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Comparative analysis of
convolutional neural networks
and traditional machine learning
models for IVF live birth
prediction: a retrospective
analysis of 48514 IVF cycles and
an evaluation of deployment
feasibility in resource-
constrained settings
Yu Liu †, Yi Wang †, Kai Huang, Hao Shi, Hang Xin, Shanjun Dai,
Jinhao Liu, Xinhong Yang, Jianyuan Song, Fuli Zhang
and Yihong Guo*

Reproductive Medicine Center, The First Affiliated Hospital of Zhengzhou University,
Zhengzhou, China
Objective: To evaluate the predictive performance of a convolutional neural

network for analyzing electronic medical records in assisted reproductive

therapy and to compare its accuracy and interpretability with traditional

machine learning models. The study also explores the feasibility of deploying

such models in resource-limited clinical settings.

Design: Retrospective cohort study based on EMR data using five models: CNN,

Naïve Bayes, Random Forest, Decision Tree, and Feedforward Neural Network.

Feature importance and model interpretability were evaluated using SHAP.

Setting: First Hospital of Zhengzhou University.

Population: 48,514 fresh IVF cycles from August 2009 to May 2018.

Methods: Preprocessed EMR data were used to train and evaluate five

classification models predicting live birth outcomes. Stratified 5-fold cross-

validation was performed for robust performance estimation. ROC curves and

AUC values were used for comparative evaluation.

Main Outcome Measure: Live birth.

Results: The CNN model achieved an accuracy of 0.9394 ± 0.0013, AUC of

0.8899 ± 0.0032, precision of 0.9348 ± 0.0018, recall of 0.9993 ± 0.0012, and F1

score of 0.9660 ± 0.0007. Its performance was comparable to Random Forest

(accuracy: 0.9406 ± 0.0017, AUC: 0.9734 ± 0.0012), and superior to Decision
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Tree, Naïve Bayes, and Feedforward Neural Network in recall and robustness.

CNN demonstrated stable convergence during training, and SHAP-based

interpretation highlighted maternal age, BMI, antral follicle count, and

gonadotropin dosage as the top predictors for live birth outcome.

Conclusions:With appropriate input transformation, CNNs can effectively model

structured EMR data and offer predictive performance comparable to ensemble

methods. Their scalability, high sensitivity, and interpretability make CNNs

promising candidates for integration into clinical workflows, particularly in

environments with limited computational resources.
KEYWORDS

assisted reproductive technology, machine learning, deep learning, convolutional
neural network, artificial intelligence, resource-limited settings, model interpretability
Introduction

In vitro fertilization (IVF), a cornerstone of assisted

reproductive technology (ART), has brought hope to millions of

couples experiencing infertility. Despite its transformative impact,

the overall live birth rate per cycle remains suboptimal—often

below 40% globally—largely influenced by patient-specific factors

such as maternal age, infertility duration, and ovarian reserve, as

reported in large-scale epidemiological studies (1, 2). Accurate

prediction of IVF success is essential for optimizing clinical

decision-making, improving resource allocation, and managing

patient expectations (3).

Electronic medical records (EMRs), which store detailed patient

information including demographic, hormonal, and procedural

data, offer an unparalleled opportunity to build predictive models

for IVF outcomes (4). Over the past decade, machine learning

models have demonstrated potential in identifying patterns within

EMRs to enhance IVF prediction (5, 6). Traditional methods, such

as logistic regression and decision trees, have been widely applied

due to their interpretability and computational efficiency (7).

However, these models often struggle with high-dimensional data

and fail to capture complex, nonlinear interactions (8).

Recent advancements in deep learning, particularly

convolutional neural networks (CNNs), have enabled the

automatic extraction of intricate patterns from structured and

unstructured data (9, 10). CNNs excel in image-based tasks but

are increasingly applied to tabular EMR data, offering improved

predictive power compared to traditional models (11). Despite these

advantages, challenges remain, including the high computational

requirements of CNNs and their dependence on large datasets,

which may limit their application in resource-constrained

environments (12, 13). While the feasibility of CNNs in IVF

prediction has been explored, few studies have systematically

compared their performance with traditional machine learning

models (6). Furthermore, the deployment of predictive models in
02
resource-limited settings, where computational and human

resources are often constrained, has received little attention.

Addressing these gaps is critical for the development of scalable,

clinically relevant solutions (9, 14).

This study aims to bridge these gaps by conducting a large-scale

retrospective analysis of EMR data from 48514 IVF cycles.

Specifically, we compare the performance of CNNs and

traditional machine learning models in predicting live birth

outcomes. Additionally, we assess the feasibility of deploying

these models in resource-limited settings, offering insights into

their real-world applicability in reproductive medicine.
Patient selection

This study included patients who underwent fresh IVF cycles at

the First Affiliated Hospital of Zhengzhou University between

August 2009 and May 2018. A total of 48514 patients were

enrolled in the cohort.
Sample size estimation

In this study, we estimated the required sample size using the

formula n =
Z2
a

2= *P*(1−P)
d2 (15), where z2a

2=
represents the critical value

for a 95% confidence interval (1.96), p is the estimated prevalence of

infertility in the population, and d denotes the margin of error.

Based on the recent data published in jama in 2023 (16), we used

17% as the population incidence of infertility. A margin of error of

5% was selected to balance precision and sample size feasibility. To

account for potential loss to follow-up, we adjusted the sample size

using nadjusted =
n

1−loss   to   follow−up   rate (15), assuming a loss to follow-

up rate of 5%. The required sample size is about 228. Our final

sample size of 48514 patients far exceeds the required minimum of
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228, ensuring robust statistical power for this study. This approach

ensures the robustness of our study’s statistical power.
Data preprocessing and model
implementation

All fresh IVF cycle data were extracted from the EMR system

and underwent a standardized preprocessing workflow. Continuous

variables with missing values were imputed using the mean, while

categorical variables with missing entries were excluded only if they

exceeded 50% missingness across the entire dataset. This threshold

was set to reduce imputation bias and ensure model stability, based

on established practices in clinical machine learning.

Categorical variables were transformed using one-hot encoding,

applied prior to normalization. All numerical features were

normalized to the range [-1, 1] using min-max scaling to

standardize the feature space and ensure comparable weight

contribution across models.

The final dataset was randomly divided into training (80%) and

testing (20%) subsets, stratified by the outcome variable (live birth)

to preserve class distribution. In addition, 5-fold cross-validation

was employed on the training set to tune hyperparameters and

validate model performance, ensuring generalizability and

mitigating sampling bias.
CNN input format and architecture

To adapt CNNs for structured clinical data, we first organized

EMRs into two-dimensional matrices, where each row represented

a patient and each column corresponded to a specific clinical

feature. These matrices were then reshaped into single-channel

pseudo-images with a fixed input shape of (1, 6, 7)—corresponding

to 42 selected features arranged in a 7×6 grid—to enable

convolutional kernels to capture local feature patterns and inter-

feature dependencies.

A customized CNN was constructed comprising two

convolutional layers with 16 and 32 filters (kernel size: 3×3), each

followed by a ReLU activation and 2×2 max pooling to downsample

feature maps. A dropout layer (rate = 0.5) was incorporated after

the convolutional blocks to mitigate overfitting. The output feature

maps were flattened and passed through two fully connected layers

(64 and 1 units), with sigmoid activation applied at the output layer

to produce live birth probability predictions.

To dynamically accommodate the input dimensionality, a

dummy input tensor of shape (1, 1, 6, 7) was used during

initialization to automatically determine the flattening dimension

prior to the fully connected layers. Model training was conducted

using PyTorch (v2.5), with binary cross-entropy loss, the Adam

optimizer (learning rate: 0.001), and a batch size of 64. Early

stopping was employed based on validation loss to prevent

overfitting and enhance generalizability.
Frontiers in Endocrinology 03
Data collection and selection

Data collection and entry into the electronic medical record system

is done by professionally trained nurses in our center. XGBoost

algorithm exhibits significant advantages in feature weight analysis.

Its built-in feature importance evaluation method is capable of

considering complex interactions among features (5) and improving

the model’s robustness and generalization ability through ensemble

learning (6). Furthermore, XGBoost’s feature importance scores can be

utilized for feature selection and dimensionality reduction (7),

enhancing the model’s interpretability and efficiency. Additionally,

XGBoost provides intuitive visualization techniques that aid in

understanding the model’s decision-making process (8). As shown in

Figure 1, to enhance the interpretability of clinical feature selection and

the robustness of the machine learning model, we used the XGBoost

algorithm to rank the importance of clinical features in predicting the

outcomes. The following are the clinical indicators we have selected for

predicting live birth outcomes: “Female’s age”, “Types of infertility”,

“Duration of infertility(years)”, “Shortest menstrual cycle(days)”,

“Longest menstrual cycle(days)”, “Body Mass Index (BMI)”, “Basal

blood Follicle-Stimulating Hormone (FSH) level”, “Basal blood

Estradiol (E2) level”, “Basal blood Luteinizing Hormone (LH) level”,

“Basal blood testosterone(T) level”, “Basal blood Free Triiodothyronine

(FT3) level”, “Basal blood Free Thyroxine (FT4) level”, “Basal blood

Thyroid-Stimulating Hormone (TSH) level”, “Unexplained infertility”,

“Polycystic ovarian syndrome”, “Advanced age”, “Decreased ovarian

function”, “Premature ovarian failure”, “Chronic anovulation”, “Pelvic

factor (including chronic pelvic inflammatory disease and pelvic

factors)”, “Immunologic factors”, “Abnormal anti-Mullerian

hormone level”, “Tubal factor”, “Endometrial Factor”, “Chromosome

abnormality”, “Sperm origin”, “Oocyte origin”, “Period type”,

“Number of treatment attempts”, “Treatment solutions”, “Starting

dose of Gn injection”, “Total dose of Gn injection”, “Days of Gn

injection”, “Number of retrieved oocytes”, “Number of 2PN oocytes”,

“Number of 2PN cleavage oocytes”, “Number of transferable embryos”,

“Number of high-quality embryos”.
Model interpretability

To improve the interpretability of our machine learning models,

we employed SHAP, which provides insights into feature

contributions to the predictions (8). This method has proven

highly effective in enhancing the transparency of machine

learning models in clinical settings, making the models more

interpretable for healthcare professionals (9).
Software and hardware

The programming language used for this experiment is

PyTorch (https://pytorch.org/) and All analyses were conducted

using Python 3.8 on a machine with an Intel® Core™ i7-13700K
frontiersin.org
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Processor, and the graphics card was an NVIDIA® GeForce RTX™

3090 fitted with GPU. Key libraries included PyTorch (version 2.5,

https://pytorch.org/), scikit-learn (version 1.6.0), and SHAP

(version 0.39.0). We also tested model inference on systems with

Apple M1/M2 chips, and found the trained CNN models could be

deployed locally without GPU acceleration, requiring only 80–100

MB of memory and <0.05s per prediction. These results

demonstrate that CNNs trained on structured EMR data are

feasible for real-world deployment, even in computationally

constrained environments.
Controlled hyper-stimulation
induction

All patients received one of the following four controlled

ovarian stimulation (COS) regimens, which have been described

previously (17): GnRH Antagonist Protocol, GnRH Agonist

Protocol, Mild Stimulation Protocol, Ultra-long Protocol. The

clinician selected the appropriate protocol for each patient on an

individual basis according to the patient characteristics (17).
Assessment methods

To systematically evaluate and compare the performance of the

predictive models, we employed five-fold cross-validation on the

training dataset. Evaluation metrics included accuracy, precision,

recall, F1-score, and the area under the receiver operating

characteristic curve (AUC). For each model, the mean and

standard deviation of these metrics across five folds were reported
Frontiers in Endocrinology 04
to ensure robust statistical comparison (14). The evaluation metrics

were defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 − score =
2� Precision� Recall
Precision + Recall

Here, TP (true positive) represents the number of positive cases

correctly classified as positive. TN, FN, and FP represent the

number of true negative, false negative, and false positive cases,

respectively. Recall represents the percentage of positive samples

correctly classified, and F1-score is the weighted average of precision

and recall, representing overall performance. The confusion matrix

is a specific contingency table that allows for visualization of clinical

relevance. Each point on the ROC curve reflects sensitivity to the

same signal stimulus (12).
Results

As illustrated in Figure 2, the overall study workflow included

four major phases: data preprocessing, model construction,

performance evaluation, and comparative analysis.

Initially, a retrospective dataset was assembled from the EMRs of

patients undergoing in vitro fertilization (IVF). Although a more recent
FIGURE 1

Feature Importance and Interpretability in Predicting IVF Outcomes: A Combined XGBoost and SHAP Analysis Notes: X-axis (SHAP value): Represents
the impact of each feature on the model's prediction. Positive values indicate a feature pushes the prediction towards a positive outcome, while
negative values indicate a negative influence. Y-axis (Feature names): Lists the model's input features, with higher-ranked features having a greater
overall impact on the prediction. Color (Feature value): Indicates the actual value of the feature, where blue represents lower values and red
represents higher values. The color helps to interpret the effect of different feature values on the model's output.
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dataset containing over 50,000 records was initially considered,

subsequent inspection revealed a high rate of missing values across

key clinical variables, limiting its suitability for robust machine learning

modeling. As a result, we retained the previously curated dataset

containing 48,514 IVF cycles, which included 39 high-quality clinical

and laboratory features with manageable missingness.

In the preprocessing stage, features with excessive missingness

(>50%) were removed. Remaining continuous variables were

standardized, while categorical variables were encoded using one-

hot transformation. Binary outcome labels (live birth vs. non-live

birth) were used for supervised classification.

Subsequently, five predictive models were constructed: Random

Forest, Decision Tree, Naive Bayes, Feedforward Neural Network,

and Convolutional Neural Network (CNN). To facilitate CNN
Frontiers in Endocrinology 05
modeling on tabular EMR data, an input reshaping strategy was

applied to transform the structured features into a two-dimensional

matrix, thereby enabling convolutional layer processing.

For evaluation, models were trained on 80% of the dataset and

assessed using 5-fold cross-validation. Key metrics included area

under the receiver operating characteristic curve (AUC), accuracy,

precision, recall, and F1 score. ROC curves were plotted using the

held-out test set to support visual comparison of discrimination

ability (18).

Finally, comparative performance across models was

interpreted with a focus on balancing classification accuracy,

generalizability, and scalability. Particular attention was given to

the CNN model, whose performance under class imbalance and

structural adaptation was critically assessed.
FIGURE 2

Flowchart of the study.
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In Figure 1, the left XGBoost plot illustrates the importance of

various features in influencing outcomes, while the right SHAP plot

assesses each feature’s contribution by averaging its impact when

combined with others. For example, an increase in “The number of

treatment attempts” is associated with a higher live birth rate per

cycle, likely due to a higher probability of success with more

attempts, as clinicians continuously refine personalized treatment

plans based on the patient’s condition. Regarding “The number of

retrieved oocytes,” a higher retrieval count in fresh cycles is

associated with a lower live birth rate, likely due to the increased

risk of ovarian hyperstimulation syndrome (OHSS) and subsequent

cycle cancellations. Future models could consider cumulative live

birth outcomes from single retrieval cycles for deeper insights.

“Total Gn dose” is positively correlated with live birth rates,

which may reflect better ovarian response and a higher number

of retrieved oocytes. For “Basal serum FSH level” and “Basal serum

LH level,” slightly elevated FSH levels and lower LH levels, where

FSH is slightly higher than LH, appear to favor a higher live birth

rate. Additionally, a “Shorter menstrual cycle” is associated with

lower live birth rates, potentially due to the suboptimal endometrial

environment linked to shorter cycles. Finally, both “BMI” and

“Age” show similar patterns, with a significant decrease in live

birth rates per cycle as these values increase.

To assess the training dynamics of the CNN model, the binary

cross-entropy loss was monitored throughout the training process.

As shown in Figure 3, the training loss decreased steadily over 100

epochs, indicating effective convergence without signs of overfitting.

The consistent downward trend suggests that the model was able to
Frontiers in Endocrinology 06
progressively capture discriminative patterns within the reshaped

EMR input. No sudden spikes or fluctuations were observed, further

supporting the stability of the optimization process. This learning

curve supports the CNN model’s ability to generalize from

structured clinical data with moderate complexity.

Figure 4 compares the receiver operating characteristic (ROC)

curves of the five models tested: Random Forest, Decision Tree,

Naive Bayes, Feedforward Neural Network, and CNN. Among

them, Random Forest demonstrated the highest discriminative

power with an AUC of 0.9734, closely followed by CNN and the

feedforward neural network.

Notably, CNN achieved excellent recall and sensitivity, while

also maintaining high overall accuracy on the testing set. In

contrast, Naive Bayes showed significantly poorer classification

performance, with a ROC curve approaching the diagonal and

accuracy below 50%, indicating limited generalizability.

A summary of quantitative performance metrics for all five

models is provided in Table 1. Random Forest achieved the highest

accuracy (0.9406 ± 0.0017), F1 score (0.9666 ± 0.0009), and AUC

(0.9734 ± 0.0012), confirming its robustness in binary classification

tasks involving EMR data. The CNN model performed comparably

well, with an accuracy of 0.9394 ± 0.0013, F1 score of 0.9660 ±

0.0007, and recall of 0.9993 ± 0.0012, demonstrating its strength in

detecting positive outcomes with minimal compromise

on precision.

The feedforward neural network also performed well (accuracy =

0.9315 ± 0.0029), while Naive Bayes underperformed across all metrics,

particularly in accuracy (0.4889 ± 0.0138), largely due to its strong
FIGURE 3

Training loss curve of CNN Model.
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assumptions of feature independence and lack of capacity to model

nonlinear feature interactions.
Discussion

Main findings

In this study, we compared the performance of five machine

learning models in predicting live birth outcomes among patients

undergoing IVF treatment. Among these, Random Forest and a

custom-designed CNN demonstrated superior performance

across multiple evaluation metrics, including AUC and F1 score

(Table 1). The CNN model in particular achieved a near-perfect

recall (0.9993 ± 0.0012) and an overall F1 score (0.9660 ± 0.0007),

indicating excellent sensitivity in capturing positive outcomes.

While CNNs are traditionally applied to image data, their use in

this study to model structured EMR data was motivated by several

factors (19). First, by reshaping clinical variables into a two-

dimensional matrix (Figure 5), we enabled the CNN to detect local

feature patterns and higher-order interactions among related clinical

factors. This spatial modeling paradigm allows the network to simulate

implicit relationships—such as those between hormone levels and

oocyte quality—that may not be easily captured by traditional

machine learning methods with flat input vectors (19, 20).

Second, CNNs offer significant advantages in terms of

parameter efficiency and scalability. Compared to fully connected

deep networks, convolutional layers require fewer parameters and
Frontiers in Endocrinology 07
can generalize well from moderate-sized datasets, such as the one

used in this study. Additionally, CNNs are more compatible with

future extensions to multimodal data inputs, including ultrasound

images, embryo morphokinetics, and time-lapse videos, which are

increasingly available in modern IVF practice (19, 20).

Taken together, these findings highlight that with appropriate

preprocessing, CNNs can be successfully adapted to structured

EMR datasets and achieve robust prediction performance

comparab l e to—or exce ed ing— t r ad i t i ona l mach ine

learning models.
Strengths and limitations

This study has several strengths. It leverages a large dataset of

48,514 patients, providing a robust foundation for training and

evaluating predictive models. The use of both deep learning (CNNs)

and traditional machine learning models allows for a

comprehensive comparison, highlighting the relative advantages

of each approach in analyzing EMR data. Additionally, the

integration of XGBoost and SHAP for feature importance analysis

enhances the interpretability of the models, offering clinicians

valuable insights into the factors influencing live birth outcomes.

However, there are also notable limitations. First, the data was

collected from a single medical center, which may limit the

generalizability of the findings to other populations and settings.

Second, this study did not include multimodal data, such as imaging

results, which could potentially improve predictive accuracy but
FIGURE 4

ROC Curves of IVF Outcome Prediction Models.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1556681
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2025.1556681
would also require greater computational resources. Millions of

people face catastrophic healthcare costs after seeking treatment for

infertility, making this a major equity issue and all too often, a

medical poverty trap for those affected,” said Pascale Allotey, PhD,

MMedSci, the WHO director of sexual and reproductive health and

research (21). Socioeconomic factors, such as patients’ financial

status and educational background, were not considered, which

might influence treatment outcomes and decision-making

processes. In economically underdeveloped regions of China,

financial constraints pose a significant challenge for many

infertile couples, who may also experience heightened anxiety
Frontiers in Endocrinology 08
during assisted reproductive treatments. This factor could

potentially influence treatment outcomes and clinical decision-

making. Since July 2023, healthcare authorities across various

regions in China have progressively incorporated assisted

reproductive technologies into the national medical insurance

system to alleviate the financial burden on patients. Future

research exploring how patients’ socioeconomic status and

educational background influence ART outcomes—both before

and after the implementation of this policy—would be valuable.

Addressing this limitation could further validate and expand the

applicability of our findings in real-world settings.
TABLE 1 Experimental results of five models.

Model Accuracy AUC Precision Recall F1 Score

Random Forest 0.9406 ± 0.0017 0.9734 ± 0.0012 0.9356 ± 0.0018 0.9997 ± 0.0002 0.9666 ± 0.0009

Decision Tree 0.9387 ± 0.0026 0.8249 ± 0.0051 0.9478 ± 0.0014 0.9829 ± 0.0022 0.9650 ± 0.0015

Naive Bayes 0.4889 ± 0.0138 0.8795 ± 0.0034 0.9892 ± 0.0032 0.4103 ± 0.0173 0.5798 ± 0.0171

Neural Network 0.9315 ± 0.0029 0.8896 ± 0.0041 0.9426 ± 0.0018 0.9801 ± 0.0037 0.9610 ± 0.0017

CNN 0.9394 ± 0.0013 0.8899 ± 0.0032 0.9348 ± 0.0018 0.9993 ± 0.0012 0.9660 ± 0.0007
FIGURE 5

Transformation of Structured EMR Data into CNN-Compatible Matrix Format for Live Birth Prediction Note: Schematic illustration of how structured
electronic medical record (EMR) features are reshaped into a two-dimensional matrix to serve as input for convolutional neural network (CNN)
training. Each row represents a single patient record, and features are organized spatially to enable convolutional filters to extract local patterns The
model predicts the live birth outcome based on the encoded feature matrix.
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Interpretation

Our findings are consistent with recent research on the use of

machine learning (ML) and deep learning (DL) in assisted

reproductive technologies. Studies have shown that ML can

optimize processes like individualized dosing during ovarian

stimulation, which enhances patient outcomes and reduces cost

(22). Meanwhile, DL models, particularly those using imaging data,

have been successful in predicting embryo viability, offering more

accurate and consistent evaluations than traditional approaches

(23). These advancements demonstrate how both ML and DL can

significantly improve clinical decision-making in ART, making

treatments more personalized and efficient. Studies have

demonstrated the effectiveness of Random Forests and XGBoost

in predicting outcomes for IVF treatments, emphasizing their

ability to process and interpret structured clinical data (22).

Recent studies have demonstrated that Random Forest and

XGBoost models can effectively analyze clinical factors

influencing IVF success rates, showing superior performance in

handling large-scale, structured datasets (24, 25). Another study

highlighted XGBoost’s accuracy in predicting embryo viability and

live birth outcomes, attributing its strength to its capacity for

managing complex, structured inputs like patient records (26).

These studies confirm the value of these models in assisted

reproductive technologies. Our results confirm the strong

predictive capabilities of these methods while highlighting the

potential of CNNs to capture complex relationships within EMR

data, a feature that is often less explored in ART research.

Interestingly, while the predictive accuracy of CNNs was slightly

lower than that of some traditional models, CNNs provided unique

insights into data structure, suggesting that their ability to model spatial

relationships could be further harnessed in more complex datasets,

such as those incorporating imaging data. This complements studies

that have utilized CNNs for embryo assessment, sperm analysis, and

other image-based evaluations in fertility clinics.

Our study also sheds light on the feasibility of deploying AI models

in resource-limited settings, an area that has received less attention in

the literature. The minimal computational demands observed during

the analysis of EMR data contrast sharply with the high resource

requirements often associated with AI applications in areas like

natural language processing (NLP) and medical imaging. For

example, large models such as BERT (27) and GPT-3 (28) require

substantial GPU resources and energy consumption, making their

deployment challenging in settings with limited computational

infrastructure. Strubell et al. highlight the significant energy

consumption and carbon footprint associated with training deep

learning models for NLP, further emphasizing the barriers to

deploying such models globally (27). Similarly, Esteva et al. note that

AI applications in healthcare, particularly those involving medical

imaging, require extensive computational resources, which can limit

their use in underdeveloped regions (29). By contrast, our findings

demonstrate that AI models designed for EMR analysis can achieve

accurate predictions with much lower computational demands, making

localized deployment in global reproductive medicine centers more

feasible, even in areas with constrained hardware and technical support.
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Overall, our study contributes to the growing body of evidence

supporting the integration of AI into reproductive medicine. It

demonstrates that even data-intensive approaches like CNNs can be

effectively adapted for practical application in clinical settings.

These findings highlight the importance of future research

focused on optimizing different AI architectures for diverse types

of clinical data, thereby enhancing predictive performance and

ultimately improving patient outcomes.
Conclusion

This study demonstrates that CNNs can effectively analyze

EMRs to predict outcomes in assisted reproductive therapy,

achieving performance comparable to traditional models such as

Random Forests. Notably, the relatively low computational

requirements for training our CNN model suggest that local

deployment is feasible even in resource-constrained reproductive

centers. These findings underscore the potential of AI to support

and enhance clinical decision-making in reproductive medicine.

Future studies should aim to validate these results in multicenter

settings and investigate the integration of multimodal data to

further improve predictive performance and generalizability.
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