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Metabolic dysfunction-associated steatotic liver disease is a metabolic disease

with an increasing incidence. Its pathogenesis involves the interaction of multiple

factors. There is currently no specific treatment, so early prevention and

treatment are crucial. Mesenchymal stem cells are a type of cell with the ability

to self-renew and differentiate in multiple directions. They have a wide range of

sources, including umbilical cords, bone marrow, and fat, and have various

biological functions such as anti-inflammation, immune regulation, anti-

oxidation, and inhibition of fibrosis. They have shown significant potential in

the treatment of non-alcoholic fatty liver disease. In recent years, mesenchymal

stem cells derived exosomes have been shown to be rich in bioactive substances,

and to be involved in intercellular communication, regulating metabolism,

reducing inflammatory responses, improving lipid metabolism, inhibiting

fibrosis, and other processes that contribute to the treatment of metabolic

dysfunction-associated steatotic liver disease. Mesenchymal stem cells and

mesenchymal stem cell-derived exosomes play an important role in the

pathogenesis and treatment of metabolic dysfunction-associated steatotic liver

disease and provide new potential and direction for the treatment of Metabolic

dysfunction-associated steatotic liver disease. This article reviews the role and

effects of mesenchymal stem cells and mesenchymal stem cell-derived

exosomes from different sources in Metabolic dysfunction-associated steatotic

liver disease and discusses their prospects as potential therapeutic strategies.
KEYWORDS

metabolic dysfunction-associated steatotic liver disease, metabolic dysfunction-
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1 Introduction

Metabolic dysfunction-associated steatotic liver disease

(MASLD) is the most common chronic disease with a prevalence

approaching 25% worldwide (1–3). The disease was once known as

non-alcoholic fatty liver disease (NAFLD), in 2023, a consensus

panel led by the Liver Association proposed to redefine NAFLD as

MASLD (4) . This new definit ion bet ter reflects the

pathophysiological characteristics of fatty liver and metabolic

abnormalities and provides a new perspective for clinical

diagnosis and treatment. MASLD is a clinical and pathological

syndrome with no history of excessive alcohol consumption,

multiple causes, and characterized by lipid accumulation and fat

degeneration in the liver (5, 6). Studies have shown that about 3% to

5% of patients with fatty liver disease can develop Metabolic

dysfunction-associated steatohepatitis (MASH), which is

characterized by liver inflammation and hepatocellular injury (6).

As the disease progresses, hepatic steatosis can further develop into

MASH and liver fibrosis, ultimately leading to cirrhosis and

hepatocellular carcinoma (HCC) (7). As a complex metabolic

disease, there is currently no specific treatment for MASLD (8).

Lifestyle interventions are still recognized as the first choice of

treatment. In addition, drug interventions can regulate glucose and

lipid metabolism, mitigate inflammation, and delay liver fibrosis

progression, providing an effective strategy to slow the development

of MASLD (9).

Mesenchymal stem cells (MSCs) are a type of pluripotent

progenitor cell with the ability to self-renew and differentiate into

multiple lineages, including adipocytes, osteocytes, osteoblasts, and

chondrocytes (10–12). Initially, MSCs were isolated from bone

marrow mesenchymal stem cells (BM-MSCs) (BM-MSCs) (13).

With the deepening of research, it was gradually discovered that

MSCs also exist in adipose tissue,skeletal muscle, umbilical cord

blood, lung and other tissues (14–17). MSCs from different sources

have various biological functions such as anti-inflammatory, anti-

oxidative, immune regulation and tissue regeneration, which makes

them show unique advantages in the treatment of various diseases

(18, 19). In recent years, mesenchymal stem cell-derived exosomes

(MSCs-Exo) have become a research hotspot because it contains a

variety of bioactive substances. Exosomes are small extracellular

vesicles with diameters ranging from 30 to 150 nanometers, which

are secreted by various types of cells, including stem cells, immune

cells, adipocytes, hepatocytes, tumor cells, etc. (20–28). Exosomes

are generated through the inward budding of the cell membrane,

resulting in the formation of vesicles, which contain biologically

active substances such as nucleic acids, proteins and growth factors.

They play a crucial role in intercellular communication and signal

transduction by merging with the cell membrane and releasing their

contents into the extracellular space (29). They reach distant cells

and tissues through body fluids such as blood, lymphatic fluid and

saliva to regulate metabolic processes in the body (30–33). An

increasing number of studies have shown that exosome-mediated

drug delivery has the advantages of low toxicity, low

immunogenicity and high engineering, and has broad application

prospects in the treatment of diseases in the future. This article will
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summarize the role and therapeutic potential of microRNAs

derived from MSC- Exo, especially those derived from

mesenchymal stem cells, in MASLD.
2 The conventional pathogenesis of
metabolic dysfunction-associated
steatotic liver disease

The pathogenesis of MASLD involves the interaction of

multiple factors, including insulin resistance (IR), excessive

accumulation of fatty acids, oxidative stress, inflammatory

response, intestinal microbiota imbalance, adipose tissue and

mitochondrial dysfunction, and liver fibrosis (34, 35). With the

innovation of detection technology and the emergence of new

research results, the “second hit” hypothesis proposed by James

and Day can no longer summarize the complex and ever-changing

pathogenesis of MASLD (34). However, the emergence of new

theories such as the “three-hit hypothesis” in recent years has well

compensated for the deficiencies of the “two-hit” theory, which

includes steatosis, lipotoxicity and inflammation (6, 36). IR is one of

the core pathogenesis mechanisms of MASLD (37). Insulin

normally inhibits lipolysis in adipose tissue. However, when the

sensitivity of insulin-targeted organs (such as the liver, muscle and

adipose tissue) to insulin decreases, the inhibitory effect of insulin is

weakened, leading to fat accumulation in the liver. IR leads to

increased fat accumulation in the liver by stimulating lipolysis and

inducing hyperinsulinemia, thereby setting the stage for the

excessive buildup of fatty acids (38).

Excessive accumulation of fatty acids in the liver is a key link in

the progression of MASLD. In the context of insulin resistance, the

breakdown and oxidation of fatty acids increases, leading to many

free fatty acids entering hepatocytes, promoting lipotoxicity and

mitochondrial dysfunction in hepatocytes, thereby triggering

hepatocyte apoptosis. These fatty acids cannot be completely

oxidized, thus accumulating in the liver and forming steatosis

(39, 40). Excessive accumulation of fatty acids not only increases

the pressure inside liver cells, but also provides conditions for the

occurrence of oxidative stress and inflammation. In addition,

dysfunction of adipose tissue can lead to an imbalance of

adipokines, such as abnormal secretion of leptin and adiponectin,

which exacerbates lipid accumulation in the liver. At the same time,

these adipokines play a critical role in mediating the inflammatory

response and driving the fibrosis process (41). Excessive

accumulation of fatty acids and abnormal metabolism directly

lead to increase in reactive oxygen species (ROS) in liver cells,

which activates oxidative stress (42). Oxidative stress exacerbates

the inflammatory response in the liver by damaging liver cells,

promoting the peroxidation of fatty acids, and increasing the release

of cytokines, leading to chronic low-grade chronic inflammation,

infiltration of immune cells such as adipocytes, macrophages, and T

cells, and production of inflammatory mediators such as cytokines

and chemokines. These inflammatory reactions further promote

cell damage and fibrosis in the liver, which may eventually progress

to cirrhosis or hepatocellular carcinoma (43, 44).
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The final stage of MASLD is liver fibrosis, which is usually caused

by an imbalance between hepatocyte death and reduced regenerative

capacity. Persistent harmful factors (such as oxidative stress,

inflammation, and intestinal microbiota imbalance) cause

activation of hepatic stellate cells, which in turn leads to excessive

extracellular matrix accumulation, ultimately leading to changes in

liver structure, accompanied by fibrosis, regenerative nodules, and

inflammatory cell infiltration. Although the current treatment of

choice for MASLD is lifestyle intervention (e.g., diet, exercise, and

weight loss), there is still a lack of specific drugs for MASLD (9). New

therapeutic strategies focus on mitigating pathological processes,

including lipid accumulation, inflammation, and oxidative stress in

the liver. In addition, novel therapies based on non-coding RNAs,

and MSCs-Exo are becoming a research hotspot and hold the

potential to bring new breakthroughs in the treatment of MASLD.
3 MSCs in MASLD

Mesenchymal stem cells (MSCs) affect the occurrence and

development of MASLD through multiple pathways. The main
Frontiers in Endocrinology 03
mechanisms include: (1) improving metabolic disorders; (2)

reducing inflammation and oxidative stress; (3) antifibrotic

effects; (4) inducing autophagy; and (5) immunosuppressive

effects (Figure 1).
3.1 Adipose-derived mesenchymal stem
cells in MASLD

ADSCs show great potential in the research and treatment of

MASLD due to their rich sources, easy availability, and low impact

on the body. Studies have shown that ADSCs can effectively

improve the symptoms of MASLD through mechanisms such as

regulating lipid metabolism, reducing inflammation, relieving

oxidative stress, and anti-fibrosis. For example, Watanabe et al.

found in a Mc4r-KO knockout MASH mouse and a LPS-induced

MASH mouse model that ADSC intervention significantly reduced

the levels of serum ALT and inflammatory markers, while

increasing the proportion of anti-inflammatory macrophages in

the liver, providing a new basis for the treatment of MASLD (45).

Saleh et al. also studied obesity-related MASLD and showed that
FIGURE 1

The schematic role of MSC in MASLD. Mechanisms and pathways of mesenchymal stem cells (MSCs) in the treatment of MASLD. This figure outlines
the mechanisms and signaling pathways by which MSCs exert their therapeutic effects, specifically targeting liver function to alleviate MASLD, and it
outlines the mechanisms and pathways associated with the therapeutic efficacy of different sources of MSCs and combination therapies.
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ADSC treatment can reverse liver fat accumulation in obese mice

and decrease TNF-a and IL-6 expression levels, improving MASLD

symptoms (46). In addition to reducing inflammation, antifibrosis

is also an important target in the treatment of MASLD (47). Yano

et al. found that in a mouse model of MASH, u-ADSCs were able to

reduce liver inflammation and cell infiltration and showed similar

therapeutic effects to wild-type u-ADSCs in terms of fibrosis. In

particular, MASH (12 weeks) u-ADSCs performed better in

regulating metabolism and intracellular transport, while MASH (4

weeks) u-ADSCs were more significant in reducing inflammation

(48). In addition, the therapeutic potential of modified ADSCs in

MASLD has also received widespread attention. For example,

Domingues et al. used an adenovirus to construct the antioxidant

gene Sod2 and upregulate it in ADSCs. The study found that

modified ADSCs significantly improved the liver fat content of

obese mice, mainly by reducing liver inflammation and oxidative

stress (49). This was also verified in an in vivo experiment by Afarin

et al., who found that by injecting LPS-stimulated ADSCs into

injecting LPS-stimulated ADSCs into a MASLD rat model, it was

found that they not only effectively corrected liver enzyme levels

(such as ALT and AST), it not only significantly decreased the

expression of transforming growth factor b (TGF-b) and

inflammation-related genes but also lowered the levels of ROS,

demonstrating the potential of ADSCs in the treatment of

MASLD (50).
3.2 Role of umbilical cord mesenchymal
stem cells in MASLD

UCMSCs, as another source of mesenchymal stem cells, are not

only easy to obtain, but also exhibit stronger differentiation

potential and lower immune rejection compared to mesenchymal

stem cells from other sources, making it a potential therapeutic

strategy for treating MASLD. In particular, human-derived

umbilical cord mesenchymal stem cells (HUCMSCs) have

attracted widespread attention for their use in MASLD. Existing

studies have shown that hUCMSCs mainly function in the

treatment of MASLD through mechanisms such as anti-

inflammation, anti-fibrosis, autophagy induction, regulation of

lipid metabolism, and improvement of insulin resistance. In a

mouse model of MASLD, HUCMSCs significantly improved liver

function and reduced lipid deposition by tail vein injection, and

improved lipid metabolism by upregulating the HNF4a-CES2
pathway and regulating genes related to fatty acid oxidation (51).

Impaired autophagy is another important mechanism of MASLD

(52). Studies have found that HUCMSCs can promote autophagy by

suppressing the expression of mTOR and P62, and promoting the

levels of AMPK and LC3BII/a, thereby accelerating the degradation
of body fat and alleviating the symptoms of MASLD (53). In

addition, HUCMSCs also improve fat metabolism and reduce

inflammatory responses by regulating the PPAR signaling

pathway, enhancing the expression of PPAR-a, and targeting

CPT1A. Further studies found that in mice treated with

HUCMSCs, the expression of a-SMA protein and various
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fibrosis-related collagens (such as Col1a1, Col1a2, and Col3a1)

was significantly downregulated, reducing the degree of liver

fibrosis (54). In recent years, researchers have explored the

potential of combining HUCMSCs with other treatments to

further improve the therapeutic effect of MASLD. For example,

one study showed that the combination of HUCMSCs and

liraglutide significantly improved liver function damage and

pathological changes in rats with MASLD associated with type 2

diabetes mellitus (T2DM). After 8 weeks of combined treatment,

HbA1c, HOMA-IR, ALT and AST levels were significantly reduced,

and glucometabolic, insulin resistance and liver damage were

significantly improved. At the same time, they inhibited the

TLR4/NF-kB inflammatory pathway, resulting in a significant

reduction in the expression of IL-6, TNF-a, and the antioxidant

enzyme superoxide dismutase (SOD). These results suggest that

combination therapy with hUCMSCs and other drugs may be an

effective strategy to enhance the therapeutic effect, providing new

ideas for the clinical management of MASLD (55).
3.3 Role of bone marrow mesenchymal
stem cells in MASLD

BMSCs are one of the most extensively researched types of

MSCs. Similar to other MSC types, BMSCs have the advantages of

being easy to obtain, having multi-directional differentiation

potential and low immunogenicity. They are also ideal for

treating a variety of diseases because they do not involve ethical

issues and can be autologous transplanted. Existing studies have

shown that BMSCs can significantly improve MASLD through

multiple mechanisms, such as anti-inflammation, anti-fibrosis,

inhibition of T cell proliferation, alleviation of mitochondrial

dysfunction, alleviation of endoplasmic reticulum stress, and

regulation of glycolipid metabolism.The study shows that that

BMSCs have a significant role on obese mice. Compared with

untreated mice, BMSCs-treated mice can effectively prevent the

occurrence of liver fibrosis. This is manifested in the fact that the

gene expression levels of inflammatory factors and fibrosis markers

in the liver (such as IL-1b, INF-g, TNF-a, TGF-b1 and collagen type
I) are close to normal or even lower than normal, thereby reducing

liver tissue damage (56).

Endoplasmic reticulum (ER) stress is considered an important

trigger of MASLD (57). Li et al. found that BMSCs intervention can

improve steatosis, insulin resistance and dyslipidemia, and further

revealed its potential molecular mechanism. Specifically, BMSCs

alleviate endoplasmic reticulum stress in MASLD rats and PA-

induced HepG2 cells by regulating SERCA (calcium pump) to

restore intracellular Ca²+ homeostasis, inhibit cell pyroptosis, and

improve metabolic dysfunction (58). In recent years, MSC has

gradually become an emerging way to improve disease

progression through the mitochondrial transfer mechanism. Bi

et al. found that BMSCs significantly reduced ROS production

and enhanced oxidative phosphorylation (OXPHOS) activity and

ATP production by transferring mitochondria to fat cells, thereby

effectively maintaining the cell’s energy balance and restoring liver
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function. This mechanism can inhibit the inflammatory response

and lipid and glucose metabolism disorders associated with MASLD

(59). Nickel et al. further verified this finding in their study, which

showed that by transplanting the mitochondria of human BMSCs

into the hepatocytes of MASH mice, the lipid decomposition

capacity can be enhanced, thereby significantly improving the

lipid load of MASH mice (60). This innovative mechanism

repairs damaged cells through mitochondrial transfer,

independent of cell differentiation or paracrine effects, providing

new research direction for cell therapy.
3.4 Role of mesenchymal stem cells from
other sources in MASLD

In addition to the aforementioned common adipose tissue-, bone

marrow- and umbilical cord-derived MSCs, other sources of MSCs,

such as bone-derived MSCs and menstrual blood-derived

endometrial stem cells (MenSCs), have also shown potential in the

treatment of MASLD. For example, Wang et al. showed that bone-

derived MSCs inhibit the proliferation of CD4+ T cells through

immunomodulatory effects, thereby reducing inflammation in

MASLD (61). In addition, they conducted another study to

demonstrate that in a mouse model of MCD diet-induced MASH,

this protective effect may be related to the activation of bone-derived

MSCs to inhibit the secretion of IFN-g and IL-6 by CD4+ T cells (62).

MenSCs, on the other hand, target the AMPK-mTOR signaling

pathway by secreting the novel regulatory factor Rnf186, which

improves lipid metabolism and insulin resistance in MASLD mice,

thereby alleviating the symptoms of MASLD (63). In summary,

mesenchymal stem cells of different origins affect the development

and progression of MASLD through multiple mechanisms, providing

more options for the future treatment of MASLD. Future research

will further explore the therapeutic potential of differentMSC sources

and promote their clinical application.

In summary, mesenchymal stem cells from different sources

have their own advantages in the treatment of MASLD and can

influence the onset and progression of MASLD through distinct

mechanisms. This provides more treatment choices for MASLD,

especially in the context of individualized treatment. The

appropriate source of MSCs can be selected according to specific

circumstances to achieve more precise and effective treatment. At

present, there are still many gaps in the application of MSCs from

other sources in the treatment of MASLD, and their specific

mechanisms need to be further explored to promote the clinical

application of MSCs in treating MASLD (Supplementary Table 1).
4 The role of MSCs-Exo in MASLD

MSCs-Exo play an important role in the treatment of MASLD,

mainly through the following mechanisms: (1) inhibiting oxidative

stress and inflammatory response; (2) regulating glycolipid

metabolism; (3) inhibiting apoptosis and inducing autophagy; (4)

alleviating liver fibrosis (Figure 2).
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4.1 Adipose-derived mesenchymal stem
cell-derived exosomes and MASLD

In recent years, ADSC-Ex has emerged as a novel therapeutic

strategy that has unique advantages in the occurrence, development

and treatment of MASLD. Number of studies have shown that

ADSC-Exo not only affects the onset and progression of MASLD

through multiple pathways, but also effectively relieves the

symptoms of MASLD, including regulating glycolipid

metabolism, inhibiting inflammatory response and liver fibrosis.

Abnormal liver lipid metabolism and abnormal accumulation of

lipids are key factors in the development of MASLD. Studies have

found that ADSC-Exo can regulate lipid metabolism in multiple

ways to reduce lipid accumulation and thereby improve MASLD

symptoms. For example, a study by Qinghui Niu et al. showed that

ADSC-Exo carrying miR-223-3p can target and inhibit the

expression of E2F1, thereby inhibiting lipid accumulation and

liver fibrosis and improving MASLD symptoms (64). In addition,

studies have indicated that adipose tissue plays a key role in a

number of diseases associated with insulin resistance, particularly

MASLD. Togliatto et al. found that ADSC-Exo derived from obese

individuals may have therapeutic potential in the process of

angiogenesis, and also showed that ADSC-Exo plays an important

role in obesity-related metabolic complications (65). A Baranova

et al. believe that miRNAs such as miR-122 and other miRNAs may

play a positive role in preventing MASLD -related hepatocellular

carcinoma, and MSC-derived exosomes derived from adipose tissue

are an ideal vehicle for these miRNAs (66). Qinghui Niu’s research

also showed that miR-223-3p carried by ADSC-Exo can delay the

progression of MASLD, suggesting that ADSC-Exo loaded with

miR-223-3p may be a potential strategy for the treatment

of MASLD.
4.2 Human umbilical cord mesenchymal
stem cell-derived exosomes and MASLD

HUCMSCs-Exo is an exosome with a wide range of sources and

low immunogenicity. Meanwhile, current research shows that

PPARa can improve steatosis, inflammation and fibrosis, and is a

potential new therapeutic target for MASLD (67). Studies have

shown that hUCMSCs-Exo can significantly improve the symptoms

of MASLD by regulating lipid metabolism, reducing inflammation,

and reducing oxidative stress, inhibiting apoptosis, inducing

autophagy, and inhibiting liver fibrosis. These functions mainly

depend on the miRNA carried by it to regulate related signal

pathways. In the early stages of MASLD, abnormal lipid

deposition and steatosis are its main pathological features (68).

HUCMSCs-Exo improves MASLD by regulating lipid metabolism

to reduce lipid accumulation. Fuji Yang et al. showed that h

UCMSCs-Exo can significantly reduce lipid accumulation and

improve hepatic steatosis by activating the AMPK-dependent

pathway to inhibit SREBP-1c-mediated fatty acid synthesis and

enhance peroxisome proliferator-activated receptor (PPARa)
mediated fatty acid oxidation (69). In addition, Lidan Cheng and
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others found that miR-627-5p carried by hUCMSCs-Exo can

inhibit the expression of genes associated with fat synthesis,(such

as G6Pc, PEPCK, FAS and SREBP-1c) in palmitic acid-treated L-O2

cells, while upregulating the expression of PPARa, thereby

improving glycolipid metabolism and reducing lipid accumulation

(70). Inflammation and oxidative stress are key mechanisms in the

development of MASLD, and hUCMSCs-Exo also showed

significant efficacy in inhibiting inflammation and oxidative

stress. Studies have shown that hUCMSCs-Exo alleviates

inflammatory and oxidative stress responses by reducing the

secretion of TNF-a and IL-6,and activating the Nrf2/NQO-1

antioxidant signaling pathway (71). In addition, miR-24-3p in

hUCMSCs-Exo can further alleviate inflammation and oxidative

stress by targeting and inhibiting Keap-1 to reduce ROS

production (72).

As MASLD progresses, liver fibrosis becomes another key

pathological feature. Recent studies have found that hUCMSCs-

Exo can effectively inhibit liver fibrosis and delay the progression of

MASLD through the anti-fibrosis miRNAs it carries. For example,
Frontiers in Endocrinology 06
Sani et al. showed that anti-miR-17-5p-enriched hUCMSCs-Exo

can inhibit the progression of liver fibrosis by downregulating the

expression of TGF-b1, IL-1b, and IL-6, thereby reducing the

accumulation of extracellular matrix (73). Exosomes can enhance

hepatocyte autophagy through the AMPK/mTOR or ei24-related

autophagy pathway, thereby reducing liver fat and collagen

deposition (53). In addition, He et al. found that hUCMSCs-Exo

can promote the formation of autophagosomes in T2DM rats and

palmitic acid-treated L-O2 cells, and improve glycolipid

metabolism through the autophagy pathway (74). It is worth

noting that Tawfeek et al. found that curcumin-pretreated

hUCMSCs-Exo improved lipid accumulation and reduced liver

inflammation and oxidative stress in MASH mice. This study

shows that the pretreated hUCMSCs-Exo further enhances its

efficacy, providing greater potential for clinical treatment (75).

These studies provide an important theoretical basis and new

research directions for the future clinical treatment of MASLD,

and provide more possibilities for the clinical application of

MSCs-Exo.
FIGURE 2

The schematic role of MSC exosomes in MASLD. Mechanisms and pathways of exosomes derived from different MSCs in the treatment of MASLD
therapy. Exosomes derived from different MSCs have anti-inflammatory, oxidative stress inhibiting, lipid metabolism regulating, apoptosis inhibiting,
autophagy inducing, and liver fibrosis attenuating effects to protect MASLD.
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4.3 Bone marrow mesenchymal stem cell-
derived exosomes and MASLD

BM-MSCs are one of the most used sources of MSCs. Recent

studies have shown that BM-MSCs-Exo also play an important role

in the treatment of MASLD. BM-MSCs-Exo alleviate the

progression of MASLD through multiple pathways, including

anti-apoptosis, improving lipid metabolism, enhancing

mitochondrial autophagy, anti-inflammation and improving

insulin resistance. Insulin resistance is the “first blow” in the

hypothesis of the pathogenesis of MASLD. Studies have found

that BM-MSCs-Exo can alleviate the progression of MASLD by

activating the PI3K/AKT signaling pathway, improving IR and lipid

droplet accumulation, and promoting the expression of glucose

transporter 4 (GLUT4) (76). In addition, BM-MSCs-Exo can

improve steatosis in MASH rats by regulating lipid metabolic

disorders. For example, El-Derany et al. found that BM-MSCs-

Exo treatment significantly downregulated the expression of genes

related to fatty acid synthesis and uptake, significantly upregulated

the expression of genes related to fatty acid oxidation, and improved

the steatosis of MASH (77). BM-MSCs-Exo can also reduce the Bax/

Bcl2 ratio in the liver of MASH rats and protect hepatocytes from

apoptosis through its anti-apoptotic effect. Further studies have

shown that BM-MSCs-Exo can alleviate the effects of a high-fat diet

on the liver by activating the expression of mitochondrial

autophagy genes (77). In addition, miRNA-96-5p plays an

important role in BM-MSCs-Exo, and its regulatory mechanism

is closely related to the therapeutic effect of MASLD.
4.4 Other mesenchymal stem cell-derived
exosomes and MASLD

In addition to the above sources, other types of MSC-Exos (such

as MSC-Exo derived from umbilical cord blood, placenta, and

dental pulp) also show good prospects in the treatment of

MASLD. Although these studies are still in their infancy, there is

growing interest in their potential therapeutic effects on MASLD.

This is confirmed by the study by Chang, Chao-Yuan et al., which

demonstrated that treatment with exosomes derived from human

placental chorionic mesenchymal stem cells can reduce

inflammation and inhibit the expression of NF-kB and HIF-1a in

the liver tissue of obese mice (78). In addition, let-7i-5p miRNA is

highly expressed in exosomes derived from human placental

chorionic mesenchymal stem cells. Studies of its associated

mechanisms have found that it mediates the treatment of obesity-

associated sepsis, but whether it plays a role in the treatment of

obesity-associated MASLD is unknown (Supplementary Table 2).
5 Clinical evidence and challenges

MSC-Exo has important potential in the treatment of MASLD.

The above studies have shown that MSC-Exo improves the symptoms

of MASLD through mechanisms such as regulating glycolipid
Frontiers in Endocrinology 07
metabolism, inhibiting inflammation and oxidative stress, inducing

autophagy, and reducing fibrosis (Figure 3). Compared with traditional

MSC therapy, MSC-Exo, with its low immunogenicity, small size, and

higher biosafety, provides a new idea for precision intervention in

MASLD. However, current research on MSC-Exo for the treatment of

MASLD is still in the experimental stage, and its clinical translation still

faces many challenges. Studies have shown that there are differences in

the efficacy of MSCs and MSC-Exos from different sources (fat,

umbilical cord, bone marrow, etc.), which may be related to donor

factors (age, health status), culture conditions, and exosome isolation

methods (ultracentrifugation, size exclusion chromatography, etc.) (79,

80). In addition, there is a lack of uniform standards for the isolation

and characterization of MSC-Exo, which affects the comparability

between different studies and poses certain challenges in assessing the

optimal applicability of different MSC sources (81). Therefore,

establishing a standardized MSC isolation, culture and delivery

protocol is crucial to improving its clinical translation. In addition,

current studies on MSCs and MSC-Exo in the field of MASLD

generally have small sample sizes, lack randomized controlled trials,

and have few primate models and clinical investigations, which are

mostly limited to animal models and in vitro experiments. Although

existing animal models (such as obesity models) and in vitro models

can simulate some of the disease characteristics of MASLD that are

similar to those in humans, the effects of in vivo and in vitro studies

cannot be directly and effectively applied to the clinic because animal

models and in vitro models differ from humans in terms of

metabolism, immunity and disease development. This step limits

their clinical application to a certain extent.

The safety and efficacy of MSCs and MSC-exos in different

MASLD patient populations still need to be determined by robust

clinical trials (82). Clinical studies of MSC and MSC-Exo therapy

for MASLD are still in their early stages. Most of these studies are

still in phase I or II, and there are no large-scale phase III studies yet.

Therefore, only short-term effects can be used as a reference, and

the long-term efficacy and safety need to be verified (83). As pointed

out by Jinag et al., the long-term safety of MSC and MSCs-Exo

therapy is also a key issue (84). Although MSC and MSC-Exo did

not cause significant rejection or tumorigenesis in early clinical

studies, MSCs have a certain degree of plasticity. When MSCs and

MSC-Exo are used for a long time or in high doses, we still need to

fully evaluate the risk of their possible unintended differentiation

(such as fibroblast-like differentiation), immune rejection,

tumorigenesis, and long-term adverse effects on liver tissue

(85, 86). A meta-analysis showed that hUCMSC therapy can

improve glucose metabolism and insulin secretion in T2DM,

providing some hope for hUCMSC therapy for DN (87). This

was also confirmed by another meta-analysis study, which reported

that MSC and MSCs-Exo therapy is a relatively safe treatment that

can significantly improve liver function compared to conventional

therapy (88). However, the inherent heterogeneity of MSCs results

in significant variability in the therapeutic effects of these cells

depending on their source (bone marrow, adipose tissue, or

umbilical cord) and the methods used for isolation and

preparation. Therefore, strategies to improve their safety,

including but not limited to autologous MSC transplantation,
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immunosuppressive therapy, and gene editing techniques, are being

explored to reduce their potential therapeutic risks. In addition,

MSC and its MSC-Exo are biological agents, and various countries

have strict regulatory requirements for the use of MSC-Exo in

disease treatment, which is a major challenge to be solved in the

future. Although MSC and MSCs-Exo have great potential in the

treatment of MASLD, there is a lack of uniform standards for MSC

and MSCs-Exo isolation protocols, effective doses, efficacy, cargo

content, and information on their heterogeneous populations,

making it difficult to draw conclusions (89). These issues pose

major obstacles to current research on MSCs and their derived

exosomes, and need to be addressed through further research. In the

future, to promote the clinical application of MSCs and MSCs-Exo

in the treatment of MASLD, in addition to the above challenges,

optimizing miRNA delivery strategies is also an important issue.

Enhancing the expression of specific miRNAs through genetic
Frontiers in Endocrinology 08
engineering or using engineered exosomes to improve the

efficiency of targeted delivery can enhance their therapeutic

effects (90). At the same time, exploring biomarkers that can

predict efficacy is also a key direction, such as exosomes protein

or miRNA indicators in the blood circulation, in order to screen for

patients who are more suitable for MSC-Exo treatment and achieve

personalized medicine (91). In addition, the production efficiency

and quality of exosomes still face technical challenges. In the future,

the yield and quality control can be improved by microfluidic chip

separation or bioreactor culture technology to meet clinical needs

(92).The above issues are the main challenges currently facing the

research on MSCs and their derived exosomes. Future research

needs to address these challenges and conduct large-scale, multi-

center clinical studies. Integrating MSC and MSCs-Exo therapies

into clinical practice can provide new hope for the effective

treatment of MASLD patients and improve patient outcomes.
FIGURE 3

Graphical abstract. The different sources of MSCs and MSCs-exo. MSCs are harvested from various tissue sources, including adipose tissue, bone
marrow, umbilical cord, endometrium, long bones, and placenta. This figure illustrates the evaluation of the therapeutic potential of MSCs and
their exosomes.
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6 Conclusion

As mentioned above, the progression of MASLD involves multiple

pathogenesis mechanisms, including the result of the combined effects of

various factors such as environment and genetics. We summarize the

research progress of the effects of MSCs andMSCs-Exo onMASLD and

provide a brief overview of the involved mechanisms. MSCs and MSCs-

Exo are important for the treatment of MASLD due to their

differentiation ability and other promising properties, by inducing

anti-inflammation, improving lipid metabolism, enhancing insulin

sensitivity, balancing oxidation and anti-fibrosis. However, there are

still many gaps that need to be further explored and filled. In addition,

the preparation, quality control and safety of MSCs and MSCs-Exo are

all practical and important issues that will face future clinical

applications. In the future, promoting the application of MSCs and

MSCs-Exo in the treatment of MASLD will require optimizing miRNA

delivery, screening for biomarkers to achieve personalized treatment, and

improving production efficiency and quality control of exosomes tomeet

clinical needs. In summary, MSCs andMSCs-Exo have great potential in

the treatment of MASLD. We need to continue to explore and improve

the therapeutic strategies of MSCs and their derived exosomes for the

treatment of MASLD. This will provide more effective, safe and reliable

options for the prevention and treatment of MASLD.
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