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Universal nomogram for
predicting referable diabetic
retinopathy: a validated model
for community and ophthalmic
outpatient populations using
easily accessible indicators
Niu Dongling1†, Kang Ziwei1,2†, Sun Juanling1,2, Zhang Li1,
Wang Chang1, Lei Ting1, Liu Hongli 1* and Zhang Yanchun1,2*

1Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University,
Xi’an, Shaanxi, China, 2Department of Fundus Surgery (Division IV), Shaanxi Eye Hospital, Xi’an,
Shaanxi, China
Purpose: This study aimed to develop and validate a universal nomogram for

predicting referable diabetic retinopathy (RDR) in type 2 diabetes mellitus (T2DM)

patients, using easily accessible clinical indicators for both community and

ophthalmic outpatient populations.

Methods: A cross-sectional study was conducted with 1,830 T2DM patients from

14 communities in Xi’an, Shaanxi, China. Participants completed questionnaires,

underwent physical exams, and ophthalmic assessments. Univariate analysis and

least absolute shrinkage and selection operator (LASSO) regression identified key

predictors for RDR. A nomogram was developed using multivariable logistic

regression. Model performance was evaluated through area under the curve

(AUC), accuracy, precision, recall, F1 score, Youden index, calibration curves, and

decision curve analysis (DCA). The dataset was split into training (80%) and test

(20%) sets, with external validation using 123 T2DM outpatients from Shaanxi

Eye Hospital.

Results: Seven key predictors were identified: serum creatinine, urea nitrogen,

urine glucose, HbA1c, urinary microalbumin, diabetes duration, and systolic

blood pressure. The nomogram exhibited moderate predictive accuracy, with

AUCs of 0.730 (95% CI: 0.691–0.759), 0.767 (95% CI: 0.704–0.831), and 0.723

(95% CI: 0.610–0.835) for the training, test, and external validation sets,

respectively. DCA showed that using the model is beneficial for threshold

probabilities between 8% and 72%, supporting its broad clinical utility.
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Conclusion: This nomogram, based on readily available clinical indicators,

provides a reliable and scalable tool for predicting RDR risk in both community

and ophthalmic settings. It offers a practical solution for early detection and

personalized management of RDR, with broad applicability and clinical potential.
KEYWORDS

referable diabetic retinopathy, nomogram construction, community screening, risk
stratification, easily accessible indicators
1 Introduction

Diabetes mellitus (DM) has reached epidemic proportions,

currently affecting over 460 million people worldwide and

projected to exceed 700 million by 2045 (1, 2). Diabetic

retinopathy (DR), one of the most serious microvascular

complications of DM, remains the leading cause of irreversible

vision impairment in working-age adults (3, 4). Clinical strategies

for DRmanagement emphasize three pillars: (1) systemic risk factor

control, (2) population-based screening, and (3) targeted treatment

for vision-threatening DR (vtDR). However, despite technological

advances in teleophthalmology and artificial intelligence–assisted

image analysis, current screening programs are constrained by their

dependence on dilated fundus examination or retinal photography,

both of which require trained personnel and specialized equipment

(5). This resource dependency is particularly limiting in primary

care settings, where the majority of DR cases are first encountered

(6). Diagnostic challenge is most critical for referable diabetic

retinopathy (RDR)-typically defined as more than mild

nonproliferative DR (NPDR) and/or any stage with macular

edema (ME) as defined by the the International Clinical Diabetic

Retinopathy (ICDR), namely, any retinal thickening, exudate, or

microaneurysm within 1 disc diameter of the fovea (7). In many

regions, especially those with limited resources, a mismatch

between screening infrastructure and patient needs leads to

delayed diagnosis and suboptimal care. Studies have shown that

up to 50% of RDR cases remain undetected until advanced stages (8,

9), and that early identification combined with standardized

treatment can reduce the risk of blindness by up to 98% (10).

Community-based DR screening has consistently demonstrated

better cost-effectiveness and accessibility compared to managing

late-stage complications, yet its scalability remains challenged by

logistical and financial constraints.

In this context, predictive models have emerged as promising

adjuncts to improve DR risk stratification and pre-screening

efficiency. A variety of risk engines, ranging from simple clinical

scoring systems to machine learning–based algorithms, have been

proposed for DR prediction (11, 12). Among them, nomograms

have gained prominence for their ability to synthesize multiple

predictors into intuitive, individualized risk assessments, facilitating

evidence-based clinical decision-making (13). Nonetheless, existing
02
DR prediction models face several notable limitations. First, most

models rely heavily on cumulative glycemic exposure (e.g., diabetes

duration and HbA1c), which, according to large epidemiological

datasets, accounts for only ~11% of the variance in DR risk (14).

Second, many models incorporate specialized diagnostic

parameters, such as optical coherence tomography (OCT),

diabetic peripheral neuropathy assessments, or ankle-brachial

index, limiting their applicability in primary care or low-resource

settings (15–17). Third, generalizability is often undermined by

methodological constraints: most models are developed and

validated in single-center, hospital-based cohorts without external

validation, which may introduce selection bias and reduce

applicability to broader populations (15–21).

To address these gaps, we developed a simplified yet robust

RDR risk prediction nomogram based solely on routinely collected

clinical data—including blood pressure, glycemic status, renal

function markers, and urine glucose—from a large-scale

community-based cohort in Xi’an, China. The model was then

externally validated in an independent tertiary outpatient

population, enabling assessment of its generalizability across

healthcare levels and demographic subgroups. By focusing

specifically on RDR rather than any DR, the model directly

supports clinical referral decisions, which is critical for preventing

vision-threatening disease progression. This approach emphasizes

clinical usability, implementation feasibility, and translational

relevance, especially in primary care environments where access

to ophthalmologic resources is limited. Ultimately, our nomogram

offers a scalable and cost-effective tool for early risk identification,

optimized resource allocation, and enhanced integration of DR

screening into routine diabetes management.
2 Methods

2.1 Data source and collection

This cross-sectional study was conducted from 2021 to 2023

across 14 community health service centers in Shaanxi Province,

China, and at the ophthalmology outpatient department of Xi’an

People’s Hospital (Xi’an Fourth Hospital). The inclusion criteria

were: adults (age ≥ 18 years) with type 2 diabetes mellitus (T2DM),
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diagnosed according to the World Health Organization (22). All

participants must have been permanent residents of the selected

communities and listed in the community chronic disease registries.

They should have undergone diabetic retinopathy screening during

the study period. Finally, they must have had access to key clinical

and laboratory data for analysis. The exclusion criteria were as

follows: patients who were younger than 18 years, those diagnosed

with type 1 or gestational diabetes, individuals with insufficient data

regarding diabetes duration or other key variables, pregnant or

lactating women, and patients with malignancies or severe systemic

illnesses that could impact ocular status or data completeness (e.g.,

end-stage renal disease on dialysis). Additionally, patients with

ocular co-morbidities such as severe cataracts, retinal vein

occlusion, or advanced age-related macular degeneration were

excluded, as these conditions could confound the assessment of

diabetic retinopathy (DR). Patients who met the criteria were

recruited consecutively, and comprehensive evaluations were

conducted using a standardized questionnaire and examination

protocol. The study adhered to the Declaration of Helsinki and

was approved by the Ethics Committee of Xi’an People’s Hospital

(Xi’an Fourth Hospital). All participants provided written informed

consent prior to enrollment.

Demographic factors (age, sex), lifestyle factors (smoking and

alcohol use, exercise habits), socioeconomic status (education level,

occupation, income), and medical history (duration of diabetes,

medications, comorbid conditions) were recorded. All

measurements were performed by trained healthcare staff.

Physical examinations included blood pressure measurements

using an electronic sphygmomanometer; anthropometric

measurements (height, weight, waist and hip circumferences) for

body mass index (BMI) and waist-to-hip ratio calculation. These

candidate predictors were selected based on known DR risk factors

in the literature and their availability in routine practice (18).

Subsequent to a minimum fasting period of 8 hours, fasting

blood and urine samples were collected in the morning. fasting

blood and urine samples were obtained in the morning for

laboratory analyses. Blood tests included fasting plasma glucose,

glycated hemoglobin (HbA1c), and a full biochemical panel: total

cholesterol, triglycerides, high-density lipoprotein cholesterol, low-

density lipoprotein cholesterol, blood urea nitrogen (BUN), serum

creatinine (Scr), uric acid, and estimated glomerular filtration rate

(eGFR). A complete blood count was also done (white blood cell

count and differential, red blood cell count, hemoglobin,

hematocrit, etc.), from which the neutrophil-to-lymphocyte ratio

(NLR) was derived. Urine tests included a standard urinalysis

(which detects qualitative urine glucose and protein) and

measurement of urinary microalbumin (mALB) or albumin-to-

creatinine ratio if indicated. All laboratory assays were performed in

the hospital’s clinical laboratory center using standardized methods

and quality control. These candidate variables were selected based

on known risk factors for DR reported in the literature and their

availability in routine clinical practice. By focusing on commonly

measured indicators, we aimed to maximize the model’s practicality

in general healthcare settings.
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Visual acuity was measured and intraocular pressure (IOP) was

checked using a non-contact tonometer (Icare ic100, Icare Finland

Oy, Finland). Slit-lamp biomicroscopy (KJ5S1, Suzhou Kangjie

Medical Inc, China) was performed to assess the anterior segment.

For fundus evaluation, we obtained digital fundus color photographs

for each eye using the Horus DEC 200 device (Miis, Hsinchu,

Taiwan), employing a 45-degree double field centered on the fovea

and optic disc, with or without pharmacologic pupil dilation. Two

experienced retinal specialists, masked to clinical data, independently

diagnosed and graded DR by the fundus images in accordance with

the International Clinical Diabetic Retinopathy (ICDR) severity scale.

In cases of grading discrepancy, a third senior retinal specialist (≥20

years’ experience) adjudicated the findings. Patients were classified as

having RDR or non-RDR based on the worst eye. Data were entered

into EDC electronic databases, with range and logic checks to

minimize entry errors.
2.2 Study design

This investigation analyzed 56 indicators from T2DM patients

receiving care at 14 community health service centers in Xi’an,

Shaanxi, China. Four variables exhibiting missing rates above 30%

(postprandial blood glucose (PBG), hypertension, heart disease, and

hyperlipidemia) were omitted from the analysis. For data with

missing rates below 30%, imputation was performed using the

random forest technique. The dataset from the community cohort

(N = 1,830) was randomly split into a training set (80%, N = 1,464)

for model development and an internal test set (20%, N = 366) for

validation of performance. External validation was conducted using

an additional 123 samples from Xi’an People’s Hospital (Xi’an

Fourth Hospital), a tertiary hospital. This external test assesses

the model’s generalizability to a different patient population and

care setting. Figure 1 provides a detailed illustration of the

research methodology.
2.3 Statistical analysis

Statistical analyses were executed using R software (version

4.2.3, Vienna, Austria) and Python (version 3.7). Continuous

variables were represented as mean ± standard deviation or

median with interquartile range (IQR), while categorical variables

were expressed as frequencies and percentages. Group comparisons

for continuous variables were conducted using the t-test or Mann–

Whitney U test as appropriate, whereas categorical variables were

analyzed using the chi-square test. Prior to multivariable modeling,

we systematically evaluated potential multicollinearity among

predictors using both correlation matrices (visualized via

heatmaps). Variables demonstrating high multicollinearity

(Pearson correlation coefficient r > 0.9) were excluded from

further analysis to avoid compromising model accuracy.

The univariate comparisons between the RDR group and non-

RDR group within the training set, were first performed using
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appropriate tests (Student’s t-test or Mann-Whitney U for

continuous variables, and chi-square for categorical variables) to

identify factors significantly associated with RDR. All variables with

P < 0.05 in univariate analysis were considered candidates for

multivariable modeling. To further select predictors and avoid

overfitting, the least absolute shrinkage and selection operator

(LASSO) method were applied on the training data, using 10-fold

cross-validation to determine the optimal regularization parameter

(l) (23). LASSO is a penalized regression technique that shrinks less

important feature coefficients toward zero, effectively performing

variable selection. We evaluated the path of coefficients and the

cross-validated error to choose a parsimonious set of predictors (at

the l that minimizes the cross-validation error within one standard

error of the minimum). By including all significant covariates in the

multivariable model, we controlled for potential confounders; each

predictor’s effect was thus estimated while adjusting for the others.

Using the predictors retained by LASSO, we fitted a multivariable

logistic regression model to the training set to estimate the

probability of RDR. The regression coefficients were then used to

construct a nomogram, a graphical prediction tool that assigns a

point score to each predictor value and yields an individualized risk.

The formula for the logistic model (logit function) was presented.

Model performance was evaluated using multiple metrics,

including area under the receiver operating characteristic curve

(AUROC), accuracy, precision, recall, F1 score, balanced accuracy,

Youden index, calibration curves, and decision curve analysis

(DCA). Discrimination ability was assessed via AUROC, with

values exceeding 0.7 considered indicative of good performance

(19). Calibration and clinical utility were evaluated using calibration

curves and decision curve analysis, respectively (20, 24, 25). Model

calibration, the agreement between predicted probabilities and

observed outcomes, was assessed by calibration curves, where

predictions were grouped into deciles and plotted against actual
Frontiers in Endocrinology 04
outcome proportions; a calibration curve close to the 45° line

indicates good calibration. DCA examines the net benefit of using

the model across a range of threshold probabilities at which a

clinician would intervene. Net benefit is calculated by weighing true

positives against false positives, relative to strategies of referring all

patients vs. referring none. From the DCA, we identified the range

of risk thresholds where the nomogram provides greater net benefit

than “treat all” or “treat none” approaches. This range informs

where the model is useful in practice. All statistical tests were two-

tailed, with statistical significance set at P < 0.05.
3 Results

3.1 Baseline characteristics

A total of 1,830 patients with type 2 diabetes were included in

the internal cohort (training + test), of whom 362 (19.78%)

diagnosed as RDR. An 80:20 ratio was employed to randomly

allocate samples into training and test sets. The training set

encompassed 1,464 patients, including 294 (20.08%) RDR cases,

while the test set comprised 366 individuals, of which 68 (18.58%)

were RDR cases. The external validation cohort (N = 123) consisted

of T2DM outpatients, with 23 RDR cases (18.70%) (Supplementary

Table S1).

We initially examined 52 candidate variables for association

with RDR. Comparison of baseline variables between RDR and

non-RDR groups in the combined internal cohort revealed

significant differences in multiple demographic and clinical

factors. Patients with RDR tended to have lower educational

attainment, a higher prevalence of glycosuria, and more frequent

use of hypoglycemic drugs or insulin (HDI) compared to non-RDR

patients. Poor fasting blood glucose control was more common in
FIGURE 1

Diagrammatic representation of the study protocol.
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the RDR group, as were diabetic nephropathy (DN) and peripheral

neuropathy (DPN) diagnoses. A history of hypoglycemic coma

(HGC) was also more prevalent among RDR cases (P < 0.05). In

terms of continuous variables, the RDR group had significantly

higher median systolic blood pressure (SBP) and a higher

inflammatory cell count (neutrophils and white blood cell count),

reflected in a mildly elevated neutrophil-lymphocyte ratio (NLR).

Markers of renal function were worse in RDR patients: median

serum creatinine (SCr) and blood urea nitrogen (BUN) were higher,

while estimated glomerular filtration rate (eGFR) was lower in RDR

vs non-RDR. Likewise, urine microalbumin (mALB) was markedly
Frontiers in Endocrinology 05
elevated in the RDR group (median 52.9 vs 27.2 mg/L) and

proteinuria (PRO) was more frequent (37.3% vs 23.6%; P <

0.001) in RDR patients. Glycemic indices differed as expected:

RDR patients had higher HbA1c (median 8.0% vs 7.0%) and a

greater waist-to-hip ratio (WHR) than non-RDR (both P < 0.05).

Notably, RDR patients had longer diabetes duration (median 10.0

vs 6.5 years) and were diagnosed with diabetes at a younger age on

average (first diagnosis age ~56.0 vs 60.4 years; P < 0.001). These

results underscore that the RDR group had more adverse profiles in

glycemic control, blood pressure, renal function, and diabetes

chronicity (Table 1). Violin plots illustrate continuous variables
TABLE 1 Demographic and clinical characteristics of the training and test sets.

Variables Non-RDR (n=1468) RDR (n=362) Statistics P value

Educational level,
n(%)

no formal school education 136(9.26) 29(8.01) 10.64 0.014

Junior high school 843(57.43) 237(65.47)

High school, technical secondary
school, technical school

332(22.62) 74(20.44)

College graduate, undergraduate
graduate, graduate student or above

157(10.69) 22(6.08)

Income, n(%) < 1000 RMB 311(21.19) 79(21.82) 4.50 0.212

1000-2999 RMB 631(42.98) 174(48.07)

3000-5999 RMB 453(30.86) 94(25.97)

> 6000 RMB 73(4.97) 15(4.14)

Smoke, n(%) no 1243(84.67) 307(84.81) 0.00 0.950

yes 225(15.33) 55(15.19)

Drink, n(%) no 1291(87.94) 326(90.06) 1.26 0.262

yes 177(12.06) 36(9.94)

Activity, n(%) no 1327(90.40) 336(92.82) 2.06 0.152

yes 141(9.60) 26(7.18)

Gender, n(%) no 870(59.26) 215(59.39) 0.00 0.965

yes 598(40.74) 147(40.61)

NIT, n(%) no 1394(94.96) 341(94.20) 0.34 0.559

yes 74(5.04) 21(5.80)

URO, n(%) no 1438(97.96) 359(99.17) 2.42 0.120

yes 30(2.04) 3(0.83)

PRO, n(%) no 1121(76.36) 227(62.71) 27.91 <0.001

yes 347(23.64) 135(37.29)

BLO, n(%) no 1155(78.68) 287(79.28) 0.06 0.801

yes 313(21.32) 75(20.72)

KET, n(%) no 1426(97.14) 350(96.69) 0.21 0.648

yes 42(2.86) 12(3.31)

GLU, n(%) no 1114(75.89) 187(51.66) 82.95 <0.001

(Continued)
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between groups (Figure 2). A correlation analysis found that

hematocrit and hemoglobin were highly collinear (r > 0.9)

(Figure 3), so hemoglobin was excluded from further modeling to

avoid multicollinearity.
3.2 Risk factors screening

The training set patients were classified into RDR and non-RDR

groups. Univariate analysis in the training set confirmed that

numerous factors were significantly associated with RDR status (P <

0.05), including higher SBP, BUN, NEU, NLR, SCr, mALB, HbA1c,

and presence of glycosuria, as well as longer diabetes duration and

histories of DN, DPN, poor fasting glycemic control, hypoglycemic

coma, and proteinuria (Table 2). These variables were then subjected

to LASSO regression analysis (Figure 4). Ten-fold cross-validation

optimized the regularization parameter (l). Figure 4 demonstrates

that increasing l intensifies variable shrinkage penalties, reducing the

number of selected variables. Figure 4A illustrates coefficient changes

for each variable as l increases, along with predictor numbers.

Figure 4B displays l logarithmic values (horizontal axis), error

values (vertical axis), and selected predictor numbers for each l
value. Dashed lines indicate optimal l values (l.min and l.1se).
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Two Gaussian LASSO regression models were developed based on

different l criteria. Model I, based on l.min (l = 0.002), incorporated

ten non-zero coefficient predictors: eGFR, age, SCr, BUN, GLU,

HbA1c, mALB, duration, SBP, and NLR (Supplementary Table S2).

Model II, using l.1se (l = 0.03), included seven non-zero coefficient

predictors: SCr, BUN, GLU, HbA1c, mALB, duration, and SBP

(Supplementary Table S3). Each of these predictors showed a

positive association with RDR risk in multivariate analysis in Model II.
3.3 Construction and evaluation of
nomogram

Using the coefficients, A nomogram was constructed to

facilitate the visualization of the diagnostic model and predict the

probability of RDR in an accessible manner. The performance of

nomograms were evaluated from the following aspects.

Discrimination: Model I was developed based on the

aforementioned 10 variables (Figure 5A). The AUCs were 0.730

(95% CI: 0.697–0.764), 0.762 (95% CI: 0.698–0.825), and 0.678

(95% CI: 0.564–0.793) for the training, test, and external validation

sets, respectively (Figures 6A–C). Model II was constructed utilizing

the seven variables mentioned above (Figure 5B). The AUCs were
TABLE 1 Continued

Variables Non-RDR (n=1468) RDR (n=362) Statistics P value

yes 354(24.11) 175(48.34)

HDI (Hypoglycemic drugs or
insulin), n(%)

no 305(20.78) 39(10.77) 19.04 <0.001

yes 1163(79.22) 323(89.23)

FBG control, n(%) <6.1mmol/L 138(9.40) 23(6.35) 68.14 <0.001

6.2-7.2mmol/L 623(42.44) 111(30.66)

7.3-8.8mmol/L 483(32.90) 105(29.01)

>8.8mmol/L 224(15.26) 123(33.98)

DN, n(%) no 1392(94.82) 324(89.50) 14.07 <0.001

yes 76(5.18) 38(10.50)

DPN, n(%) no 1294(88.15) 301(83.15) 6.48 0.011

yes 174(11.85) 61(16.85)

DCD, n(%) no 1248(85.01) 302(83.43) 0.57 0.452

yes 220(14.99) 60(16.57)

DK, n(%) no 1459(99.39) 359(99.17) 0.21 0.649

yes 9(0.61) 3(0.83)

HGC, n(%) no 1426(97.14) 342(94.48) 6.30 0.012

yes 42(2.86) 20(5.52)
HDI, use of hypoglycemic drugs or insulin; FBG control, fasting blood glucose control; DN, diabetic nephropathy; DPN, diabetic peripheral neuropathy; DCD, diabetic cardiovascular disease;
DK, diabetic ketoacidosis; HGC, hypoglycemic coma; WHR, waistline to hipline ratio; URBC, the number of red blood cells in urine; Uabnormal RBC, the number of the abnormal red blood cells
in urine; UWBC, the number of white blood cells in urine; Hyahyaline cast, PAT, pathological cast; NIT, nitrite; URO, urobilinogen; PRO, protein in urine; BLO, urine occult blood; KET, ketone;
GLU, glucose in urine; TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; BUN, urea nitrogen; UA, uric acid; SCr, serum creatinine; eGFR, estimated glomerular
filtration rate; BMI, body mass index; WBC, white blood cell; NEU, neutrophil; LYM, lymphocyte; NLR, neutrophil to lymphocyte ratio; RBC, red blood cell; Hb, haemoglobin; Hct, hematocrit;
SBP, systolic pressure; DBP, diastolic pressure; FDA, age at first diagnosis of diabetes; mALB, microalbuminuria.
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0.730 (95% CI: 0.691–0.759) for the training set, 0.767 (95% CI: 0.704–

0.831) for the test set, and 0.723 (95% CI: 0.610–0.835) for the external

validation set (Figures 6A–C), indicating consistent moderate

accuracy. The results indicate that both models achieve moderate

discriminative power. For context, Model II’s AUCs were comparable

to Model I in the internal data (~0.730 in training and ~0.760 in test)

but notably higher on external validation (0.723 vs 0.678 for Model I),

suggesting Model II generalized better to new patients.
Frontiers in Endocrinology 07
Classification metrics: The detailed performance metrics for the

two models across the three datasets are summarized in Table 3.

Each model was evaluated in terms of accuracy, precision, recall, F1

score, balanced accuracy, Youden index, and cutoff, as presented in

Table 4. Using the optimal probability cutoff derived from the

training set (Youden’s index optimized at 0.186 for Model II), we

evaluated the sensitivity, specificity, and predictive values. In the

training set, Model II correctly identified 66.7% of RDR cases
FIGURE 2

Comparative distribution analysis of continuous variables between training and test datasets.
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(sensitivity 66.7%) while correctly excluding 82.4% of non-RDR

cases (specificity 82.4%). The overall accuracy in the training data

was 81.6%, and the balanced accuracy (average of sensitivity and

specificity) was 74.6%. Owing to the low prevalence of RDR, the

positive predictive value (PPV) was modest (17.0%), whereas the

negative predictive value (NPV) was very high (97.8%), indicating

that a patient predicted as low-risk by the model is very likely to truly

be non-RDR. The Youden index for the training model was 0.382,

confirming a good trade-off between sensitivity and specificity at the

chosen cutoff. When applied to the internal test set (N = 366, 18.6%

RDR prevalence), Model II maintained similar performance. The

AUC of 0.767 was essentially identical to training, and at the same

probability threshold (0.186), sensitivity was ~56% and specificity

~84%. The PPV was ~20.6% and NPV ~96.3% in test set, consistent

with expectations given the slightly lower RDR prevalence in the test

sample. In the external validation set (N = 123, 18.7% RDR), the

nomogram’s discrimination remained good (AUC 0.723). Applying

the fixed 0.186 cutoff to this cohort yielded a high sensitivity of 92.8%

with specificity of 26.3%. This indicates that the model identified
FIGURE 3

Correlation matrix of variables within the training cohort.
TABLE 2 Univariate analysis of variables associated with RDR.

Indicators N OR 95%CI P-value

eGFR 1830 0.978 [0.972,0.985] 0.000

BUN 1830 1.299 [1.217,1.386] 0.000

NEU 1830 1.024 [0.974,1.077] 0.346

NLR 1830 1.123 [1.028,1.227] 0.010

SBP 1830 1.013 [1.007,1.019] 0.000

mALB 1830 1.001 [1.001,1.002] 0.000

Duration 1830 1.072 [1.055,1.088] 0.000

FDA 1830 0.998 [0.995,1.001] 0.287

Age 1830 1.014 [0.999,1.029] 0.072

SCr 1830 1.023 [1.017,1.029] 0.000

HbA1c 1830 1.350 [1.266,1.44] 0.000

PAT 1830 1.138 [1.027,1.263] 0.014

UWBC 1830 1.000 [0.999,1.0] 0.733

EDU

0 no formal school education 165

1 Junior high school 1092 1.307 [0.854,2.001] 0.218

2 High school, technical secondary school, technical school 394 1.066 [0.663,1.714] 0.790

3 College graduate, undergraduate graduate, graduate student or above 179 0.657 [0.361,1.197] 0.170

GLU

0 no 1301

1 yes 529 2.945 [2.320,3.737] 0.000

HGC

0 no 1768

(Continued)
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nearly all actual RDR cases in the external sample (only ~7% false

negatives), at the expense of more false positives among non-RDR

patients. The PPV in external validation was 27.1%, while the NPV

was 92.6%. The lower specificity and PPV in the external set reflect

that the nomogram, calibrated on the internal cohort, tended to

over-predict RDR for the new population. Nonetheless, the high

NPV and sensitivity in external validation underscore that Model II

is effective as a screening tool -it rarely misses true RDR cases, even if

it flags some false positives. Given that missing an RDR case has

greater clinical consequence (potentially untreated retinopathy) than

over-referral, this operating profile is acceptable for a referral triage

model. Overall, the model’s discrimination and classification metrics

indicate robust performance, with Model II showing slightly

improved generalizability relative to the more complex Model I.

Stepwise forward regression analysis identified ten independent

predictors for Model I and seven independent predictors for Model II.

Supplementary Tables S2 and S3 present the coefficients of the

covariates in both models. In the multivariate analysis, two logistic
Frontiers in Endocrinology 09
regression models (Model I and Model II) were constructed for RDR

prediction using different predictor combinations. An equation was

derived to estimate the probability (P) of RDR occurrence based on

the coefficients of the significant predictors as follows:

Model I:

  logit(P) = −0:872 + ( − 0:002)� eGFR + 0�mALB + 0:050

� Duration + 0:012� SBP + 0:064� NLR + 0:021

� Age + 0:001� SCr + 0:173� BUN + 0:222

�HbA1c + 0:317� GLU

Model II:

 logit(P) = −0:672 + 0�mALB + 0:049� Duration + 0:012� SBP

+ 0:003� SCr + 0:167� BUN + 0:222�HbA1c

+ 0:338� GLU
TABLE 2 Continued

Indicators N OR 95%CI P-value

HGC

1 yes 62 1.986 [1.151,3.426] 0.014

DPN

0 no 1599

1 yes 231 1.547 [1.126,2.127] 0.007

DN

0 no 1717

1 yes 113 2.374 [1.585,3.556] 0.000

FBG

0.0
<6.1mmol/L

161

1.0
6.2-7.2mmol/L

727 1.058 [0.651,1.721] 0.819

2.0
7.3-8.8mmol/L

599 1.305 [0.801,2.127] 0.286

3.0
>8.8mmol/L

343 3.355 [2.048,5.495] 0.000

HDI

0 no 338

1 yes 1492 2.266 [1.576,3.257] 0.000

PRO

0 no 1348

1 yes 482 1.892 [1.481,2.416] 0.000
HDI, use of hypoglycemic drugs or insulin; FBG control, fasting blood glucose control; DN, diabetic nephropathy; DPN, diabetic peripheral neuropathy; DCD, diabetic cardiovascular disease;
DK, diabetic ketoacidosis; HGC, hypoglycemic coma; WHR, waistline to hipline ratio; URBC, the number of red blood cells in urine; Uabnormal RBC, the number of the abnormal red blood cells
in urine; UWBC, the number of white blood cells in urine; Hyahyaline cast, PAT, pathological cast; NIT, nitrite; URO, urobilinogen; PRO, protein in urine; BLO, urine occult blood; KET, ketone;
GLU, glucose in urine; TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; BUN, urea nitrogen; UA, uric acid; SCr, serum creatinine; eGFR, estimated glomerular
filtration rate; BMI, body mass index; WBC, white blood cell; NEU, neutrophil; LYM, lymphocyte; NLR, neutrophil to lymphocyte ratio; RBC, red blood cell; Hb, haemoglobin; Hct, hematocrit;
SBP, systolic pressure; DBP, diastolic pressure; FDA, age at first diagnosis of diabetes; mALB, microalbuminuria.
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where logit(P) is the linear predictive value (log-odds of RDR).

The P (probability) of RDR for a given patient is then obtained as:

P =
elogit(P)

1 + elogit(P)

e is Euler’s number, approximately 2.71828.

Calibration: Calibration curves were employed to evaluate the

accuracy of the prediction models, demonstrating that the predicted

probabilities closely corresponded to the actual probabilities in

Models I and II (Figures 7A, B).

Decision curve analysis: Decision curve analysis (DCA)

indicated that the threshold probability for identifying referable

diabetic retinopathy (RDR) ranged from 8% to 70% for Model I and

8% to 72% for Model II (Figures 7C, D). Within these respective

ranges, the application of both nomogram models provides greater

clinical net benefit compared with the alternative strategies of

universally referring all patients (“treat-all”) or none (“treat-
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none”). In clinical practice, the threshold probability reflects the

predicted risk at which a clinician would typically consider

intervening (i.e., referring the patient to an ophthalmologist for

detailed examination). The wide threshold probability range for

Model II (8%-72%) indicates its applicability across diverse

clinical scenarios.

For instance, if a clinician chooses a threshold of 20% predicted

risk to trigger referral (a moderately conservative choice), the

decision curve indicates the nomogram will improve patient

outcomes by identifying high-risk individuals for timely specialist

eye evaluation while avoiding unnecessary referrals in low-risk

patients. In practical terms, applying Model II means that

patients with a predicted RDR risk above the clinician’s chosen

cutoff would be referred for prompt retinal examination (potentially

preventing vision loss through early treatment), whereas those

below the threshold could be monitored routinely in primary

care. Thus, the nomogram provides clinical net benefit over a
FIGURE 4

Feature selection utilizing LASSO regression. (A) Optimal lambda parameter identifying four variables with non-zero coefficients. (B) Visualization of
partial likelihood deviance against log(lambda), with vertical dashed lines indicating the 1-SE criterion.
FIGURE 5

Risk nomogram Model I (A) and Model II (B) for identifying RDR in T2DM patients.
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broad range of decision thresholds, supporting its value as a risk

stratification tool for guiding referral decisions. Ultimately, the

robust performance and fewer input variables required for Model

II support its selection as the finalized nomogram. Its demonstrated

utility across a wide range of clinical decision-making scenarios

emphasizes its practical value for personalized diabetic retinopathy

management, facilitating precise and efficient care delivery.

Risk stratification across DR severity: To further assess the

model’s behavior, we analyzed the distribution of nomogram scores

and predicted risk across different DR severity levels. Among patients
Frontiers in Endocrinology 11
who had RDR, higher risk scores were correlated withmore advanced

DR stages. In the internal cohort’s RDR cases (moderate NPDR,

severe NPDR, or PDR), the nomogram score was significantly higher

in severe NPDR cases compared to moderate NPDR (median points

68.97 vs 62.82, P = 0.006). Correspondingly, the median predicted

probability of RDR in moderate NPDR was 23.5% (IQR 13.8–37.2%),

rising to 30.5% (IQR 17.3–51.3%) in severe NPDR cases. This trend

was even more evident in the external validation set’s RDR patients.

In the external cohort, the nomogram’s median predicted risk was

only 11.8% for those with moderate NPDR, compared to 22.0% in
FIGURE 6

Receiver operating characteristic curve analysis of RDR risk prediction Model I and Model II in the training set (A, D), test set (B, E) and external
validation set (C, F).
TABLE 4 Different indicators for evaluating the effectiveness of RDR risk prediction models.

Model Accuracy Precision Recall F1-score Balanced accuracy Youden index Cut-off

I 0.818 0.184 0.675 0.289 0.751 0.372 0.232

II 0.816 0.170 0.667 0.271 0.746 0.382 0.186
TABLE 3 Detailed performance metrics for the three datasets in Model I and Model II.

Model I Model II

Training set Test set External validation set Training set Test set External validation set

AUC 0.730 0.762 0.678 0.730 0.767 0.723

Sensitivity 0.675 0.571 0.894 0.667 0.56 0.928

Specificity 0.827 0.846 0.231 0.824 0.842 0.263

PPV 0.184 0.235 0.175 0.17 0.206 0.271

NPV 0.978 0.544 0.923 0.978 0.963 0.926
AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.
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severe NPDR and 48.2% in PDR (overall P < 0.001 across stages)

(Supplementary Tables S4-S8). Thus, the model assigned

substantially higher risk probabilities to individuals with sight-

threatening DR (severe NPDR or PDR) than to those with milder

RDR. These findings indicate that Model II not only differentiates

patients with any referable retinopathy from those without, but it also

stratifies risk within the RDR spectrum, aligning with disease severity.

In clinical terms, a higher nomogram score signals not just the

presence of RDR but likely a more advanced stage of retinopathy,

which could help prioritize patients by urgency. The consistency of

this pattern in both internal and external sets supports the model’s

validity and its potential utility in identifying patients at highest risk

of advanced DR progression.
3.4 Clinical utility of the nomogram

A dynamic nomogram was constructed using the coefficients

from Model II (Figure 8A) to evaluate and illustrate the risk of

developing RDR in T2DM patients (Figure 8B). Numerical values

were assigned to each risk factor. To determine the points for each

factor, a perpendicular line was drawn from its corresponding value

to the “Points” axis. The points from all factors were subsequently

summed to calculate the Total Score, and a vertical line was drawn

to the “Total Score” row to assess the probability of RDR

occurrence. An exemplar patient from the external dataset is

highlighted in red. The varying dimensions of the rectangles

demonstrate the differences in the relative proportion of patients

across each subgroup (Figure 8B).
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4 Discussion

In this study, we developed and validated a parsimonious

nomogram (Model II) for predicting referable diabetic retinopathy

in patients with T2DM. The model integrates seven readily available

clinical and laboratory variables and demonstrated good

discriminative performance. Importantly, we externally validated the

model on an independent cohort, confirming its generalizability. The

nomogram provides individual risk estimates for moderate-or-worse

DR in a form that is easily interpretable by clinicians. Using a risk

score tool, frontline providers can stratify diabetic patients by RDR

risk and guide timely ophthalmology referrals. This approach

addresses the pressing need for scalable, cost-effective DR screening

strategies, as traditional fundus examination programs often fail to

cover all at-risk patients. To our knowledge, this is one of the first RDR

prediction models in a Chinese population that combines community

health data with hospital data and undergoes external validation,

supporting its broader applicability.
4.1 Innovation and comparison to prior
models

Our study offers a significant advancement in diabetic

retinopathy (DR) risk prediction by developing a clinically

applicable nomogram that achieves robust discriminative

performance (AUC ≈ 0.73) using only routinely collected clinical

parameters, including HbA1c, systolic blood pressure, renal

function markers, and urine glucose. Unlike prior models that
FIGURE 7

The calibration curve (A, C) and decision curves analysis (B, D) of Model I and Model II in the training set.
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often rely on specialized, costly, or technologically demanding

indicators, our model is optimized for scalability and accessibility

in real-world settings, particularly in primary care. A comparative

analysis with existing models (Table 5) highlights this distinction.

For instance, Ke et al. (19) utilized 2-hour C-peptide levels and

nerve conduction assessments, achieving an AUC of 0.75 but at the

cost of requiring non-routine testing (19). Wang et al. (29) reported

higher predictive accuracy (AUC > 0.80) using insulin resistance

indices and vitamin D levels, yet these biomarkers are not standard

in most clinical workflows (20). Conversely, community-based

models by Pan et al. (21) and Mo et al. (28) employed readily

available variables (AUC ~0.70) but lacked external validation,

limiting their generalizability (15, 21).

In contrast, our nomogram is built upon a large, community-

derived dataset and validated externally in an independent tertiary

hospital cohort, ensuring consistent performance across diverse

healthcare settings and patient populations. This dual-source design,

encompassing both general T2DM populations with early or absent

retinopathy and ophthalmic outpatients with more advanced disease,

captures a broad spectrum of DR severity (Supplementary Tables S4–

S8), enhancing model robustness and applicability.

A key strength of our model lies in its explicit focus on referable

DR (RDR), a clinically actionable endpoint that directly informs

ophthalmologic referral decisions. While many previous models

predict general DR risk without regard to severity, our model offers

immediate utility in clinical triage by distinguishing those at risk for

vision-threatening stages. Furthermore, by employing LASSO

regression for variable selection, we identified a parsimonious set

of seven predictors that preserved model performance while

enhancing interpretability and implementation feasibility.

The integration of community chronic disease registry data

with hospital-based clinical records further underscores the model’s

translational relevance and real-world alignment. This

methodological approach bridges care levels, yielding a universal

risk tool that can support both proactive identification of high-risk
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individuals in primary care and risk stratification of referred

patients in ophthalmology settings.

In summary, Model II strikes a clinically meaningful balance

between predictive accuracy, interpretability, and generalizability.

Its exclusive reliance on universally obtainable variables, rigorous

external validation, and focus on an actionable outcome distinguish

it from existing models. This work contributes a practical, scalable

framework for risk-based DR screening—particularly suited for

integration into population health strategies and electronic

medical record systems in resource-limited settings.
4.2 Pathophysiological and clinical
implications

The composition of the final model carries implications for both

understanding DR and managing it. Glycemic control and

hypertension are well-established modifiable risk factors for DR.

Elevated HbA1c and prolonged diabetes duration are associated with

increased DR risk, reflecting chronic hyperglycemia’s detrimental

effects on retinal microvasculature (23). Our findings echo landmark

trials (DCCT, UKPDS) which showed that tighter glycemic control

markedly reduces DR incidence and progression. For instance, every

1% reduction in HbA1c can lower the risk of DR complications by

roughly 30%-35%% (27, 30). Notably, our model includes glycosuria as

an independent predictor, suggesting that acute hyperglycemic

episodes, indicated by urine glucose positivity, may contribute to

retinal damage beyond chronic glycemic burden. This aligns with

evidence that glycemic variability can induce oxidative stress and

inflammatory responses in retinal tissues (31). Thus, the presence of

glycosuria in a patient could identify those experiencing unrecognized

hyperglycemic excursions, further elevating DR risk despite similar

HbA1c levels. These findings align with the current clinical guidelines

advocating tight blood glucose regulation as a cornerstone of DR risk

reduction and overall diabetes management (32).
FIGURE 8

(A) Referable diabetic retinopathy (RDR) risk nomogram. Red indicates that the variable is a risk factor for RDR, and blue indicates that the variable is
a protective factor for RDR. The darker the color, the greater the influence of the variable on RDR. (B) Dynamic nomogram. A dynamic nomogram
based on Model II was created to predict the risk of developing RDR in T2DM patients. According to the patient’s SCr (100 mmol/L), HbA1c (8.2%),
SBP (138 mmHg), GLU(1, positive), BUN (10.7 mmol/L), mALB (2339.27 ug/mg), duration (24 years), the total points was 129, and the predicted
probability of RDR was 0.936. Therefore, the patient had an 93.6% chance of developing RDR.
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Renal function markers emerged as significant predictors in our

nomogram, underscoring the interconnected nature of diabetic

microvascular complications (33). In our study, elevated SCr,

BUN, and mALB, were associated with higher RDR risk. These

findings are consistent with studies that microalbuminuria is

a marker for the presence and severity of DR (29, 34, 35). These

findings support the concept that nephropathy and retinopathy

share common pathogenic mechanisms, such as endothelial

dysfunction and chronic inflammation (34, 36). Clinically, this

underscores the value of monitoring renal status in diabetic

patients not just to manage nephropathy, but also as a window

into DR risk (37).
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Hypertension, particularly elevated SBP, contributes to retinal

capillary damage and ischemia, is a known exacerbating factor for DR.

Our nomogram indicate increase in SBP was associated with higher

RDR risk (38). Blood pressure control, particularly maintaining SBP

in recommended ranges, has been shown to slow DR progression and

is advocated by current guidelines. The epidemiologic data indicate

that a 10 mmHg SBP reduction yields about a 13% decrease in DR

risk. There is also evidence that fluctuations in blood pressure may

impact DR progression. Effective blood pressure management is

crucial in mitigating DR progression.

The prominence of glycemic control and blood pressure

confirms that aggressive management of these modifiable factors
TABLE 5 Comparison of predictive models for DR in T2DM patients.

Study
(Year)

Train and
Test set

External
Validation

Outcome Predictors (n) Performance

Pan et al.,
2023 (21)

Community,
Shanghai,
China (N=2385)

No DR 6 predictors: indglycosylated hemoglobin A1c,
disease course, postprandial blood glucose, age,
systolic blood pressure, and albumin/urine
creatinine ratio

AUC (0.703), accuracy (0.796),
precision (0.571), recall (0.035), F1
score (0.066), Hosmer-Lemeshow test
(0.887), NRI (0.004), and balanced
accuracy (0.514).

Tao et al.,
2023 (26)

Hospital,
Shanghai,
China (N=788)

No DR Continuous glucose monitoring (CGM) data AUC: 0.86 (training); 0.85 (test)

Ke et al.,
2023 (19)

Hospital, Beijing,
China (N=440)

Yes (external
validation,
Hospital in
Beijing,
China N=120)

VTDR 3 predictors: 2-h C-peptide, UACR, sural nerve
conduction impaired (SNCI)

AUC: 0.76 (training), 0.73 (test), 0.75
(external validation)

Yang et al.,
2023 (16)

Hospital,
Chongqing,
China (N=4159)

Yes (external
validation,
Hospital in
Chengdu,
China, N=430)

DR 3 predictors: the duration of diabetes, history of
hypertension, and cardiovascular disease

AUC: 0.722 (training), 0.715 (internal
test), and 0.703 (external test); DCA
threshold probability:17-55%

Wang et al.,
2023 (20)

Hospital, Zunyi,
China (N=213)

No DR 8 predictors: disease duration, BMI, fasting
blood glucose, HbA1c, homeostatic model
assessment-insulin resistance (HOMA-IR), TG,
total cholesterol (TC), and vitamin D (VitD)-T3

C-index: 0.848 (95% CI: 0.798-0.898)
(training); 0.816 (interval validation)

Liu et al.,
2023 (27)

Hospitals, Gansu,
China (N=520)

No DR 8 predictors: age, DPN, HbA1C, HDL-C, NLR,
TG, BUN, and disease duration

AUC: 0.773 (training) and 0.735 (test);
DCA threshold probability: 11%-95%
(training) and 17%-93% (test)

Yang et al.,
2022 (15)

Hospital,
Shijiazhuang,
China (N=5900)

No DR 8 predictors:duration of diabetes, diabetic
neuropathy, diabetic kidney disease, diabetic
foot, hyperlipidemia, hypoglycemic drugs,
glycated albumin, Lactate dehydrogenase

AUC: 0.820 (training); 0.842 (test); 2%
and 75% (training) ; DCA threshold
probability: 2%-88%(validationt)

Li et al.,
2022 (17)

Hospitals,
Xinjiang,
China (N=13980)

No DR 7 predictors: DPN, age, neutrophilic granulocyte
(NE), HDL-C, HbA1C, duration of T2DM, and
glycosylated serum protein (GSP)

AUC: 0.882 (95% CI, 0.875-0.888)
(development); 0.870 (95% CI, 0.856-
0.881) (validation)

Mo et al.,
2020 (28)

Community,
Shanghai,
China (N=4170)

No DR 7 predictors: age, course of disease, postprandial
blood glucose (PBG), HbA1c, uric creatinine
(UCR), urinary microalbumin (UMA), and SBP

AUC: 0.700 (training);
0.715 (validation)

Present
study (2025)

Community,
Xi'an,
China (N=1830)

Yes (external
cohort from
hospital in
Xi'an,
China) (N=123)

RDR 7 predictors: duration, HbA1c, urine glucose,
SCr, BUN, mALB, SBP

AUC: 0.730 (95% CI: 0.691–0.759)
(training); 0.767 (95% CI: 0.704–0.831)
(test), and 0.723 (95% CI: 0.610–0.835)
(external validation); DCA threshold
probability: 8%-72%
BMI: body mass index; FPG: fasting blood glucose; PBG: postprandial blood glucose; TGs: total triglycerides; SBP: systolic blood pressure; VTDR: vision-threatening diabetic retinopathy; DPN:
Diabetic Peripheral Neuropathy; BUN: Blood Urea Nitrogen; HDL-C: high-density lipoprotein; NLR: Neutrophil-to-Lymphocyte Ratio;
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remains central to preventing DR. Our findings reinforce existing

guidelines that advocate tight control of HbA1c and blood pressure

to reduce microvascular complications. Additionally, the inclusion

of renal indicators (SCr, BUN, mALB) in the risk score highlights

that clinicians should view abnormal kidney findings as a red flag

for potential retinopathy. In practice, a diabetic patient with rising

creatinine or significant albuminuria should prompt heightened

vigilance for DR and perhaps expedited retinal screening. This

interdependence of diabetic complications suggests a

multidisciplinary care approach: close collaboration between

endocrinologists, nephrologists, and ophthalmologists can

facilitate early intervention across all complication domains.
4.3 Clinical application

The practical utility of this RDR risk model is highlighted by its

ease of use and the decision curve analysis. All predictors in Model II

are regularly collected in routine diabetes care, making the nomogram

readily implementable without special equipment. A clinician or

health worker can simply input a patient’s values into the

nomogram (or a calculator or web tool based on it) to obtain an

individualized risk estimate. This has significant implications for

diabetes management and screening: it enables a shift toward risk-

based referral for retinal exams. For example, using our model, a

general practitioners or endocrinologists could identify a subset of

diabetics who have RDR, say, >20% predicted probability of referable

DR-those patients would be prioritized for prompt dilated fundus

examination by an ophthalmologist. Conversely, patients scoring

below a low threshold (perhaps <10% risk) might be safe to defer

immediate specialist referral and continue periodic monitoring,

especially in resource-constrained settings. By applying such a

strategy, healthcare systems could optimize resource allocation,

focusing ophthalmologic services on those most likely to benefit and

reducing unnecessary referrals of low-risk individuals. The decision

curve analysis confirmed that using the nomogram for referral

decisions would confer net benefit across a broad range of threshold

choices (from very sensitive to more specific criteria). This flexibility

means the tool can adapt to different clinical policies: whether one

prefers to “catch” as many cases as possible (lower threshold) or avoid

false positives (higher threshold), the model adds value over no model

at all. An illustrative scenario is a moderate threshold of 20–30% risk:

at that level, the DCA suggests substantial clinical benefit in terms of

earlier DR detection and prevention of vision loss. Thus, the

nomogram can be tailored to the context – for instance, a

community screening program might use a low cutoff to maximize

sensitivity, whereas a specialist clinic triaging referrals might use a

higher cutoff to ensure specificity. In all cases, the individualized risk

estimate fosters a more nuanced approach than one-size-fits-all

screening. Moreover, because the model is simple, it could be

integrated into electronic health record systems to automatically flag

high-risk patients during routine visits (e.g., via an embedded risk

score or alert). This kind of integration would make risk stratification

seamless and could prompt clinicians in real time to arrange retinal

examinations for those flagged at high risk. From a patient education
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standpoint, the nomogram could be a useful counseling tool. For

example, showing a patient how their risk score would drop with a

lower HbA1c or blood pressure (nomogram scenarios) might

motivate improved adherence to therapy. In essence, our model

encapsulates the multifactorial nature of DR risk into a tangible

score, which can help communicate risk to patients and drive home

the importance of holistic risk factor control. Overall, the real-world

application of Model II is as a decision support tool that bridges the

gap between primary diabetes care and specialty ophthalmology,

ensuring that each patient’s need for retinopathy screening is

assessed on the basis of objective risk.
4.4 Limitations and future directions

Despite the strengths of our study, several limitations warrant

consideration. First, our nomogram was developed and validated

using cross-sectional datasets derived from community-based

screenings in Northwest China. This design limits the model’s

ability to predict future incidence of RDR, as it captures only a

single time-point diagnosis rather than disease progression over

time. Furthermore, voluntary participation in these screenings may

introduce selection bias, as participants may differ from the broader

diabetic population in health behavior, socioeconomic status, or

access to care. As such, the generalizability of our findings to other

regions, ethnicities, or healthcare systems may be limited. Future

prospective, multicenter studies across geographically and

demographically diverse populations are essential to improve

external validity and ensure broader applicability.

Second, the model primarily incorporates static clinical

variables, whereas diabetes is a dynamic condition influenced by

time-varying factors such as glycemic variability, blood pressure

fluctuations, and renal function changes. Incorporating longitudinal

data—such as visit-to-visit HbA1c trajectories, systolic blood

pressure variability, or progressive microalbuminuria—may

enhance predictive granularity and support the development of

temporally adaptive risk models. Such refinements would be

particularly valuable for identifying patients at imminent risk of

DR progression, enabling more timely interventions.

Third, the absence of certain potentially important predictors—

such as dietary habits, physical activity, family history, and genetic

markers—may reduce the comprehensiveness of our risk

stratification approach. Integrating these variables in future

studies could improve the personalization and precision of DR

risk prediction, particularly in subgroups with atypical risk profiles.

Fourth, while our model was constructed using logistic regression

for its interpretability and ease of implementation, advanced machine

learning (ML) methods, including gradient boosting, support vector

machines, and deep neural networks, have shown superior predictive

performance in some DR studies. Nevertheless, ML models often lack

transparency, are resource-intensive, and may pose barriers to routine

clinical deployment. Head-to-head comparisons of conventional

versus ML-based models—focusing not only on accuracy but also

on interpretability, clinical utility, and integration feasibility—will be

critical for guiding model selection in real-world practice.
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Finally, translating prediction models into clinical benefit

requires seamless integration with healthcare systems. Embedding

the nomogram within electronic health record (EHR) platforms

would enable real-time risk assessment by automatically extracting

and updating relevant patient data (e.g., HbA1c, blood pressure,

renal indices). Such integration could generate dynamic alerts or

risk scores within clinical workflows, facilitating timely referral of

high-risk patients and supporting targeted screening strategies. In

resource-constrained environments, this approach could

significantly optimize allocation of ophthalmologic services and

reduce preventable vision loss.

In conclusion, future efforts should focus on prospective

validation, incorporation of time-dependent and novel predictors,

comparative evaluation of modeling strategies, and EHR-based

implementation. These advances will further improve the

nomogram’s predictive precision, clinical relevance, and

scalability, thereby enhancing its role in personalized, risk-based

diabetic retinopathy screening and management.
5 Conclusion

In conclusion, we have developed a clinically useful and

interpretable nomogram for referable DR risk that relies on seven

routine variables reflecting glycemic control, blood pressure, and

kidney health. Model II offers moderate but consistent accuracy in

identifying patients with sight-threatening retinopathy, as

evidenced by internal and external validations. The model’s

strength lies in its simplicity and strong grounding in

pathophysiology, it leverages the interrelated risk factors that

drive microvascular damage in diabetes. For clinicians, this tool

provides a quick risk assessment that can support decision-making

on patient referrals for ophthalmologic evaluation. For patients and

health systems, its use could mean earlier detection of vision-

threatening DR and more efficient use of specialist resources. The

broad threshold range yielding net benefit indicates that the

nomogram is robust across various clinical risk tolerances. Future

refinements, including prospective studies and integration of

dynamic risk factors, could further enhance its performance.

Nonetheless, even in its current form, this risk score represents

an innovative step toward personalized DR screening, helping

bridge the gap between primary diabetes care and preventive

ophthalmology. By identifying high-risk individuals before

irreversible eye damage occurs, such a model can contribute to

reducing the burden of diabetic blindness and improving outcomes

through timely intervention.
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