other myokines

Like SPARC and MMP-2, other myokines are involved in ECM

remodeling, a process that is altered in muscle of people with obesity

and T2D (232) but improved by bariatric surgery (32). However, the

role of these myokines in ECM remodeling of human muscle after

bariatric surgery remains to be determined. ADAM metallopeptidase

with thrombospondin type 1 motif 9 (ADAMTS9) is a secreted

metalloprotease active against proteoglycans (e.g. versican, aggrecan)

(233). Computational analysis of the human secretome predicts that

ADAMTS9 is a myokine (3, 5). The ADAMTS9 rs4607103 C allele is

one of several genetic variants proposed to increase the risk of T2D

through impaired insulin sensitivity (233). This variant is associated

with increased expression of secreted ADAMTS9, decreased insulin

sensitivity and decreased expression of mitochondrial markers in

human muscle (233). Consistent with this, mice selectively lacking

Adamts9 in skeletal muscle have improved insulin sensitivity, whereas

overexpression of Adamts9 in muscle leads to impaired mitochondrial
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function, accumulation of harmful lipid intermediates, and impaired

insulin signaling (233). To our knowledge, changes in circulating

ADAMTS9 levels after bariatric surgery have not been reported. We

have reported that ADAMTS9 mRNA expression increases in vastus

lateralis three months after bariatric surgery (54). However, we did not

find an association with changes in glucose homeostasis as assessed by

the HOMA test (54), and whether ADAMTS9 would play a positive or

negative role in ECM remodeling in the context of bariatric surgery is

currently unknown.

Tripartite motif containing 72 (TRIM72, also known as

mitsugumin or MG53) is a striated muscle-specific E3 ligase that

promotes ubiquitin-dependent degradation of the insulin receptor

and IRS-1, inducing muscle insulin resistance (234, 235). MG53 is

detected in conditioned media from human muscle cells (5). Using

perfused mouse muscle, Wu et al. showed that high glucose and

insulin levels, conditions mimicking obesity and T2D, induce

MG53 release by muscle (234). Similarly, oral administration of

glucose increased circulating MG53 and blood glucose levels in

healthy humans (234). In addition, systemic administration of

recombinant MG53 causes systemic insulin resistance and

metabolic syndrome in mice, by blocking the insulin receptor

(234). However, we reported increased MG53 mRNA expression

in vastus lateralis three months after bariatric surgery, but we did

not find an association with changes in glucose homeostasis as

assessed by the HOMA test (54). A better understanding of the role

of MG53 in regulating muscle insulin sensitivity after bariatric

surgery may provide new therapeutic avenues. Of note, no reliable

ELISA kits are available for the quantification of circulating human

MG53 (234).

Angiogenin and osteoprotegerin are type II muscle specific

myokines that are more highly expressed and secreted by human

triceps than soleus myotubes (49). Both myokines exert beta cell

protective effects alone or against proinflammatory cytokines, such as

reduced beta cell apoptosis and preserved GSIS (49). These myokines

may mediate muscle-pancreas crosstalk. Osteoprotegerin acts as a

decoy receptor for TNFSF11/RANKL and TNFSF10/TRAIL (236),

thereby neutralizing their inflammatory effects, whereas angiogenin is

a secreted protein involved in protein synthesis and angiogenesis

(237). We have reported increased angiogenin and osteoprotegerin

mRNA expression in vastus lateralis three months after bariatric

surgery, but we did not find any association with changes in glucose

homeostasis as assessed by the HOMA test (54). These myokines may

contribute to improved beta cell function after bariatric surgery

through anti-inflammatory and possibly pro-angiogenic effects.

IL-8, another member of the interleukin family, is a myokine that is

potentially involved in angiogenesis in muscle (145). Circulating IL-8

levels increases in response to exercise (15, 145). IL-8 is also increased

in conditioned media from insulin-resistant human myotubes exposed

to pro-inflammatory factors (e.g., TNF-a) (43). Circulating IL-8 levels

are lower in people with obesity than in lean people and non-

significantly increased early after bariatric surgery (2-3 months), with

a tendency to drift back to baseline levels over the longer term (4-6

months) (145). Notably, IL-8 secretion by primary human myotubes

increases after bariatric surgery, suggesting that muscle can contribute

to increased circulating IL-8 levels (238).
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We have also identified xylosyltransferase 1 (XYLT1), leucine-rich

repeat-containing G protein-coupled receptor 5 (LGR5), and serine

protease inhibitor Kazal-type 5 (SPINK5) as putative myokines that

may contribute to improved glucose homeostasis after bariatric surgery

(54). mRNA expression of these putative myokines was indeed

increased in vastus lateralis three months after bariatric surgery and

associated with improved insulin sensitivity (54). XYLT1 is expressed

in many tissues, including pancreas, muscle, and adipose tissue, and

encodes xylosyltransferase 1, which is involved in the biosynthesis of

extracellular matrix glycosaminoglycan chains (61). LGR5 is highly

expressed in skeletal muscle and encodes the leucine-rich repeat-

containing G protein-coupled receptor 5 involved in the canonical

Wnt signaling pathway, which is associated with myogenic

differentiation (61, 239). SPINK5 encodes serine peptidase inhibitor

Kazal type 5, which is a serine protease inhibitor involved in anti-

inflammatory protection (61). These putative myokines may therefore

be involved in ECM remodeling, improved myogenesis and decreased

inflammation in muscle after bariatric surgery. However, few data are

available on these proteins and glucose homeostasis. XYLT1 and LGR5

variants have been reported to be associated with T2D in genome-wide

association studies, suggesting a link between these proteins and

glucose homeostasis (240–242). To the best of our knowledge, these

proteins have not been reported in conditioned media from muscle

cells, so we cannot confirm that they are truly myokines. Mechanistic

studies are needed to characterize their role in the regulation of

glucose homeostasis.
4 Discussion

4.1 Changes in myokines associated with
changes in glucose homeostasis after
bariatric surgery

Improved glucose homeostasis after bariatric surgery is

characterized by improved systemic and tissue-specific insulin

sensitivity as well as recovery of GSIS (58). These processes contribute

to the remission of T2D after bariatric surgery (30, 57, 58). Bariatric

surgery is associated with changes in circulating levels and

muscle expression of several myokines (Table 1). The myokines

identified in this review are all potentially involved in the regulation of

glucose homeostasis in humans, based on their known metabolic

effects (Figure 1). However, for most of them, no association

was found between changes in their circulating levels or muscle

expression and changes in glucose homeostasis after bariatric surgery.

Furthermore, for most of them, only changes at the circulating level

have been reported. Nevertheless, changes in certain myokines,

including upregulation of muscle BDNF mRNA and increased

circulating Metrnl levels, are associated with improved insulin

sensitivity after bariatric surgery (54, 194). In addition, decreased

circulating SPARC and APLN levels are associated with improved

insulin sensitivity (212, 213, 215). These data suggest that changes in

these specific myokines may mediate the insulin-sensitizing effect

of bariatric surgery. Emerging evidence also suggests that bariatric

surgery-induced changes in certain myokines, such as decreased
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circulating levels of BDNF (54), may be associated with changes in

beta cell function after bariatric surgery. BDNF may therefore mediate

muscle-pancreas crosstalk after bariatric surgery. Finally, myonectin is

an interesting candidate for future studies as this myokine may regulate

lipid metabolism after bariatric surgery. In conclusion, despite limited

data, some myokines appear to be potential mediators of changes in

glucose homeostasis after bariatric surgery.
4.2 Changes in myokines associated with
changes in muscle mass after
bariatric surgery

Loss of skeletal muscle mass is one of the most notable but

unintended changes occurring after bariatric surgery (33). Bariatric

surgery is associated with changes in circulating levels and muscle

expression of myokines that may be involved in the regulation of

muscle mass and strength in humans (Table 1). The results of

experimental research indicate that FST, irisin, IL-6, BDNF,

myonectin, SPARC, and APLN promote muscle hypertrophy

and/or stimulate myogenesis, whereas MSTN and FGF21 can

induce muscle atrophy (11) (Figure 1). However, for most of

these myokines, their role in the regulation of muscle mass and

strength in humans remains speculative, and consistent data after

bariatric surgery are lacking. Among the myokines identified in this

review, MSTN is undoubtedly the myokine most specifically

involved in regulating muscle mass and best documented

following bariatric surgery. Counterintuitively, we and others

have shown that circulating levels of MSTN and its muscle

expression decrease after bariatric surgery and correlate positively

with muscle mass in this context (53–55, 110). Decreased MSTN

signaling after bariatric surgery could be a protective mechanism for

muscle mass during profound calorie and protein restriction. As for

glucose homeostasis, some myokines appear to be potential

mediators of changes in muscle mass after bariatric surgery,

although data are limited.
4.3 Challenges in the study of myokines
after bariatric surgery

There are several limitations to studying the contribution of

myokines to changes in glucose homeostasis and muscle mass after

bariatric surgery. Skeletal muscle has the potential to be a primary

source of peptides at the circulating level because skeletal muscle is

the largest tissue in the human body (90). However, most peptides

known as myokines are not specifically secreted by skeletal muscle.

The relative contribution of skeletal muscle in the regulation of

circulating levels of such peptides is difficult to determine, especially

in humans. Indeed, there is a large overlap between adipokines,

hepatokines, cytokines, and myokines (12, 56). Thus, changes in

circulating levels of peptides known as myokines after bariatric

surgery may not originate from muscle. Analysis of the

arteriovenous difference would be required to establish that

muscle is the main source of the changes in myokines observed
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in the circulation (243), but this has limited applicability. The

discrepancy between changes in circulating levels and gene

expression of certain myokines, as observed for BDNF in our

study (54), suggests that some myokines may act in an autocrine/

paracrine rather than in an endocrine manner. Consequently,

changes in muscle mRNA levels do not necessarily translate into

changes in circulating levels (12). However, obtaining muscle

samples before and after bariatric surgery in humans to assess

changes at the mRNA level remains challenging.

Some myokines are preferentially expressed and secreted by

certain muscle fibers (49, 50). The type of muscle analyzed, and

more specifically the proportion of type I and type II muscle fibers,

may therefore influence the myokine response to bariatric surgery.

Single-cell analysis (e.g. single-cell RNA-sequencing) would offer

greater precision in analyzing the response of type I and type II

myotubes to bariatric surgery, as shown for exercise (244).

The muscle bed includes myofibers and muscle satellite cells, as

well as fibroadipogenic progenitor cells, myoendothelial and

endothelial cells, neurons, and immune cells (245). These different

cell types influence all measurements made on intact tissue (245). It is

therefore difficult to determine the specific contribution of muscle

fibers to changes in myokine gene and protein expression using muscle

samples, although they capture the in vivo situation. Primary human

muscle cell culture offers the advantage of isolating muscle cells that

have been shown to retain the metabolic characteristics of the donor

(42, 246). However, myokines are expressed at low levels at rest,

making their detection difficult in conditioned media under basal

conditions. In addition, mass spectrometry, the most accurate and

specific method currently available for secretome analysis, requires

serum starvation, a cellular stressor that can alter muscle cell viability,

metabolism, and differentiation (247). On the other hand, cell culture

models have disadvantages such as a lower degree of muscle cell

differentiation, lack of nerve stimulation and microenvironment, and

potential contamination by fibroblasts, which may limit the translation

of in vitro findings to the in vivo situation (247). To our knowledge,

only one study has investigated changes in myokine secretion from

human primary myotubes after bariatric surgery (238).

Regarding the effects of bariatric surgery on myokines, the

current findings require further validation in larger studies and in

more diverse populations. Most studies investigating the effects of

bariatric surgery include premenopausal and Caucasian women,

whereas age, sex, ethnicity, and body composition influence the

muscle transcriptome, proteome, and phenotype (248, 249). In

addition, most people who undergo bariatric surgery remain in

the obese range early after bariatric surgery (BMI > 30kg/m²),

which may still result in “higher or lower than normal” myokine

levels. The relative contribution of bariatric surgery itself versus

weight loss and lifestyle changes (e.g., increased exercise) in

inducing changes in myokines after bariatric surgery is difficult to

determine. In addition, the observed discrepancies in myokine

levels and response to bariatric surgery between studies may be

due to differences in assay methods or different physical activity

levels. Overall, the extent to which muscle-derived factors alter
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circulating levels to influence distant organs remains to be

determined in the context of bariatric surgery (2).

The fact that some myokines may exert opposite effects in

healthy conditions and in metabolic diseases (e.g., IL-6) is another

difficulty in inferring the expected effects of changes in specific

myokines on glucose homeostasis and muscle mass. In addition, the

effects of certain myokines are observed in the context of cellular

stress (e.g., inflammation, fasting, and exposure to palmitic acid)

because their expression and secretion are otherwise low under

basal conditions.

The method used to assess glucose homeostasis also influences

the results of human studies. Muscle insulin sensitivity can

be assessed in vivo using several validated techniques. The

hyperinsulinemic-euglycemic clamp (HEC) is the gold standard

method for assessing whole-body glucose uptake in vivo (i.e., M-

value), which is primarily dependent on muscle insulin sensitivity

(250). However, the HEC is a complex procedure with limited daily

applicability. Therefore, HOMA-IR is often used as an acceptable

surrogate marker of muscle insulin sensitivity, as HOMA-IR

correlates reasonably well with M in various populations (251).

HOMA-IR can be easily calculated from fasting plasma insulin and

glucose concentrations using the following formula [fasting glucose

(mmoL/L)*fasting insulin (mUI/L)/22.5] (252) or a more

sophisticated mathematical model (i.e., HOMA-2) (253). The

HOMA-2 calculator can also provide a steady state estimate of

beta cell function (HOMA2-B%). In most of the studies discussed in

this review, glucose homeostasis was assessed using the HOMA test.

We hypothesize that studies with a better assessment of muscle

insulin sensitivity using the gold standard HEC may yield

different results.

Finally, the muscle secretome is not limited to peptides (2, 6, 15),

and the potential contribution of muscle metabolites and microRNAs

to changes in glucose homeostasis and muscle mass after bariatric

surgery requires further studies.
5 Concluding remarks

It is now well established that bariatric surgery alters the

circulating levels and muscle expression of several myokines.

Changes in some of them, including BDNF, Metrnl, SPARC, and

APLN are associated with improved glucose homeostasis, particularly

improved insulin sensitivity, after bariatric surgery. However,

whether skeletal muscle is the source of the reported changes in

circulating levels of these peptides has not been established.

Myonectin is an interesting candidate for future studies, as this

myokine may regulate lipid metabolism and muscle mass after

bariatric surgery. Finally, MSTN is associated with changes in

muscle mass after bariatric surgery and may serve as a biomarker

and as a counter-regulatory mechanism of muscle mass loss in this

context. Identification of myokines that regulate glucose homeostasis

and muscle mass after bariatric surgery would provide novel

therapeutic targets and biomarkers for obesity, T2D, and sarcopenia.
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Antunes BM, et al. The molecular effects of BDNF synthesis on skeletal muscle: A mini-
review. Front Physiol. (2022) 13:934714. doi: 10.3389/fphys.2022.934714

72. Tonra JR, Ono M, Liu X, Garcia K, Jackson C, Yancopoulos GD, et al. Brain-
derived neurotrophic factor improves blood glucose control and alleviates fasting
hyperglycemia in C57BLKS-Lepr(db)/lepr(db) mice. Diabetes. (1999) 48:588–94.
doi: 10.2337/diabetes.48.3.588

73. Yamanaka M, Tsuchida A, Nakagawa T, Nonomura T, Ono-Kishino M, Sugaru
E, et al. Brain-derived neurotrophic factor enhances glucose utilization in peripheral
tissues of diabetic mice. Diabetes Obes Metab. (2007) 9:59–64. doi: 10.1111/j.1463-
1326.2006.00572.x

74. Tsuchida A, Nonomura T, Ono-Kishino M, Nakagawa T, Taiji M, Noguchi H.
Acute effects of brain-derived neurotrophic factor on energy expenditure in obese diabetic
mice. Int J Obes Relat Metab Disord. (2001) 25:1286–93. doi: 10.1038/sj.ijo.0801678

75. Mousavi K, Jasmin BJ. BDNF is expressed in skeletal muscle satellite cells and
inhibits myogenic differentiation. J Neurosci. (2006) 26:5739–49. doi: 10.1523/
JNEUROSCI.5398-05.2006

76. McKay BR, Nederveen JP, Fortino SA, Snijders T, Joanisse S, Kumbhare DA,
et al. Brain-derived neurotrophic factor is associated with human muscle satellite cell
differentiation in response to muscle-damaging exercise. Appl Physiol Nutr Metab.
(2020) 45:581–90. doi: 10.1139/apnm-2019-0501

77. Delezie J, Weihrauch M, Maier G, Tejero R, Ham DJ, Gill JF, et al. BDNF is a
mediator of glycolytic fiber-type specification in mouse skeletal muscle. Proc Natl Acad
Sci U S A. (2019) 116:16111–20. doi: 10.1073/pnas.1900544116

78. Tsai SW, Chan YC, Liang F, Hsu CY, Lee IT. Brain-derived neurotrophic factor
correlated with muscle strength in subjects undergoing stationary bicycle exercise training. J
Diabetes Complications. (2015) 29:367–71. doi: 10.1016/j.jdiacomp.2015.01.014

79. Krabbe KS, Nielsen AR, Krogh-Madsen R, Plomgaard P, Rasmussen P, Erikstrup
C, et al. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia.
(2007) 50:431–8. doi: 10.1007/s00125-006-0537-4
frontiersin.org

https://doi.org/10.1002/oby.22190
https://doi.org/10.1111/obr.13370
https://doi.org/10.1007/s11695-023-06796-9
https://doi.org/10.1111/obr.12361
https://doi.org/10.1111/obr.12361
https://doi.org/10.1152/ajpendo.00413.2016
https://doi.org/10.1152/ajpendo.00413.2016
https://doi.org/10.2337/diabetes.51.1.144
https://doi.org/10.1371/journal.pone.0028577
https://doi.org/10.1371/journal.pone.0158209
https://doi.org/10.2337/db08-0943
https://doi.org/10.1016/j.cmet.2020.08.007
https://doi.org/10.2337/db10-1178
https://doi.org/10.1021/pr200573b
https://doi.org/10.1021/acs.jproteome.5b00720
https://doi.org/10.1021/acs.jproteome.5b00720
https://doi.org/10.1155/2017/1328573
https://doi.org/10.1152/jappl.1999.86.6.1828
https://doi.org/10.1111/obr.13444
https://doi.org/10.1038/s41598-018-28117-2
https://doi.org/10.1096/fj.03-1259fje
https://doi.org/10.1152/ajpendo.90885.2008
https://doi.org/10.1042/BJ20131151
https://doi.org/10.1001/jamasurg.2019.0424
https://doi.org/10.1093/ejendo/lvad122
https://doi.org/10.1016/j.clnu.2024.05.046
https://doi.org/10.1016/j.coph.2020.06.005
https://doi.org/10.1038/s41574-022-00757-5
https://doi.org/10.3389/fendo.2023.1031610
https://doi.org/10.3389/fendo.2023.1031610
https://doi.org/10.1016/j.molmet.2014.07.007
https://doi.org/10.1126/science.1260419
https://doi.org/10.1126/scisignal.aaz0274
https://doi.org/10.1016/j.cell.2013.03.001
https://doi.org/10.1172/JCI94330
https://doi.org/10.1002/biof.2092
https://doi.org/10.1002/jcb.30511
https://doi.org/10.1186/s40200-017-0297-3
https://doi.org/10.2337/db10-0956
https://doi.org/10.1038/s41467-020-15833-5
https://doi.org/10.1007/s00125-009-1364-1
https://doi.org/10.1177/1535370218812191
https://doi.org/10.3389/fphys.2022.934714
https://doi.org/10.2337/diabetes.48.3.588
https://doi.org/10.1111/j.1463-1326.2006.00572.x
https://doi.org/10.1111/j.1463-1326.2006.00572.x
https://doi.org/10.1038/sj.ijo.0801678
https://doi.org/10.1523/JNEUROSCI.5398-05.2006
https://doi.org/10.1523/JNEUROSCI.5398-05.2006
https://doi.org/10.1139/apnm-2019-0501
https://doi.org/10.1073/pnas.1900544116
https://doi.org/10.1016/j.jdiacomp.2015.01.014
https://doi.org/10.1007/s00125-006-0537-4
https://doi.org/10.3389/fendo.2025.1554617
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Orioli and Thissen 10.3389/fendo.2025.1554617
80. Peña E, Caixàs A, Arenas C, Pareja R, León-Mengıb́ar J, Rigla M, et al. Influence
of the BDNF Val66Met polymorphism on weight loss after bariatric surgery: a 24-
month follow-up. Surg Obes Relat Dis. (2021) 17:185–92. doi: 10.1016/
j.soard.2020.08.012

81. Roh E, Hwang SY, Song E, Park MJ, Yoo HJ, Baik SH, et al. Association of
plasma brain-derived neurotrophic factor levels and frailty in community-dwelling
older adults. Sci Rep. (2022) 12:18605. doi: 10.1038/s41598-022-19706-3

82. Nakano I, Kinugawa S, Hori H, Fukushima A, Yokota T, Takada S, et al. Serum
brain-derived neurotrophic factor levels are associated with skeletal muscle function
but not with muscle mass in patients with heart failure. Int Heart J. (2020) 61:96–102.
doi: 10.1536/ihj.19-400

83. Merhi ZO, Minkoff H, Lambert-Messerlian GM, Macura J, Feldman J, Seifer DB.
Plasma brain-derived neurotrophic factor in women after bariatric surgery: a pilot
study. Fertil Steril. (2009) 91:1544–8. doi: 10.1016/j.fertnstert.2008.09.032
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