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Identification and validation of
prognostic genes associated with
T-cell exhaustion and
macrophage polarization in
breast cancer
Fengqiang Cui †, Changjiao Yan †, Jiang Wu, Yuqing Yang,
Jixin Yang, Jialing Luo and Nanlin Li*

Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical
University, Xi’an, Shaanxi, China
Background: The most frequent malignant tumor in women is breast cancer

(BRCA). It has been discovered that T-cell exhaustion and macrophages play

significant roles in BRCA. It was necessary to explore prognostic genes

associated with T-cell exhaustion and macrophage polarization in BRCA.

Methods: The following data were included: 35 macrophage polarization-

related genes (MPRGs), 683 T-cell exhaustion-related genes (TEXRGs),

GSE20685, as well as TCGA-BRCA. Initially, candidate genes were identified

through crossing differentially expressed genes (DEGs) obtained by differential

expression analysis, key module genes associated with MPRGs, as well as

TEXRGs. Next, 101 combinations of 10 machine learning algorithms and

univariate Cox analysis were utilized to screen for prognostic genes.

Concurrently, a risk model was built for validation in TCGA-BRCA and

GSE20685. Next, we conducted immune infiltration, immunotherapy, mutation

analysis, molecular regulatory network, as well as drug sensitivity between the

two risk groups. Ultimately, we did the reverse transcription-quantitative

polymerase chain reaction (RT-qPCR).

Results: According to random survival forest (RSF) algorithm (the best

combination with the greatest C-index of 0.799), 7 prognostic genes were

selected, which are PGK1, BTG2, TANK, CFB, EIF4E3, TNFRSF18, and BATF.

After that, we created a risk model, and in the low-risk samples, there was a

relatively high survival rate. Next, between two risk parts, the 7 differential

immune cells were found. There was a significant difference in 25

immunological checkpoint (ICI) genes between the two risk parts. Next, a

lncRNAs-miRNA-mRNA network with 65 nodes and 70 edges was built.

Additionally, 84 medications were shown to differ significantly between the

two risk groups. Finally, the expression of BTG2, TANK, and EIF4E3 was verified

by RT-PCR, which was consistent with the bioinformatics analysis.
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Conclusion: The 7 prognostic genes (PGK1, BTG2, TANK, CFB, EIF4E3,

TNFRSF18, and BATF) were screened, providing new insights into potential

treatments for BRCA.
KEYWORDS

breast cancer, T-cell exhaustion, macrophage polarization, prognostic risk model,
immune infiltration analysis
1 Introduction

Breast cancer has overtaken lung cancer as the most commonly

diagnosed cancer in women, with an estimated 2.3 million new

cases each year (1). By 2040, the BRCA burden is expected to exceed

3 million new cases and 1 million deaths annually (2). Surgery,

chemotherapy and radiotherapy remain the mainstay of treatment

for BRCA. Thanks to advances in diagnosis and treatment, the five-

year survival rate for stage I breast cancer is 99 percent, compared to

only 28 percent for stage IV. In addition, BRCA is a complex and

heterogeneous disease, and the treatment outcomes for different

patients often vary greatly (3). Coupled with issues of drug

recurrence, and metastasis, this leads to poor patient prognosis (4,

5). Therefore, the identification of genetic biomarkers for breast

cancer prognosis and the elucidation of their underlying molecular

mechanisms are crucial for the development of precision therapies

and the improvement of patient outcomes.

The immune system plays a dual role in breast cancer, not only

suppressing tumor growth but also being exploited by the tumor to

promote its progression. Effective T cell responses are a critical

component of adaptive immunity, protecting against both foreign

pathogens and malignant transformation. However, prolonged

antigen exposure leads to T-cell dysfunction, a process known as

exhaustion (6). The functional decline of T cells during chronic

stimulation, commonly referred as T-cell exhaustion (TEX), is a

major limitation of current immunotherapy (7). Exhausted T cells are

effector lymphocytes that express multiple inhibitory receptors (PD1,

LAG3, CTLA4 and TIM-3) (8). The reactivation of T cells mediates

anti-tumor immunity in BRCA immunotherapy (9). In addition to T

cells, macrophages also play a key role in the tumor

microenvironment. Macrophages are crucial cells in the human

body’s innate immunity and are involved in a variety of non-

inflammatory responses. There are two main forms of macrophage

polarization, M1-like and M2-like, each of which can be polarized

into two types under different cell stimulation conditions. The two

types of macrophages secrete different cytokines during the disease

process, resulting in two opposing effects (10). VISTA affects BRCA

tumor cells growth by critically regulating the macrophage

polarization through the STAT pathway (11). Research has found

that tumor-associated macrophages expressing the transcription

factor IRF8 contribute to TEX in cancer. The advent of immune

checkpoint blockade (ICB) therapy restores some function to
02
exhausted cells to fight various cancer types. Continuing to dissect

the processes that regulate TEX and macrophage polarization will

help design enhanced immune-mediated therapies that can reduce

adverse effects and significantly improve outcomes for BRCA patients

(11, 12). The emergence of immune checkpoint blockade (ICB)

therapy has revolutionized cancer treatment by restoring exhausted

T cell (TEX) functionality and enhancing anti-tumor immunity.

However, the therapeutic efficacy of ICB in breast cancer (BRCA)

remains limited due to the complex interplay between T cell

exhaustion and macrophage polarization. Therefore, in-depth

investigation into the regulatory mechanisms governing TEX and

macrophage polarization will not only elucidate the molecular basis

of tumor immune evasion but also provide a theoretical foundation

for developing novel immunotherapeutic strategies.

Based on the transcription data of public databases, this study

has identified BRCA prognostic genes associated with T cell

exhaustion and macrophage polarization through differential

expression analysis, WGCNA, univariate Cox regression analysis

and machine learning methods. The immune infiltration,

enrichment pathways and molecular regulatory mechanisms of

prognostic genes were explored, and mutation analysis and drug

sensitivity analysis were performed. This provides a new scientific

idea for the prognosis of BRCA.
2 Materials and methods

2.1 Data resource

The data, including information on mutations, RNA

sequencing (RNA-Seq), microRNA (miRNA)-Seq, long non-

coding RNA (lncRNA)-Seq, clinical information (age, gender,

stage staging, T/N/M staging), as well as survival information,

were acquired from the TCGA database. Excluded patient data

were those lacking survival information. The training set of TCGA-

BRCA data comprised 113 normal samples and 904 tumor samples

from BRCA patients (13). The inclusion and exclusion criteria were

presented in Supplementary Table 1. The prognostic model (14)

was validated through the validation set GSE20685 (GPL570),

which comprised 327 breast cancer samples, which was mined

from the GEO database. Additionally, the literature provided 683 T-

cell exhaustion-related genes (TEXRGs) (15) and 35 macrophage
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polarization-related genes (MPRGs) (16). For handling missing

values, we used the na.omit() function to remove missing data

and ensure data integrity, preventing missing values from

interfering with subsequent analysis.
2.2 Immune infiltration analysis in TCGA-
BRCA

In TCGA-BRCA, the infiltration levels of 22 immune cells were

evaluated using CIBERSORT algorithm between BRCA and normal

samples (17). The distribution of immune cells was visualized using

a heatmap made through ggplot2 (v3.4.4) (18), after removing 3

immune cells with a distribution ratio of zero. Then, through the

Wilcoxon test, the differences in immune cells between BRCA and

normal samples were analyzed (p < 0.05). Moreover, Spearman

analysis (|cor| > 0.3, p < 0.05) was employed to examine the

correlation between differential immune cells (19).
2.3 Differential expression analysis

Between cancer and normal samples (TCGA-BRCA), DESeq2

(v 1.42.0) (20) was utilized to acquired differentially expressed genes

(DEGs) (p.adj < 0.05, |log2fold change (FC)|>0.5). After that, DEGs

were visualised through volcano maps by ggplot2, and the top 10

DEGs based on |log2FC| were labeled. Furthermore, DEGs were

displayed on a heat map by pheatmap (v1.0.12) (21). In the

differential expression analysis, DESeq2 normalized the data by

estimating size factors to adjust for sequencing depth differences

between samples, ensuring the gene expression data across samples

is comparable. Variance Stabilizing Transformation (VST) to

normalize the gene expression data for differential analysis. VST

converts raw count data into data that is approximately

normally distributed.
2.4 Screening of key module genes

In the WGCNA analysis, when filtering module genes, we used

the absolute values of gene significance (GS) and module

membership (MMblue). We retained genes with an absolute GS

value greater than 0.6 and an absolute MM value greater than 0.4.

The weighted gene co-expression network analysis (WGCNA)

package (v1.71) was utilized to analyze WGCNA. Initially,

differentially expressed MPRGs (DE-MPRGs) were acquired by

intersecting MPRGs with DEGs. Next, according to GSVA (v

1.50.0) (22), DE-MPRGs scores were assessed through single-

sample genome enrichment analysis (ssGSEA). Next, according to

median scores, the samples were split into high- and low-scoring

parts, also overall survival (OS) survival curves were drawn between

the 2 scoring groups. To guarantee the accuracy of the study, the

BRCA samples in TCGA-BRCA were then grouped and outlier

samples were eliminated. The optimal soft threshold was then

identified. The selection criteria were met when the mean
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connectivity also trend toward 0 and the R2 exceeded the

threshold value of 0.85. Subsequently, the co-expression matrix

was constructed, with a minimum of 100 genes per gene module.

The Pearson function was utilized to examine the correlation

between each gene module and MPRGs scores, and a correlation

heatmap was created (|cor| > 0.3, p < 0.05) to identify key modules

with high correlation with MPRGs scores, and their genes were

combined as key module genes (23).
2.5 Candidate gene acquisition, protein-
protein interaction network construction,
as well as functional enrichment analysis

Key module genes, TEXRGs, and DEGs were intersected

through the ggvenn (v 0.1.10) (24)to identify potential genes

related to T-cell exhaustion and macrophage polarization in

BRCA patients. Next, with the help of the search tool for

recurring instances of neighboring genes (STRING) database

(confidence=0.4), the PPI network between the candidate genes

was built to thoroughly investigate the interactions between the

relevant proteins of the candidate genes (25). Cytoscape (v 3.7.1)

(26) was employed to display the PPI network. Additionally, we did

the gene ontology (GO) as well as the Kyoto encyclopedia of genes

and genomes (KEGG) (p< 0.05).
2.6 Screening of prognostic genes

Using survival (v 3.5-7) (https://CRAN.R-project.org/

package=survival) and the 904 BRCA samples in TCGA-BRCA,

univariate Cox regression analysis of candidate genes was

conducted to screen for prognostic-related genes (hazard ratios

(HR) ≠ 1, p<0.01). Following this, the PH assumption testing was

evaluated for the Cox regression model (incorporating survival data

and candidate genes) by using the cox.zph function. Genes that

passed the PH test (p > 0.05) were identified as signature genes and

plotted visually by a forest plot (27). Next, 101 combinations of 10

machine learning (stepwise Cox, elastic network [Enet], random

survival forest [RSF], partial least squares regression for Cox

[plsRcox], survival support vector machine [survival-SVM],

CoxBoost, supervised principal components [SuperPC], LASSO,

Ridge, as well as generalized boosted regression modeling [GBM])

were generated to fit predictive models for TCGA-BRCA dataset

and validating them in GSE20685. The optimal machine learning

model (with the highest concordance index (C-index) and better

prognostic value) was selected. The genes in the optimal model were

labelled as prognostic genes.
2.7 Risk model construction and evaluation

Based on TCGA-BRCA and the median risk score, BRCA

samples were categorized into high- and low-risk groups. Then,

survival analysis was undertaken. Then, we produced Kaplan-Meier
frontiersin.org
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(KM) survival curves. Subsequently, the accuracy of the risk model

was assessed through receiver operating characteristic curves (ROC)

by timeROC (v 0.4) (28). Furthermore, using the GSE20685 dataset,

the risk model was validated.
2.8 Association between risk scores and
clinical characteristics

The differences in different clinical characteristics (age, tumor

stage, gender, T-stage, N-stage, as well as M-stage) were contrasted

through Wilcoxon test between two risk groups (p < 0.05) (29). For

processing cancer staging information, we removed samples with

“Stage X” using the command clin_data <- clin_data[-which

(clin_data$Stage == “Stage X”)],. “Stage X” represents an

unknown stage, and these samples are considered invalid or

anomalous. The outcomes were drawn by violin plots.

Subsequently, KM survival curves were created for the various

subtypes of the aforementioned clinical characteristics, and

survival differences among subtypes were contrasted through Log-

rank test.
2.9 Independent prognostic analysis and
nomogram construction

The univariate Cox regression analysis (p < 0.05), PH assumption

test (27), as well as multivariate Cox regression analysis (p < 0.05)

were conducted to uncover independent prognostic factors

influencing BRCA patients. Next, the resulting factors were then

incorporated into construction of a prognostic nomogram. Through

constructing decision curve analysis (DCA), ROC curves, as well as

calibration curve, we assessed the prognosis nomogram.
2.10 Immune infiltration analysis in high-
and low-risk groups

In the two risk groups, the proportions of each immune cell

were displayed following the elimination of immune cells

(distribution ratio of 0). Next, the Wilcoxon test (p< 0.05) was

conducted to determine the differential immune cells.
2.11 Immunotherapy analysis

The expression differences of 38 conventional immunological

checkpoints (ICI) (30) between two risk groups of TCGA-BRCA

were evaluated to examine the link between these groups and ICI.

Next, the association between differential ICI genes and prognostic

genes was explored. The immunological score, stromal score, as well

as estimated score were then determined by the ESTIMATE

algorithm (31). Lastly, according to the TIDE algorithm, the
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differences in TIDE, dysfunction, CD274 as well as exclusion

scores were examined between the two risk groups.
2.12 Mutation analysis

In order to ascertain which genes were mutated in BRCA

patients, the TCGA-BRCA provided the mutation data. Next, the

differences in mutation rates for the top 5 mutated genes were

assessed between two risk parts. After that, the variations in tumor

mutation burden (TMB) and risk ratings between two risk groups

were examined. Afterwards, the patients were divided into high-

and low-TMB groups according to the optimal threshold for TMB

scores, and the KM survival curves for each group were created.

The groups classified as low risk-high TMB group, high risk-high

TMB group, low risk-high TMB group, as well as high risk-low

TMB group. Eventually, the Kruskal-Wallis test was utilized to

examine the OS differences among the 4 groups.
2.13 Analysis of copy number variants

Chromosomal analysis of somatic CNV (SCNA) was carried out

through the GISTIC algorithm in TCGA-BRCA. Copy number

deletions and amplifications were independently quantified between

the two risk groups, and the copy number differences were assessed.

Subsequently, the GISTIC algorithm was employed to count the

CNVs of the prognostic genes of TCGA-BRCA in BRCA patients.

Furthermore, prognostic gene mutations in BRCA patients were

analyzed by the cBioPortal (https://www.cbioportal.org) website.
2.14 Enrichment analysis of prognostic
genes

Differential expression analyses were undertaken through the

DESeq2 package to acquire DEGs2 between two risk groups, ranked

by size of log2FC values. The ranked genes in the background gene

set (c2.cp.kegg.v7.5.1.entrez.gmt) were analyzed through

clusterProfiler for GSEA (p < 0.05). Then, the results were

visualized by drawing ridge plots with the help of the GseaVis (v

0.0.5) (https://CRAN.R-project.org/package=GseaVis).
2.15 Regulatory network analysis

DE-lncRNA and DE-miRNAs were subjected to differential

expression analysis through DESeq2 and limma (v 3.58.1)

between BRCA and normal samples (32), respectively. The

criteria for screening were p.adj < 0.05 and |log2FC| > 0.5. Next,

ggplot2 and pheatmap were utilized to show DE-miRNAs and DE-

lncRNAs on heat maps and volcano plots, respectively.

Subsequently, the mirDIP database was searched for miRNAs that
frontiersin.or
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interacted with prognostic genes. These miRNAs overlapped with

DE-miRNAs, and the overlapped miRNAs were identified as key

miRNAs. Next, lncRNAs interacting with key miRNAs were gained

in the starbase database, and their intersections were taken with DE-

lncRNAs, and the intersecting lncRNAs were labeled as key

lncRNAs. Ultimately, the lncRNA-miRNA-mRNA network was

created by prognostic genes, key lncRNAs, as well as key miRNAs.
2.16 Drug sensitivity analysis

According to GDSC database, using the pRRophetic software (v

0.5) (33), the IC50 of semi-inhibition of 138 chemotherapy/targeted

therapy medications was determined for each BRCA patient.

Between the two risk parts, the medication IC50 differences were

contrasted. Next, the top 10 drugs with the highest significance were

displayed using a box plot created by ggplot2.
2.17 Reverse transcription-quantitative
polymerase chain reaction

A total of 10 tissue samples (5 normal and 5 BRCA) were

acquired for PCR analysis. All participants were given informed

consent. The study had the approval of the Xijing Hospital, The

Fourth Military Medical University ethics committee (approval

number:KY20162040-N-1). First, total RNA was extracted from

the tissue samples through TRizol reagent, and then the

concentration of total RNA was determined with the help of

NanCChotometer N50. Next, RNA was reverse transcribed by

SureScript First strand cDNA synthesis kit (Servicebio, China).

PCR was carried out through CFX96 real-time PCR detection

(CFX96; Bio-Rad, USA) systems with 40 cycles. The relative

expression of genes was calculated by using the 2-DDCT method.

The information sequences were shown in Supplementary Table 4,

and GAPDH was used as an internal reference.
2.18 Statistical analysis

Bioinformatics analyses were undertaken utilizing the R

programming language (v 4.2.2). A Wilcoxon test was utilized to

compare the groups. When determining statistical significance, a p-

value of less than 0.05 was used.
3 Results

3.1 Comparative analysis of immune
infiltration between BRCA tissues and
normal controls

Comparative analysis of immune cell infiltration levels revealed

distinct distribution patterns of 19 immune cell types between

tumor and normal samples in TCGA-BRCA cohort (Figure 1A).
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Subsequently, eight immune cell types showed significant

differences between tumor and normal samples. Among them,

activated memory CD4+ T Cells, regulatory T cells (Tregs), T

follicular helper cells, M0 macrophages, as well as M1

macrophages were more infiltrated in tumor samples, while M2

macrophages were more infiltrated in normal samples (Figure 1B).

Additionally, Spearman correlation analysis revealed a significant

negative correlation between monocytes and M0 macrophages (r =

-0.65, p < 0.01), while M1 macrophages showed a positive

significant relationship with activated memory CD4 T cells (r =

0.41, p < 0.01) (Figure 1C).
3.2 Screening of differentially expressed
genes associated with T cell exhaustion
and macrophage polarization

Following screening, 9,118 DEGs between BRCA and normal

samples were found. Of these, up-regulated genes were 5,506, and

down-regulated genes were 3,612 (Figures 2A, B). Then, 35 MPRGs

were taken to intersect with 9,118 DEGs, and 13 DE-MPRGs were

obtained (Figure 2C). Next, survival rates in the low-scoring part

were relatively high (p = 0.0043) (Figure 2D). Subsequently, BRCA

samples in TCGA-BRCA were clustered better with no outliers

(Supplementary Figure S1). The optimal soft threshold (b) was

chosen as 7 when R2 crossed the threshold 0.85 and mean

connectivity also tended to 0 (Figure 2E). All genes were

categorized into 11 modules (Figure 2F). Among them, MEblue,

MEbrown, and MEgreen were selected as key modules and they

contained genes 2588, 1724, and 888, respectively (Figure 2G). After

combining the genes from the 3 modules, 5,200 key module genes

were acquired. Finally, the key module genes, TEXRGs, and DEGs

were crossed and 70 candidate genes were obtained (Figure 2H).
3.3 PPI network and functional analysis of
candidate genes

The PPI network was created, in which it has 51 nodes and 128

edges. Among them, GAPDH and CASP3S had the most

interactions with other genes, followed by TAT5A, PIK3CA, and

BCL2L1 (Figure 3A). By enrichment analysis of the candidate genes,

in biological process (BP), the candidate genes were significantly

associated with B cell proliferation, regulation of B cell proliferation,

mononuclear cell proliferation, etc. In molecular function (MF), the

candidate genes were mainly enriched for entries such as death

domain binding, transcription coregulator binding, nuclear

receptor activity, transcription coactivator binding, phosphate ion

binding, etc. In cellular component (CC), the Bcl−2 family protein

complex, RNA polymerase II transcription regulator com, ficolin−1

−rich granule, and basal plasma membrane were mainly enriched

by candidate genes (Figure 3B). In KEGG analysis, candidate genes

were mainly enriched for chronic myeloid leukemia, measles, and

pathogenic Escherichia coli infection, among others (Figure 3C).

These results suggested that the candidate genes were indeed
frontiersin.org
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involved in T cell related functions, which might also be related to

macrophage polarization in BRCA patients.
3.4 Screening of prognostic biomarkers
and construction of risk prediction models

By performing univariate Cox regression analysis on 70

candidate genes, 7 genes were selected with the names PGK1,

BTG2, TANK, CFB, EIF4E3 , TNFRSF18 , and BATF

(Supplementary Table S3). Then, forest plot was drawn for the 7

genes that passed the PH test, and it was observed that PGK1 (HR >

1, p < 0.05) was considered a risk factor, and BTG2, TANK, CFB,

EIF4E3, TNFRSF18, as well as BATF were all protective factors (HR

< 1, p < 0.05) (Figure 4A). The optimal model was then identified as

the RSF algorithm (the highest C-index was 0.799), and PGK1,

BTG2, TANK, CFB, EIF4E3, TNFRSF18, and BATF were screened
Frontiers in Endocrinology 06
as prognostic genes in the model (Figure 4B). Subsequently, the

sample of BRCA patients was divided into high and low risk groups

(the median risk score was 16.3381) (Figure 4C). The survival rate

was relatively in low high-risk part (Figure 4D). Meanwhile, the risk

model had a good predictability with area under the curve (AUC) of

0.976 (1 year), 0.985 (3 years) as well as 0.985 (5 years) (Figure 4E).

Furthermore, risk model was validated through GSE20685. The risk

curve, KM survival curve, as well as ROC curve analytical results

were in agreement with the previously mentioned outcomes

(Supplementary Figures S2–S4).
3.5 Risk score-clinical characteristic
relationships

Differences in risk scores were observed across several clinical

characteristics, including age, tumor stage (excluding stage II–III),
FIGURE 1

In this project, immune cells with a distribution ratio of 0 were removed when drawing, leaving 19 types of immune cells. (A) Immune cell ratio
stacked bar chart in breast cancer and normal tissues. The x-axis represents samples, and the y-axis represents the overall ratio of different immune
cells. (B) Spearman correlation analysis of the correlations between different immune cells in breast cancer and normal tissues. (C) Differences in the
Correlation Heatmap of Immune Cells (* represents P < 0.05, ** represents P < 0.01; red represents positive correlation, blue represents negative).
***P < 0.001, ****P < 0.0001.
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FIGURE 2

(A) Volcano plot of differentially expressed genes. Red dots indicate that their basal expression levels are up-regulated, blue dots indicate that their
gene expression levels are down-regulated, and black indicate that these genes have no significant difference. (B) Heathop of differentially expressed
genes. Each small square represents a gene, with higher expression levels shown in red and lower expression levels shown in blue. Each row
represents the expression levels of gene across different samples, and each column represents the expression levels of all differentially expressed
genes in a sample. (C) Venn diagram of differentially expressed MP-RG associated genes. (D) KM plot of MP-RGs score. (E) Scale-free soft-
thresholding distribution: The x-axis represents the weight parameter power value, the y-axis of the left figure represents the scale-free fit index, i.e.,
the signed^2. The higher the coefficient of determination, the closer the network is to a scale-free distribution. The y-axis of the right figure
represents the average of adjacency functions of all genes in the corresponding gene module. (F) Module clustering dendrogram: Genes were
divided into various modules by hierarchical clustering, with different colors representing different modules, and gray representing the default for
genes that cannot be classified any module. (G) Heatmap of the correlation between modules and clinical traits: The y-axis represents different
modules, the x-axis represents MP-RG scores, and each block represents the correlation coefficient and significance P-value between a and a trait.
(H) Candidate Gene Venn Diagram.
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M stage, N0-N3 stages, and T stages (T1-T2, T1-T3, T1-T4, T2-T4,

and T3-T4), but no significant differences were observed by gender

(p < 0.05) (Figures 5A-F). Subsequently, by plotting KM survival

curves for the above subtypes of clinical characteristics, survival

differences were found in age, Stage, M, and N stages (p < 0.05)

(Figures 5G-L).
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3.6 Independent prognostic analysis and
construction of nomogram

Age, risk score, stage, T, N, as well as M were the six outcomes of the

independent prognosis of risk score and clinical characteristics that were

found to be significant (HR > 1, p < 0.05). The PH assumption test was
FIGURE 3

(A)PPI network among candidate genes. The red dots highlight the prognostic genes screened out by the 101 machine learning models in this study.
(B) Tree map of GO enrichment of candidate genes. (C) KEGG pathway enrichment map of candidate genes.
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passed by all of them (Figure 6A, Supplementary Figure S5). Next, age,

stage, as well as risk score were found to be significant independent

prognostic variables in a multivariate Cox analysis (Figure 6B). A

nomogram was constructed based on these variables, as shown in

Figure 6C. Calibration curves indicated that the nomogram’s predictions
Frontiers in Endocrinology 09
weremost accurate at 1 year, with slopes of 0.9459, 0.6339, and 0.3766 at 1,

3, and 5 years, respectively (Figure 6D). The AUC values were 0.875 (1

year) and 0.717 (3years) (Figure 6E). Moreover, at different threshold

probabilities, the net benefit value of the DCA curve exceeded the separate

independent prognostic factors and treat-all strategy (Figure 6F).
FIGURE 4

(A)Forest plot of univariate Cox regression analysis. (B) Evaluation of various machine learning models. (C) Risk curves for high and low risk groups in
the training set. Red represents the high-risk group, blue represents the low-risk group, the x-axes of the two subplots are consistent, the risk scores
patients increase from left to right, the y-axes are the risk score and survival time respectively, and the dotted line is the threshold for dividing high
and low groups. (D) KM survival curve of the training set risk score. (E) The training set ROC curve evaluates the validity of the risk model.
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3.7 The immune landscape and genomic
variation characteristics between the high-
and low-risk groups

Figure 7A demonstrated the infiltration of 19 distinct immune

cell types in the high- and low-risk groups. Seven immune cells
Frontiers in Endocrinology 10
(naive B cells and CD8 T cells) were shown to differ significantly (p

< 0.05). Samples from the high-risk group showed larger infiltration

abundances of M0 macrophages and M2 macrophages, whereas

samples from the low-risk groups showed higher infiltration

abundances of CD8 T cells and resting memory CD4+T cells

(Figure 7B). Among the 36 ICIs, 27 showed significant differences
FIGURE 5

Differences in risk scores among different clinical characteristics and KM curves in different clinical characteristic groups. (A) The correlation between
risk scores and age. (B) The correlation between risk scores and gender. (C) The correlation between risk scores and Stage group. (D) The
correlation between risk scores and M group. (E) The correlation between risk scores and axillary lymph nodes. (F) The correlation between risk
scores and tumor size (G) KM curves in age (H) KM curves in gender (I) KM curves in Stage group (J) KM curves in M group (K) KM curves in axillary
lymph nodes (L) KM curves in tumor size.
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(p < 0.05) between the two groups (Figure 7C). Positive connections

were identified between BATF and TNFSF18 with TNFSF14 and

TNFSF4, and between TANK and CD200 and CD274 (r > 0.3, p <

0.05) (Figure 7D). There were significant differences in the

estimated score, stromal score, as well as immunization score

between two risk group (Figure 7E). Additionally, there were

notable distinctions between the two risk groups for TIDE,

dysfunction, CD274, as well as exclusion between the two risk

groups (Figure 7F).

Based on the TCGA-BRCA dataset, a mutation analysis was

conducted. The top 20 genes with the highest mutation frequency in

both risk categories were presented in Figure 8A. PIK3CA and

CDH1 had high mutation frequencies in the low risk group, and

TP53 and TTN had high mutation frequencies in the high risk

group among the top 5 genes (Supplementary Figure S6). The high-

risk part had higher TMB scores (Figure 8B). Patients had poorer

survival rates in the high TMB group (Figure 8C). The survival rates
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were lower in high risk- high TMB as well as the high risk-low TMB

group (Figure 8D). Both amplified copy number and deletion copy

number were markedly different in two parts (Figure 8E).

Meanwhile, BTG2 occurred with the highest frequency of copy

number amplification in TCGA-BRCA, while TNFRSF18 and

EIF4E3 occurred with the highest frequency of copy number

deletion (Figure 8F). Moreover, by analyzing the mutation of

prognostic genes in BRCA patients in TCGA-BRCA, it was found

that among the copy number variations in 963 BRCA samples, 7

prognostic genes were mutated in a total of 165 samples (17%), of

which BTG2 had the highest frequency of mutation in breast

cancer, followed by TNFRSF18 and CFB (Figure 8G). Pathways

significantly enriched in GSEA for the 7 prognostic genes were

primary immunodeficiency, cytokine-cytokine receptor interaction,

hematopoietic cell lineage, among others (Figure 8H). These

findings suggested a potential association between these pathways

and outcomes in BRCA patients.
FIGURE 6

(A) Forest plot of univariate Cox regression results. (B) Forest plot of multivariate Cox regression results. The left side represents the factors and their
corresponding P values and HR values; the red squares on the right indicate HR values greater than 1, green squares indicate HR values less than 1,
and the lines on both sides of the squares represent the 95% confidence intervals for the HR values. (C) Nomogram predicts survival rate. The upper
part shows the contribution of different clinical factors to the outcome variables, with each level of each factor assigned a score, as indicated by in
the figure, representing the individual score for each clinical factor at different levels; the middle total score is the sum of the individual scores for
each clinical factor; lower part shows the total point calculated and compared to the 1/3/5-year mortality probability for the patient. (D) Calibration
curve results of the nomogram. (E) ROC curve of the nomogram. (F) Decision curve. The x-axis is the threshold probability: and the y-axis is the net
benefit (NB) after subtracting the harm from the benefit. The slopes in the figure represent different clinical diagnostic models.
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3.8 The analysis of molecular regulatory
networks and drug sensitivity

A total of 231 DE-miRNAs were identified between BRCA and

normal samples, with 115 miRNAs up-regulated and 116 miRNAs
Frontiers in Endocrinology 12
down-regulated in disease samples (Figure 9A). Similarly, 1,625

DE-lncRNAs were selected between BRCA and normal samples,

with up- and down-regulation of 1,015 and 610, respectively

(Figure 9B). The 9 key miRNAs were obtained by taking the

intersection of DE-miRNAs and predicted miRNAs (Figure 9C).
FIGURE 7

(A) Bar plots of immune cell infiltration in high and low risk groups. (B) Box plot of the proportion of immune cells in high and low risk groups. *
represents P < 0.05, ** represents P < 0.01, *** represents P < 0.001 **** represents P < 0.0001. (C) Expression differences of ICI genes between
high and low risk groups. The x-axis is the risk score, and the y-axis is the expression value of different immune checkpoints. (D) Heatmap of the
correlation between ICI genes and prognostic genes. (E) Differences in immune score, stromal score, and estimate score between high- and low-
risk groups in TCGA-BRCA. (F) Differences in TIDE, dysfunction, CD274, and exclusion between high and low risk groups in TCGA-BRCA. ns,
no significant.
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Similarly, 56 key lncRNAs were identified through overlapping DE-

lncRNAs and predicted lncRNAs (Figure 9D). Finally, a lncRNA-

miRNA-mRNA network containing 65 nodes (4 prognostic genes, 9

miRNAs, and 56 lncRNAs) and 70 edges was established. Among
Frontiers in Endocrinology 13
the interactions were SNHG17-hsa-miR-421-BTG2, UCA1-hsa-

miR-206-EIF4E3, SNHG11-hsa- miR-421-TANK, among others

(Figure 9E). Furthermore, the half maximal inhibitory

concentration (IC50) of semi-inhibitory rates to 138
FIGURE 8

(A)The top 20 genes with the highest mutation frequencies in high and low risk groups. (B) Differences in TMB scores between high and low risk
groups. (C) K-M curves of high and low TMB score groups. (D) K-M curves of H-TMB+high risk, H-TMB+low risk, L-TMB+high risk and L-TMB+ low
risk patients. (E) Differences in copy number amplifications and deletions between high and low risk groups. (F) The amplification copy number and
deletion copy number of prognostic genes in the TCGA-BRCA dataset. (G) The mutation frequency of each prognostic biomarker. (H) GSEA
enrichment ridge plot. ****P < 0.0001.
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chemotherapy/targeted therapy drugs was assessed for each patient

in BRCA, and the specific results were shown in Supplementary

Table S2. Subsequently, the IC50 of 84 drugs was found to be

significantly different in the high- and low-risk parts

(Supplementary Table S3). The top 10 drugs with the highest
Frontiers in Endocrinology 14
significance (p-values ranked from smallest to largest) were

PD.0332991, AZD6244, Nutlin.3a, LFM.A13, PD.0325901,

Erlotinib, RDEA119, CI.1040, AG.014699, and Bosutinib, and the

IC50 for these 10 drugs was relatively low in the low-risk

group (Figure 9F).
FIGURE 9

(A) Volcano plot and heatmap of differentially expressed miRNAs. (B) Volcano plot and heatmap of differentially expressed lncRNA. (C) Acquisition of
key miRNAs. (D) Acquisition of key lncRNA. (E) lncRNA-miRNA-mRNA network. Blue dots represent lncRNAs, yellow dots represent miRNAs, and red
dots represent prognostic genes. (F) Differences in IC50 values of 10 drugs between high- and low-risk groups. ****P < 0.0001.
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3.9 Validation of prognostic gene
expression levels

To ensure the reliability of the analyses, we used qRT-PCR

experiments to validate the expression of prognostic genes. There

were significant differences in the expression levels of BTG2, TANK,

CFB, and EIF4E3 in the normal and BRCA samples. Specifically,

BTG2, TANK, and EIF4E3 were significantly down-regulated in

BRCA samples and were consistent with the results of the

bioinformatics analyses, whereas CFB showed the opposite trend

of the bioinformatics analyses, which may be due to the insufficient

sample size or heterogeneity of the samples (Figures 10A-E).
4 Discussion

Metastatic disease is the leading cause of death in women with

BRCA mutations and the current clinical treatment is surgery.

However, the rate of disease recurrence after surgery is high and

there is a significant degree of drug resistance. This severely limits

the therapeutic efficacy of BRCA (34). TEX in breast tumors

remains to be fully characterized (35). Macrophage accumulation

is positively correlated with poor prognosis in BRCA patients (36).

Previous studies have shown that tumor-associated macrophages

present cancer cell antigens and induce T-cell dependent IRF8,

which promotes tumor growth (37). It may be possible to further

understand the mechanism of BRCA metastasis and reduce distant

metastasis. However, the molecular mechanism between them is

unclear. This study identified 7 prognostic genes (PGK1, BTG2,
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TANK, CFB, EIF4E3, TNFRSF18 and BATF) associated with T cell

failure and macrophage polarization in BRCA by differential

expression analysis, WGCNA, univariate Cox regression analysis,

and machine learning algorithm. Moreover, a prognostic risk model

was created to predict the survival of BRCA patients. In addition,

analyses of immune infiltration, GSEA enrichment, molecular

regulation, and drug sensitivity were performed. These findings

provide valid targets for providing personalized treatment and

prognostic interventions for BRCA patients.

The PGK1 gene is associated with the ability of cell lines to

proliferate, migrate and invade (34). In BRCA patients, LINC00926

expression correlates negatively with PGK1 and positively with

FOXO3A expression (38). PGK1 could be investigated not only as a

biomarker, but also in combination with TP53/CDH1 for

chemotherapy in BRCA (39). PGK1 may play an important role

in BRCA. PGK1 exhibits complex and seemingly contradictory

functional characteristics under different physiological and

pathological conditions. Initially, it was identified as a tumor

suppressor, capable of limiting tumor growth by reducing the

disulfide bonds in plasmin outside the cell, thereby generating

angiostatin. However, within the cell, it plays the opposite role

(40). In terms of tumor metabolism, cancer cell proliferation and

metastasis rely on energy supply from glycolysis (i.e., the Warburg

effect), especially under hypoxic conditions in the tumor

microenvironment (TME). Here, HIF-1a avoids degradation,

dimerizes with HIF-1b, activates PGK1 expression, enhances the

glycolysis pathway, and promotes the development of BRCA (41).

Multiple studies (42, 43) have shown that PGK1 expression is

significantly upregulated in various BRCA subtypes and is closely
FIGURE 10

Differences in the expression levels of BTG2, TANK, CFB, and EIF4E3 in the normal and BRCA samples. ****P <0.0001; ns, no significant.
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related to tumor malignancy and prognosis. Meanwhile, in the field

of diabetic cardiomyopathy (DCM), research has found that PGK1

may play a promoting role by driving the polarization of M1

macrophages (44). However, when siPGK1 interference is applied,

it can regulate the inflammatory response by inhibiting macrophage

pyroptosis and M1 macrophage polarization (45). Overall, the dual

nature of PGK1’s function is highlighted. It is highly likely that by

regulating the glycolysis pathway and intervening in the

polarization state of macrophages, PGK1 deeply participates in

and influences the occurrence and development of BRCA. These

findings suggest that intervention targeting PGK1 and its

modifications may represent a potential therapeutic strategy for

cancer treatment.

BTG2 is a member of the BTG/TOB family of anti-proliferative

proteins. BTG2 could inhibit proliferation and migration and

regulate cell cycle progression (46). High expression levels of

BTG2 were reported to significantly affect BRCA patient survival

(47). Additionally, BTG2 may play a role in the polarization of M2-

type macrophages and the tumor microenvironment. Studies have

shown that the inhibition of M2-type macrophage polarization can

suppress the metastasis of BRCA. This suggests that inhibition of

macrophage polarization and tumor cell proliferation and

migration is important for BRCA (48). This is consistent with our

findings, where the infiltration abundance of M2-type macrophages

was higher in the high-risk group samples. Additionally, BTG2 is a

key component of the pre-B cell differentiation program. Together

with PRMT1, it forms the BTG2-PRMT1 module, which induces

cell cycle arrest in pre-B cells (45). In this study, BTG2 is found to be

lowly expressed in BRCA tissues, while B cell naive is highly

expressed in the high-risk group. Therefore, BTG2 may play a

role in the progression of BRCA by affecting macrophages cell

proliferation and migration.

TBK1 is a serine/threonine kinase and a non-canonical member

of the IKK family with multiple cellular functions in innate

immunity, tumorigenesis and development. TBK1 is a key

regulator of centrosome homeostasis and is required for mitotic

progression in BRCA (49). Thus, TANK may function in BRCA by

regulating the mitosis of BRCA cells.

Mutations in the CFB gene result in reduced activation of B

cells, which in turn lead to changes in the tumor immune

environment. This may play a role in the correlation between the

presence of these mutations and unfavorable outcomes in breast

and lung cancer (50). The subunits are regulated by factor D, which

is associated with proliferation and differentiation of preactivated B

lymphocytes, rapid expansion of peripheral blood monocytes,

stimulation of lymphocyte follicle formation and erythrocyte lysis.

Mutations in the CFB gene lead to reduced activation of B cells,

which in turn leads to changes in the tumor’s immune environment.

This may contribute to the observed association between the

presence of these mutations and unfavorable outcomes in breast

and lung cancer (51). Additionally, the expression of CFB is

downregulated in clinical samples of lung adenocarcinoma

(LUAD), while its overexpression can inhibit tumor growth, cell
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proliferation, and migration, and promote cell apoptosis and cell

cycle arrest. CFB can also suppress tumor development by

negatively regulating the Ras/MAPK signaling pathway.

Knockdown of CFB may inhibit the NF-kB signaling pathway

(52), thereby driving macrophage polarization towards the M2

phenotype (53), and also affect B cell activation (54). In our

study, the expression level of CFB was significantly reduced in the

BRCA group. In summary, CFB may influence the occurrence and

development of BRCA by regulating macrophage polarization and

B cell activation.

EIF4E3, a member of the EIF4E family of translation initiation

factors, has been observed to interact with the 5′-cap structures of

mRNA (55). Prior research has demonstrated that individuals

exhibiting elevated EIF4E expression are more prone to

recurrence and mortality compared to those displaying

diminished eIF4E expression in patients with triple-negative

BRCA (56). EIF4E plays a pivotal role in the protein complex

known as the translation initiation factor. Individuals with elevated

EIF4E expression are at an increased risk of recurrence and

mortality compared to those with reduced EIF4E expression in

triple-negative BRCA patients. EIF4E exerts a significant influence

on the development of BRCA (57). In our study, the expression level

of EIF4E3 was significantly decreased in the BRCA group,

indicating that EIF4E3 may function as a tumor suppressor gene

in breast cancer, and its low expression may be associated with the

progression of the disease.

TNFRSF18 is a member of the tumor necrosis factor receptor

(TNF) superfamily and plays a significant role in immune

responses. It is involved in T cell co-stimulatory signaling and

exerts crucial functions in protective immunity, inflammation,

autoimmune diseases, and cancer immunotherapy. In the

METABRIC cohort, patients with high expression of TNFRSF18,

which encodes GITR, had significantly improved survival compared

to those with low expression. The addition of local RT or an anti-

TNFRSF18 agonist to PD-L1 blockade did not result in a significant

increase in efficacy compared to PD-L1 blockade alone. However,

the combination of both with PD-L1 blockade showed a significant

reduction in tumor growth and lung metastases (58). This suggests

that the GITR agonist may enhance T cell activation and antitumor

immune responses, while radiation therapy further promotes the

release of tumor antigens and the infiltration of immune cells,

thereby synergizing with PD-L1 blockade. In our study, the

infiltration abundance of T cells was higher in the low-risk group

samples, indicating that patients in the low-risk group may have a

stronger antitumor immune microenvironment, which is associated

with better prognosis.

BATF is a member of the AP-1/ATF superfamily of proteins.

BATF inhibits Ras and Fos-mediated cellular transformation by

acting as a negative regulator of AP-1-mediated transcription (59,

60). Studies have shown that the deletion of BATF can enhance the

antitumor activity of CAR-T cells, particularly in combating T cell

exhaustion. In various types of CAR-T cells and mouse OT-1 cells,

the absence of BATF rendered T cells more resistant to exhaustion
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and endowed them with a stronger capacity for tumor eradication.

These investigations have unveiled BATF as a key regulator of T cell

function, with its deletion potentially enhancing T cell persistence

and antitumor activity, thereby offering new strategies for cancer

immunotherapy. In our study, the infiltration abundance of T cells

was higher in samples from the low-risk group, which may be

associated with stronger T cell function and lower levels of

exhaustion in patients of the low-risk group, thus correlating with

better clinical outcomes. Calycosin has been demonstrated to

inhibit the progression of BRCA cells by suppressing epithelial-

to-mesenchymal transition (EMT) via the BATF/TGFb1
pathway (61).

This study constructed a clinical risk prediction model by

aggregating the results of multivariate Cox regression analysis.

The results indicate that high-risk patients have a significantly

worse prognosis, with a higher risk score being positively

associated with more aggressive clinical characteristics. DCA is a

well-established method for the evaluation of nomograms, which

have been tailored to meet the practical requirements of clinical

decision making (62). Furthermore, ROC curve, which assesses the

validity of the risk model, demonstrated that AUC values at 1, 3,

and 5 years were all greater than 0.9 (0.976 at 1 year, 0.985 at 3

years, and 0.985 at 5 years). This performance exceeds the moderate

accuracy of established models such as the Breast Cancer Risk

Assessment Tool (BCRAT) and the Breast Cancer Surveillance

Consortium (BCSC), which have a maximum AUC of 0.71 (63).

Further evidence that t-cell exhaustion and macrophage

polarization are common genes that predict disease is good and

can provide a valuable reference tool for clinical decision-making.

This provides a distinctive viewpoint with regard to the prediction

of cancer risk. However, this model was constructed solely through

bioinformatics analysis, and its reliability and clinical applicability

still require further validation through experimental studies and

clinical data. Therefore, we plan to systematically validate the

model’s key molecular mechanisms and predictive performance

by integrating in vitro experiments, animal models, and clinical

samples in future research.

The analysis of immune infiltration revealed significant

differences in seven distinct immune cell types between the high-

and low-risk groups. These included naive B cells, CD4 T cells, CD8

T cells, monocytes, neutrophils, M0 and M2 macrophages. Eribulin

has been observed to promote CD8+ T cell proliferation, repress

effector T cell differentiation, and harness T cell-mediated anti-

tumor effects. These mechanisms may serve as a potential indicator

of eribulin’s ability to enhance the immunological status of tumor-

bearing hosts. Studies have demonstrated that the combination of

CD8+ T cell functional status assessment and immunosuppressive

factor analysis can provide clinically relevant information for

different BRCA subtypes (64). Programmed death-ligand 1 (PD-

L1), encoded by the CD274 gene, is expressed on the surface of

various cells within the TME. Immune checkpoint inhibition

therapy, particularly PD-1/PD-L1 blockade, has demonstrated

considerable promise in recent years and represents a promising
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area of research. It has been demonstrated that macrophages of the

M2 phenotype promote the expression of PD-L1 in triple-negative

BRCA cells through the secretion of CXCL1 (65). Furthermore, it is

generally accepted that plasma cells, monocytes, resting dendritic

cells, resting mast cells and resting memory CD4+ T cells are

associated with a favorable prognosis (66). A detrimental

prognosis was associated with the presence of M0, M1, and M2

macrophages; activated dendritic cells; activated mast cells;

regulatory T cells; T follicular helper cells; and neutrophils (67).

The GSEA revealed that pathways significantly enriched for the

seven prognostic genes included primary immunodeficiency,

cytokine receptor interaction, and hematopoietic cell lineage,

among others. Primary immunodeficiency diseases encompass a

range of genetic disorders that affect various components of innate

and adaptive immune responses (68). Xia (69) et al. found that the

expression of primary immunodeficiency genes has an extremely

important impact on the development, prognosis, tumor

environment, and treatment response of triple-negative BRCA

patients. Cytokine-receptor interactions play a crucial role in the

immune system, not only regulating allergic inflammation and

immune responses but also exerting key functions in tumor

immunity. For instance, interleukin (IL)-4 and IL-13 regulate the

functions and gene expression of various immune cells by binding to

specific receptors, thereby influencing allergic reactions and the

health of the immune system. Moreover, the signaling of IL-2

through its receptor plays an important role in tumor immunity,

promoting the activation, differentiation, and functional restoration

of T cells, and providing potential strategies for tumor

immunotherapy. These studies demonstrate that cytokine-receptor

interactions have broad applications in immune regulation and

disease treatment. The formation and development of the

hematopoietic cell lineage is a continuous process rather than being

hierarchically organized through discrete progenitor populations.

Specifically, blood formation occurs through the gradual

differentiation of hematopoietic stem cells (HSCs), with stepwise

acquisition of lineage bias along multiple trajectories, rather than

through the traditional progenitor hierarchy model. The self-renewal

capacity of multipotent HSCs supports hematopoietic system

homeostasis throughout life and underpins the therapeutic potential

of clinical HSC transplantation (70).These findings suggested a

potential association between primary immunodeficiency, cytokine-

cytokine receptor interaction and outcomes in BRCA patients. This

further suggests that the seven prognostic genes may play a role in

BRCA by participating in primary immunodeficiency and cytokine-

cytokine receptor interaction.

In this study, the IC50 of 84 drugs was found to be significantly

different in the high- and low-risk parts. The top 10 most

significantly different drugs included PD.0332991, AZD6244,

Nutlin-3a, LFM.A13, PD.0325901, Erlotinib, RDEA119, CI.1040,

AG.014699, and Bosutinib, with the IC50 for these drugs being

relatively low in the low-risk group. Nutlin.3a, the P53 activator is

critical in preventing tumorigenesis, and P53-activating drugs, may

have unexpected effects on macrophage function (71, 72). The
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administration of bosutinib has been identified as a promising

radiosensitizer, as it markedly reduces the dosage required for

both the drug and ionizing radiation (73). This may be associated

with a reduction in treatment-associated adverse reactions. The

present study suggests that bosutinib may be an effective potential

radiosensitizer in the treatment of BRCA. Furthermore,

experimental evidence corroborated these findings, indicating that

eIF4G1 silencing led to the downregulation of DDR proteins,

thereby enhancing radiosensitivity in BRCA cells. Therefore,

bosutinib may be a promising radiosensitizing agent for the

treatment of BRCA (73). These results suggest that the drug may

stimulate macrophages to fight drug-resistant bacteria, thereby

boosting innate immunity (74, 75). Erlotinib is a reversible, small

molecule ATP-competitive EGFR inhibitor that is primarily used in

the treatment of non-small cell lung cancer (76). Erlotinib binds to

the ATP-binding pocket of EGFR, thereby preventing

phosphorylation and subsequent activation of downstream cell

cycle progression, proliferation, and angiogenesis signaling

pathways. In a subset of BRCA patients, erlotinib demonstrated

efficacy in clinical trials (77).

This study was based on an analysis of publicly available

databases. Following a series of screening procedures, a total of

seven prognostic genes were identified. A risk model was

constructed, and immune infiltration analysis, function enrichment

analysis and molecular regulatory network analysis were carried out in

the high- and low-risk groups. The methodology employing

bioinformatics analysis to screen breast cancer prognostic genes

demonstrates multifaceted advantages compared to traditional

experimental approaches. Firstly, bioinformatics analysis enables

efficient processing of large-scale genomic, transcriptomic, and

clinical data, rapidly identifying candidate genes associated with

breast cancer prognosis. This significantly reduces research timelines

and decreases preliminary screening costs. By integrating data from

public databases, researchers can fully utilize existing resources to

avoid redundant experiments while elucidating intricate gene

regulatory networks and functional pathways, thereby offering a

more comprehensive perspective for investigating breast cancer’s

molecular mechanisms. In contrast, conventional experimental

methods typically demand substantial time, human resources, and

financial investment, yet struggle to comprehensively capture gene-

gene interactions and regulatory relationships. Additionally,

compared with previous BRCA biomarker studies (78), we

employed a more comprehensive machine learning strategy (10

algorithms, 101 combinations) to optimize model construction,

which significantly enhanced predictive performance (the 1-, 3-, and

5-year AUC of the risk model in both the training and validation sets

were all > 0.6). Moreover, we not only conducted independent

prognostic analyses but also further constructed a clinically useful

nomogram. The decision curve analysis (DCA) curve confirmed its

good clinical decision utility. The biological value of the biomarkers

was also validated through multidimensional analysis, including

prediction of immune checkpoint (ICI) response, dissection of

lncRNA-miRNA-mRNA regulatory networks, and drug sensitivity

analysis. Therefore, this study provides valuable insights into the
Frontiers in Endocrinology 18
molecular mechanisms of macrophage polarization and TEX-related

prognostic genes in BRCA, which could enhance the precision of early

BRCA prediction.

However, there are some limitations to this study. Further

experimental validation, an expanded sample size, and a combined

molecular typing approach are necessary to further investigate the

prognosis. The quality and completeness of the database used in this

study may influence the accuracy of the analytical results. Incomplete

or biased data could potentially affect the study findings. In terms of

drug sensitivity analysis, due to limitations in data acquisition, we

were unable to adjust for the impact of potential confounding factors

on IC50. Secondly, the key genes identified through bioinformatics

screening lack validation from laboratory experiments and clinical

data. Regarding molecular mechanism validation, the predicted

lncRNA-miRNA-mRNA interactions and copy number alterations

lack experimental validation. Sole reliance on computational analyses

may not fully reflect the complexities of biological systems. In future

studies, we plan to integrate experimental and clinical research to

further validate the functional roles of these key genes and their

potential involvement in disease mechanisms.

Nevertheless, our research provides novel insights into the

intricate relationships between genes, proteins, and other

biomolecules, which may contribute to a deeper understanding of

disease pathogenesis and facilitate drug discovery. These findings

offer potential theoretical foundations for advancing precision

medicine and serve as a reference for exploring personalized

therapeutic and preventive strategies.
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