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study in China
Yimei Chen1†, Jieying Han1†, Siwen Zhao1, Yongjie Shi2,
Hongyun Jia2, Songyao Lu3, Juan Wu3* and Sicong Huang2*

1Department of Healthy Examination, The Second Affiliated Hospital, Guangzhou Medical University,
Guangzhou, Guangdong, China, 2Department of Clinical Laboratory, The Second Affiliated Hospital,
Guangzhou Medical University, Guangzhou, Guangdong, China, 3Department of Laboratory Medicine,
Jieyang People’s Hospital, Jieyang, Guangdong, China
Background: The Hepatic Steatosis Index (HSI) is a simple screening tool for

adults with non-alcoholic fatty liver disease (NAFLD). While lipid and glucose

metabolism are closely interrelated, few studies have examined the association

between HSI and impaired fasting glucose (IFG). This study aims to investigate the

relationship between HSI and IFG risk in a large Chinese cohort.

Methods: This retrospective cohort study analyzed health examination data

collected from 2010 to 2016 across 11 cities in China by the Rich Healthcare

Group. Multivariable Cox regression and restricted cubic spline (RCS) analyses

were used to evaluate the association between baseline HSI and IFG. Subgroup

analyses were conducted to assess the robustness of the findings.

Results: A total of 75,911 participants with a mean age of 40.9 ± 12.1 years were

included, among whom 9,908 (13.1%) developed IFG. After adjusting for potential

confounders, each one-unit increase in baseline HSI was associated with a 5%

higher risk of IFG (HR=1.05, 95%CI). RCS analysis revealed that the increase of risk

plateaued when HSI exceeded 35.31. Subgroup analyses demonstrated the

stability of these findings.

Conclusion: Elevated baseline HSI is a significant risk factor for IFG in Chinese

adults. These findings highlight the potential utility of HSI in identifying individuals

at risk of glucose dysregulation.
KEYWORDS

impaired fasting glucose, hepatic steatosis index, retrospective cohort study, risk
factors, Chinese adults
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1 Introduction

Diabetes, a chronic metabolic disorder, has emerged as a

significant global health challenge, with its prevalence increasing

nearly fourfold over the past three decades. Approximately 463

million adults worldwide are affected, representing 9.3% of the

population aged 20-79 (1). In China, the prevalence has risen

dramatically from 0.67% in 1980 to 11.2% in recent years (2).

Among diabetes cases, type 2 diabetes mellitus (T2DM) constitutes

90%, featuring high prevalence, low control rates, and numerous

complications. Identifying high-risk populations and screening for

risk factors are indispensable for early prevention.

Prediabetes, encompassing IFG and impaired glucose tolerance

(IGT), represents an early phase of T2DM. Affecting 10.6% of the

global population and 35.2% of Chinese adults (2), making it a

critical target for prevention, as approximately 60% of diabetes cases

progress from this stage within five years (3). Interventions such as

lifestyle modifications and pharmacotherapy can reverse

prediabetes and reduce the risk of developing T2DM (4). NAFLD

is a liver manifestation of metabolic syndrome, affecting 25% of the

global population. The prevalence rate in China has soared from

15% in 2003 to 32.1% in 2025 (5). NAFLD disrupts glucose

metabolism through several key mechanisms: Hepatic insulin

resistance develops primarily through lipid accumulation-induced

impairment of IRS phosphorylation, while concurrent

mitochondrial dysfunction activates the ROS-JNK pathway,

further disrupting insulin signaling. These metabolic disturbances

are compounded by adipokine imbalance, creating a pro-

inflammatory milieu. Clinically, NAFLD patients show

significantly higher prediabetes risk with 5% liver fat increase

correlating to 8% b-cell function decline (HOMA-b). This

bidirectional relationship is reinforced by hyperinsulinemia-

driven activation of SREBP-1c mediated lipogenesis, thereby

perpetuating a self-sustaining cycle of metabolic dysfunction (6).

Hepatic steatosis, closely associated with T2DM and metabolic

syndrome, has garnered considerable attention. The HSI, a non-

invasive tool integrating BMI and liver enzyme levels, effectively

screens for NAFLD (7, 8). HSI has also been correlated with

metabolic disorders, including T2DM (9), gestational diabetes

(10), and diabetic complications (11). Nevertheless, its role in

predicting prediabetes, particularly IFG, remains ambiguous.

This multicenter retrospective cohort study investigates the

relationship between HSI and the risk of IFG in individuals with

normal baseline fasting glucose levels. By addressing this knowledge

gap, the study provides valuable insights into how variations in HSI

influence the development of IFG and informs strategies for

diabetes prevention.
2 Materials and methods

2.1 Data source

This study utilized raw data from a cohort of 211,833

individuals, originally collected by Chen et al. (12). The dataset
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includes comprehensive medical records of participants undergoing

health evaluations. Data were obtained from the Dryad Digital

Repository (DRYAD) database (https://datadryad.org/stash/

dataset/doi:10.5061/dryad.ft8750v). Ethical approval for data

collection was granted by the National Center for Health Statistics

Institutional Review Board, and all procedures adhered to the

Declaration of Helsinki. As the dataset is anonymized, informed

consent was not required.
2.2 Study population

This study analyzed data from 685,277 adults (≥20 years)

without diabetes history in the Rich Healthcare Group’s 2010–

2016 database (12), applying rigorous exclusion criteria to yield

75,911 participants (Figure 1). Missing continuous variables were

handled via multiple imputation (5 iterations) after confirming

missingness was completely at random (Little’s MCAR test P =

0.12), this approach remains vulnerable to violations if unmeasured

confounders affected missingness. The complete-case analysis for

categorical variables risks selection bias when missingness correlates

with outcomes, and the limited imputation cycles may inadequately

model complex biomedical relationships. Additionally, the 6-year

observational period may not account for evolving diagnostic

standards or measurement protocols. For the limitations of the

above scheme, sensitivity analysis will be used subsequently to

verify the robustness of the results. The data cleaning protocol

and refine solution complied with Strengthening the Reporting of

Observational Studies in Epidemiology (STROBE) guidelines (13).
2.3 Variables

Demographic data collected included age, sex, family history of

diabetes, smoking status, and alcohol consumption. Physical

examinations measured height, weight, and blood pressure, while

laboratory tests assessed fasting plasma glucose (FPG), total

cholesterol (TC), triglycerides (TG), high-density lipoprotein

cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-

C), blood urea nitrogen (BUN), creatinine clearance rate (CCR),

aspartate aminotransferase (AST), and alanine aminotransferase

(ALT). BMI was calculated as weight (kg) divided by height squared

(m²). HSI was calculated as follows: HSI = 8 × (ALT/AST ratio) +

BMI (+2 for females) (7).
2.4 Definitions

According to the American Diabetes Association (ADA)

diagnostic criteria, IFG is characterized by FPG levels ranging

from 5.6 mmol/L (inclusive) to below 7.0 mmol/L, in the absence

of self-reported diabetes. This biochemical range specifically

identifies individuals with prediabetic metabolic dysregulation

(14). For study purposes, IFG onset time was operationally

defined as the first detection date meeting diagnostic criteria
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https://datadryad.org/stash/dataset/doi:10.5061/dryad.ft8750v
https://datadryad.org/stash/dataset/doi:10.5061/dryad.ft8750v
https://doi.org/10.3389/fendo.2025.1556169
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chen et al. 10.3389/fendo.2025.1556169
during active surveillance (2010–2016), requiring at least two health

examinations with >2-year intervals. Diabetes diagnosis required

either FPG ≥ 7.0 mmol/L or self-reported diabetes history, creating

mutually exclusive diagnostic categories that facilitated clear

metabolic status classification.
2.5 Statistical analysis

Continuous variables were described as mean ± standard

deviation for normally distributed data or median (interquartile

range) for non-normally distributed data, while categorical

variables were expressed as frequencies (percentages). Group

differences were assessed using ANOVA for normally distributed

continuous variables, Kruskal-Wallis tests for non-normally

distributed variables, and chi-square tests for categorical variables.

Cox regression was selected to model time-to-event data for IFG

risk factors, given its capacity to handle censored observations and

provide hazard ratio estimates (15). Three adjustment models were

implemented: 1) crude; 2) age/sex-adjusted; 3) fully-adjusted for clinical/

laboratory/behavioral confounders (SBP, DBP, lipids, renal function,

smoking/alcohol history, and diabetes family history). RCS with four

knots (5th, 35th, 65th, 95th percentiles) were applied to evaluate

potential non-linear HSI-IFG relationships, complemented by two-

segment logistic regression with bootstrap-derived inflection points.
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Subgroup analyses were conducted to explore effect

modification across different groups, including age (<65 or ≥65

years) (16), sex, BMI (<24, 24-28, or ≥28 kg/m²) (17), family history

of diabetes, alcohol consumption (current, former, or never), and

smoking status (current, former, or never). Statistical analyses were

performed using R 4.2.2 (http://www.R-project.org) and Free

Statistics Analysis Platform 1.9.2 (http://www.clinicalscientists.cn/

freestatistics), with two-sided P-values <0.05 considered statistically

significant. As this study was based on existing data, sample size

calculations were not performed.
3 Result

3.1 Baseline characteristics

This study included 75,911 participants with an average age of

40.9 ± 12.1 years. Among them, 33,843 (44.6%) were female, and

42,068 (55.4%) were male. Participants were divided into four

quartiles based on HSI: Quartile 1 (Q1: 18.87–27.63), Quartile 2

(Q2: 27.64–30.53), Quartile 3 (Q3: 30.54–34.19), and Quartile 4

(Q4: 34.20–52.60). Compared to the other three groups, Quartile 4

exhibited significantly higher BMI, SBP, DBP, FPG, TC, TG, LDL-

C, AST, ALT, BUN, and CCR levels. Additionally, the proportions

of males, smokers, and alcohol consumers were higher in Quartile 4.
FIGURE 1

Flowchart of study population refinement.
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Age, HDL-C levels, and family history of diabetes also differed

significantly among the quartiles (P < 0.001) (Table 1).
3.2 Tendency of IFG Across HSI quartiles

Over a mean follow-up period of 3.02 years, 9,908 participants

(13.1%) developed into IFG. The Kaplan-Meier analysis disclosed

significant differences in the risk of IFG across the HSI quartiles (P <

0.05), with a decreasing probability of maintaining normal glucose

levels as the HSI increased (Figure 2).
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3.3 Risk factors for IFG

Our univariate Cox regression analysis revealed significant

associations between multiple baseline variables and incident IFG

risk (all P < 0.001). Key metabolic parameters including age, blood

pressure (SBP/DBP), lipid profiles (TC/TG/LDL-C), renal function

markers (BUN/CCR), l iver enzymes (AST/ALT), and

anthropometric measures (BMI/FPG) demonstrated positive

correlations with IFG development. Notably, male sex and

modifiable lifestyle factors (smoking/alcohol consumption) also

emerged as independent risk determinants. These results
TABLE 1 The baseline characteristics of participants.

Characteristics Total Q1 (18.87-27.63) Q2 (27.64-30.53) Q3 (30.54-34. 19) Q4 (34.20-52.60) P-value

Population 75911 18976 18979 18978 18978

Age (year) 40.9 ± 12.1 37.7 ± 11.8 41.2 ± 12.3 43.2 ± 12.4 41.5 ± 11.3 < 0.001

Gender < 0.001

male 42068 (55.4) 8031 (42.3) 8640 (45.5) 11083 (58.4) 14314 (75.4)

female 33843 (44.6) 10945 (57.7) 10339 (54.5) 7895 (41.6) 4664 (24.6)

BMI (km/m2) 23.0 ± 3.2 19.6 ± 1.5 21.9 ± 1.5 23.9 ± 1.7 26.7 ± 2.6 < 0.001

SBP (mmHg) 118.0 ± 15.9 112.5 ± 14.6 115.5 ± 15.2 119.5 ± 15.6 124.6 ± 15.5 < 0.001

DBP (mmHg) 73.5 ± 10.6 70.1 ± 9.5 71.6 ± 9.9 74.3 ± 10.5 77.9 ± 10.9 < 0.001

FPG (mmol/L) 4.8 ± 0.5 4.7 ± 0.5 4.8 ± 0.5 4.8 ± 0.5 4.9 ± 0.5 < 0.001

TC (mmol/L) 4.7 ± 0.9 4.4 ± 0.8 4.6 ± 0.9 4.7 ± 0.9 4.9 ± 0.9 < 0.001

TG (mmol/L) 1.0 (0.7, 1.5) 0.8 (0.6, 1.0) 0.9 (0.7, 1.3) 1.1 (0.8, 1.6) 1.5 (1.0, 2.2) < 0.001

HDL-C (mmol/L) 1.4 ± 0.3 1.5 ± 0.3 1.4 ± 0.3 1.4 ± 0.3 1.3 ± 0.3 < 0.001

LDL-C (mmol/L) 2.7 ± 0.7 2.6 ± 0.6 2.7 ± 0.6 2.8 ± 0.7 2.9 ± 0.7 < 0.001

ALT (U/L) 23.3 ± 22.0 12.9 ± 6.9 16.5 ± 8.7 22.2 ± 13.0 41.7 ± 33.9 < 0.001

AST (U/L) 23.7 ± 12.4 21.1 ± 12.1 21.5 ± 7.8 23.3 ± 9.6 28.8 ± 16.6 < 0.001

BUN (mmol/L) 4.6 ± 1.2 4.5 ± 1.2 4.6 ± 1.2 4.7 ± 1.2 4.8 ± 1.2 < 0.001

CCR (umol/L) 70.9 ± 15.9 67.5 ± 14.7 68.7 ± 15.3 71.9 ± 16.8 75.3 ± 15.7 < 0.001

Family histroy of diabetes < 0.001

No 74434 (98. 1) 18678 (98.4) 18601 (98) 18577 (97.9) 18578 (97.9)

Yes 1477 ( 1.9) 298 (1.6) 378 (2) 401 (2. 1) 400 (2. 1)

Smoking status < 0.001

Current smoker 3349 ( 4.4) 584 (3. 1) 611 (3.2) 883 (4.7) 1271 (6.7)

Ever smoker 817 ( 1. 1) 128 (0.7) 154 (0.8) 223 (1.2) 312 (1.6)

Never smoker 14262 (18.8) 3848 (20.3) 3644 (19.2) 3500 (18.4) 3270 (17.2)

Not recorded 57483 (75.7) 14416 (76) 14570 (76.8) 14372 (75.7) 14125 (74.4)

Drinking status < 0.001

Current drinker 413 (0.5) 89 (0.5) 77 (0.4) 108 (0.6) 139 (0.7)

Ever drinker 3152 (4.2) 519 (2.7) 637 (3.4) 902 (4.8) 1094 (5.8)

Never drinker 14863 (19.6) 3952 (20.8) 3695 (19.5) 3596 (18.9) 3620 (19. 1)

Not recorded 57483 (75.7) 14416 (76) 14570 (76.8) 14372 (75.7) 14125 (74.4)
fro
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collectively illustrate the complex interplay between physiological

markers and behavioral patterns in fasting glucose dysregulation, as

comprehensively detailed in Table 2. The multifactorial

pathogenesis of IFG underscores the necessity for integrated

prevention strategies targeting both metabolic abnormalities and

health behaviors.
3.4 Association between HSI and IFG

Given the intermittent follow-up design (median duration=3.02

years) precluding precise determination of IFG onset timing, we

employed multivariable Cox regression to evaluate HSI-IFG risk

associations (Table 3). The analysis revealed dose-dependent

relationships: each unit increase in hepatic steatosis index (HSI)

conferred a 5% elevated IFG risk (HR=1.05, 95%CI=1.05-1.06,

P<0.001) in fully adjusted models, with quartile-based categorical

analysis demonstrating consistent positive gradients. In pursuit of

the stability of the Cox regression conclusion, complementary

logistic regression assessing HSI-IFG prevalence associations

was conducted. Crucially, both methodologies yielded

concordant results: 1) equivalent magnitude of effect (OR=1.05 vs

HR=1.05 per HSI unit); 2) identical statistical significance

thresholds (P<0.001); 3) preserved quartile-response patterns

(Supplementary Table S1). This rigorous analytical verification
Frontiers in Endocrinology 05
through complementary survival and cross-sectional frameworks

substantiates the validity of our core findings regarding HSI’s

predictive utility for IFG risk.
3.5 The nonlinear relationship between HSI
and IFG

RCS analysis further demonstrated a non-linear relationship

between HSI and IFG risk (P < 0.001) (Figure 3). Below an HSI

threshold of 35.31, each 1-unit increase in HSI was associated with

an 11% higher risk of IFG (HR = 1.11; 95% CI: 1.10–1.11). Above

this threshold, the risk increased plateaued (Table 4).
3.6 Subgroup analysis

Subgroup analyses were conducted to verify the robustness of

the findings across different strata, including sex, age, blood

pressure, BMI, family history of diabetes, smoking status, and

alcohol consumption. In all subgroups, HSI remained positively

associated with IFG risk. The association was stronger among

female participants, aged <65 years and with normal blood

pressure (Figure 4). These results consistently indicate that HSI is

an independent risk factor for IFG.
FIGURE 2

Kaplan-Meier survival curves showing the incidence of IFG across HSI quartiles (log-rank test, P < 0.05).
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4 Discussion

This large-scale retrospective cohort study employing biennial

follow-up design (median 3.02 years) systematically examined the

association between HSI and IFG. Our analysis revealed a novel

nonlinear dose-response relationship with an inflection point at

HSI=35.31: each unit increase below this threshold elevated IFG risk

by 11%, while risk escalation attenuated to 5% per unit above this

critical value. Notably, this association demonstrated significant
Frontiers in Endocrinology 06
interaction in women aged < 65 years. Methodologically, we

implemented Cox proportional hazards models to accommodate

irregular follow-up intervals, defining event time as first IFG

detection and censoring date as last follow-up for non-converters

(18). This approach outperformed logistic regression by effectively

integrating heterogeneous follow-up durations and addressing

right-censoring (19). Kaplan-Meier analysis corroborated the

inverse relationship between HSI quartiles and normoglycemia

maintenance probability (log-rank P<0.001), showing remarkable

consistency with Cox model stratification. Standardized

biochemical protocols coupled with sensitivity analyses ensured

robustness against metabolic parameter measurement variability.

Prediabetes, characterized by IFG and/or IGT, carries a high risk of

progression to T2DM. Global data indicate that 16% of IFG cases and

21% of IGT cases progress to T2DM within five years (20), and over

70% within a decade (21). The IFG incidence of 13.1% observed in our

study exceeds prior reports, possibly due to differences in inclusion

criteria and overlapping cases of simple or mixed IFG, as OGTT 2-hour

glucose levels (<7.8 mmol/L) were not separately analyzed.

Mechanistically, IFG primarily results from hepatic insulin resistance

and b-cell dysfunction, whereas IGT is driven by peripheral insulin

resistance, particularly in skeletal muscle (22), explaining the stronger

correlation between HSI and IFG compared to IGT.

The relationship between HSI and prediabetes is non-linear, with

the risk increase slowing when HSI exceeds 35.31. This phenomenon

may be attributed to compensatorymechanisms, a biological saturation

point, or the staged nature of clinical and pathological changes

associated with hepatic fat accumulation (23). HSI has been closely

linked to hepatic insulin resistance (24), which itself is influenced by

various factors, including genetics (25), lifestyle (26), and metabolic

conditions (27). When HSI surpasses 35.31, the slower risk increase for

IFGmay reflect the activation of compensatory mechanisms. Studies in

high-fat diet-induced insulin resistance models in canines have

demonstrated that compensatory hyperinsulinemia can occur

independently of elevated blood glucose (28). Thus, beyond a certain

threshold of HSI, more severe insulin resistance might be required to

further elevate IFG risk. Pathologically, excessive hepatic fat

accumulation disrupts insulin signaling, contributing to insulin

resistance and increased glucose production (29). At HSI levels above

35.31, the liver may reach a biological saturation point, reducing its

sensitivity to additional fat accumulation and insulin resistance.

The stronger association between HSI and IFG observed in

individuals younger than 65 years may be due to the presence of

multiple glucose-regulating factors in older adults, such as chronic

inflammation (30) and reduced muscle mass (31), which diminish

the relative contribution of HSI to IFG. Additionally, age-related

factors, such as altered fat functionality and redistribution,

complicate the impact of hepatic fat on glucose regulation (32).

In younger individuals, where hepatic metabolic function and

sensitivity to glucose-lipid regulation are relatively higher, hepatic

fat accumulation likely exerts a more direct influence on fasting

glucose regulation, resulting in a stronger correlation.

Among women, the association between HSI and IFG is more

pronounced, possibly due to the regulatory role of estrogen on

glucose metabolism. Hepatic fat accumulation may inhibit estrogen
TABLE 2 Results of univariate cox regression analysis.

Characteristics HR (95%CI) P-value

Age (year) 1.04 (1.04, 1.04) < 0.001

Gender < 0.001

male Ref

female 0.66 (0.63,0.69)

SBP (mmHg) 1.03 (1.03, 1.03) < 0.001

DBP (mmHg) 1.03 (1.03, 1.03) < 0.001

FPG (mmol/L) 5.3 (5.04,5.57) < 0.001

TC (mmol/L) 1.22 (1.2, 1.25) < 0.001

TG (mmol/L) 1. 19 (1.18, 1.21) < 0.001

HDL-C (mmol/L) 1.00(0.92, 1.08) 0.92

LDL-C (mmol/L) 1.23 (1.19, 1.27) < 0.001

BUN (mmol/L) 1.13 (1.11, 1. 15) < 0.001

CCR (umol/L) 1.0055 (1.005, 1.0059) < 0.001

Family histroy of diabetes 0.358

No Ref

Yes 0.94 (0.82, 1.08)

BMI (kg/m²) 1. 12 (1.12, 1. 13) < 0.001

ALT (U/L) 1.004 (1.003, 1.004) < 0.001

AST (U/L) 1.01 (1.00, 1.01) < 0.001

Smoking status < 0.001

Current smoker Ref

Ever smoker 0.9 (0.74, 1. 1)

Never smoker 0.74 (0.67,0.81)

Not recorded 0.88 (0.8,0.96)

Drinking status < 0.001

Current drinker Ref

Ever drinker 0.57 (0.44,0.73)

Never drinker 0.52 (0.41,0.65)

Not recorded 0.59 (0.47,0.74)

HSI 1.07 (1.06, 1.07) < 0.001
Dependent Variable: IFG. Independent Variables: Baseline characteristics (age, blood
pressure, lipids, liver function markers, lifestyle factors). Significant Results: Positive
associations were observed for all listed variables (P < 0.001).
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receptors (33), diminishing estrogen’s protective effects on insulin

sensitivity (34). This interaction could accelerate the development

of IFG in women, making changes in hepatic fat more significantly

linked to fasting glucose dysregulation.

We further identified key demographic and metabolic factors

associated with IFG risk, including male sex, obesity, hypertension,

dyslipidemia, elevated transaminase levels, smoking, and alcohol

consumption. These findings align with prior research highlighting

obesity and chronic low-grade inflammation as drivers of insulin

resistance and glucose dysregulation (35, 36). Obesity-related changes,

such as altered gut microbiota and adipokine imbalance, exacerbate

insulin resistance, leading to prediabetes. Effective interventions,

including diet, aerobic exercise, and resistance training, have been

shown to reverse prediabetes and normalize glucose levels (37, 38).
Frontiers in Endocrinology 07
Liver function emerges as a pivotal factor in glucose regulation,

with studies consistently linking elevated ALT, AST, and GGT

levels to prediabetes and T2DM risk (39). Liver fat accumulation, a

key feature of hepatic steatosis, impairs hepatic insulin sensitivity

and triggers systemic inflammation, contributing to glucose

dysregulation (40, 41). In our study, HSI, which incorporates

ALT, AST, and BMI, was a strong predictor of IFG risk,

particularly in younger individuals. This suggests that HSI reflects

early hepatic metabolic disturbances that precede systemic

glucose abnormalities.

While Wu et al. recently evaluated HSI’s predictive value for

glycemic transitions (regression to normoglycemia vs diabetes

progression) in high-risk populations with baseline IFG (42), our

study extends this investigation to initially normoglycemic

individuals. We demonstrate that elevated HSI predicts IFG

development (5% increased risk per unit, HR=1.05), identifying a

clinically actionable threshold (HSI=35.31) where risk escalation

plateaus. Utilizing routinely measured parameters (age, sex, liver

function, BMI) (43), HSI emerges as a cost-effective screening tool for

population-level diabetes prevention strategies (44). Complementing

prior research focused on high-risk management (42) our findings-

supported by large-scale validation, simplified risk quantification, and

direct primary prevention applications-provide critical insights for

early-stage intervention in public health frameworks.

Our study has notable limitations requiring consideration. First,

while incorporating representative samples from 11 cities, we could

not fully account for regional heterogeneity in dietary patterns (45)

and socioeconomic status (46) - factors potentially influencing IFG

progression through microbiota-mediated metabolic regulation
TABLE 3 Hazard ratios (HRs) for the association between HSI and IFG in different models.

Variable Total
Crude Model Model I Modle II

HR (95%CI) P-value HR (95%CI) P-value HR (95%CI) P-value

HSI 75911 1.07 (1.06, 1.07) <0.001 1.06 (1.06, 1.07) <0.001 1.05 (1.05, 1.06) <0.001

HSI (Quartiles)

Quartile 1 18976 Ref Ref Ref

Quartile 2 18979 1.46 (1.36, 1.56) <0.001 1.28 (1.2, 1.37) <0.001 1.27 (1. 18, 1.36) <0.001

Quartile 3 18978 2.067 (1.93, 2. 19) <0.001 1.64 (1.54, 1.75) <0.001 1.56 (1.46, 1.67) <0.001

Quartile 4 18978 2.75 (2.59, 2.93) <0.001 2.24 (2. 11, 2.39) <0.001 1.97 (1.84, 2. 11) <0.001

P for trend <0.001 <0.001 <0.001
Crude Model: No covariates adjusted.
Model I:Adjusted for age and sex.
Model II: Adjusted for age, sex,SBP, DBP, TC, TG, HDL-C, LDL-C, BUN, CCR, smoking status, and family history of diabetes.
FIGURE 3

The nonlinear relationship between the relationship between HSI
and IFG risk, with density plots of HSI distribution.
TABLE 4 The result of the two-piecewise Cox regression model.

Variable HR (95%CI) P-value

Inflection points of HSI 35.31 (34.85, 35.77)

< 35.31 1.11 (1.10, 1.11) <0.001

> 35.31 1.02 (1.01,1.04) <0.001

P for log likelihood ratio test – <0.001
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(47) and psychosocial pathways (48). Second, although excluding

baseline diabetes and incident cases, undocumented glucose-

altering medications initiated during the mean 3.02-year follow-

up period may confound natural dysglycemia progression (49).

Third, the retrospective design’s reliance solely on fasting glucose

measurements excluded individuals with isolated impaired glucose

tolerance, while the absence of oral glucose tolerance tests (OGTT)

and hemoglobin A1c (HbA1c) data constrained comprehensive

metabolic evaluation. Finally, similar to most single-cohort

studies (50), the generalizability of our identified HSI threshold

(35.31) requires validation across diverse populations to establish

population-specific risk stratification criteria. Future investigations

should integrate regional electronic health records for medication

tracking, incorporate multi-omics metabolic assessments, and

conduct multi-cohort analyses with social determinant

evaluations to advance precision prevention strategies.
Frontiers in Endocrinology 08
5 Conclusions

This study first reveals a nonlinear HSI-IFG association (plateau

risk at HSI=35.31) in Chinese adults. Hepatic markers show early

predictive value, particularly for younger populations, suggesting

HSI’s utility as a cost-effective screening tool for targeted diabetes

prevention in resource-limited settings.
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