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Background: Diabetic kidney disease (DKD) is a common and serious

complication of diabetes mellitus and has become the most important cause

of end-stage renal disease (ESRD). In light of the rising prevalence of diabetes,

there is a growing imperative for the early detection and intervention of DKD.

With the rapid development of artificial intelligence (AI) technologies, its potential

applications in patient education are receiving increasing attention, especially

large language models (LLMs). The aim of this study was to evaluate the quality of

LLMs-generated patient education materials (PEMs) for early DKD and to explore

its feasibility in patient education.

Methods: Four LLMs (ERNIE Bot 4.0, GPT-4o, ChatGLM4, and ChatGPT-o1) were

selected for this study to generate PEMs. Among them, ERNIE Bot 4.0, GPT-4o,

and ChatGLM4 generated 2 versions of PEMs based on American Diabetes

Association(ADA) guidelines and without ADA guidelines, respectively.

ChatGPT-o1 only generated a PEM without ADA guidelines. An experienced

physician wrote a PEM based on ADA guidelines. All materials were assessed

using a Likert scale which covered the dimensions of accuracy, completeness,

safety, and patient comprehensibility. A total of 7 medical experts (including

nephrologists and endocrinologists) and 50 diabetic patients were invited to

evaluate the study. We recorded basic information on the patient evaluators.

Results: Experts evaluated PEMs from ERNIE Bot 4.0, GPT-4o, ChatGLM4, and

ChatGPT-o1, plus physician-sourced PEM. Results showed ERNIE Bot 4.0’s non-

guideline PEM and physician-sourced PEM were the top two. Patient

assessments of the 2 top-scoring PEMs found that the ERNIE Bot 4.0’s non-

guideline PEM performed as well as, if not slightly better than, the physician-

sourced PEM in terms of patient comprehensibility, completeness, and safety. In

addition, the non-guideline-based PEM was preferred for patients with a history

of diabetes longer than 5 years and for patients with proteinuria. Surprisingly,

GPT-4o and ChatGLM4’s non-guideline PEMs outperformed guideline-

based ones.
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Conclusion: The LLMs-sourced PEMs, especially the ERNIE Bot 4.0’s non-

guideline PEM for early DKD, performed comparably to the physician-sourced

PEM in terms of accuracy, completeness, safety, and patient comprehensibility,

and exerted a high degree of feasibility. AI may show the potential for broader

applications in patient education in the near future.
KEYWORDS
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1 Introduction

Diabetic kidney disease (DKD) is one of the most common

complications of diabetes and a leading cause of end-stage renal

disease (ESRD). In 2022, an estimated 828 million adults worldwide

had diabetes, a significant increase of 630 million from 1990,

increasing the global burden of diabetes (1). This significant rise

in the global prevalence of diabetes has greatly exacerbated the

burden of related complications, including DKD. With the

increasing number of diabetic patients, the prevalence of DKD

has also risen, posing an escalating public health challenge.

Globally, approximately 30%-50% of ESRD patients have

diabetes (2). Early-stage DKD often has no obvious clinical

symptoms, which may lead to missed opportunities for timely

intervention. Early recognition and intervention are therefore

critical to slowing the progression of the disease, which is closely

associated with chronic hyperglycemia, inadequate blood pressure

control, and unhealthy lifestyle. Effective early prevention can

greatly slow the progression of the disease, reduce the risk of

developing ESRD, and ultimately reduce the need for dialysis or

kidney transplantation, thus improving the quality of life

of patients.

In clinical practice, we have found that many diabetic patients

have inadequate knowledge about DKD. Therefore, in addition to

clinical screening and intervention by healthcare providers, patient

education plays a crucial role in DKD management. However,

effective patient education requires a more efficient and

personalized approach to improve their level of cognition. Patient

education materials (PEMs) are core tools for chronic disease

management that increase knowledge, patient engagement, and

treatment adherence, and can lead to better overall outcomes (3).

However, PEMs are costly and require a lot of time to develop and

update (4). In this field, the application of artificial intelligence (AI)

offers a new solution for early DKD patient education. In recent

years, the application of AI technology in the medical field has

become increasingly widespread, with growing interest in the

potential of large language models (LLMs), such as ChatGPT, to

support patient education. Examples include the performance of

ChatGPT-4 and Google Bard in generating educational materials

for patients undergoing cataract surgery (5) and the study of
02
ChatGPT-4 and Google Bard in generating educational materials

for patients with obstructive sleep apnea (6) and so on. LLMs have

shown great promise in creating PEMs (7). However, the accuracy,

safety, completeness, and comprehensibility of PEMs generated by

LLMs for early-stage DKD have yet to be thoroughly evaluated.

This study aims to assess the quality of early-stage DKD PEMs

generated by LLMs and explore their feasibility as a tool for

educating diabetic patients at risk of kidney disease.
2 Materials and methods

2.1 Ethics and design

The study was approved by the Ethics Committee of Qilu

Hospital, Shandong University, with the ethical number of KYLL-

202502-043-1. All participants gave informed consent and data

were collected and processed in an ethical manner.
2.2 Material sources and processing

A physician-generated PEM was created by a nephrologist with

over 10 years of experience in DKD research. The PEM was based

on the 2024 Standards of Care in Diabetes from the American

Diabetes Association (ADA) guidelines, specifically the section on

chronic kidney disease (CKD). Chinese patients were included in

this study, and to ensure the generalizability of the findings across

both Chinese and English contexts, we selected a range of advanced

language models. These included ERNIE Bot 4.0, ChatGLM4, GPT-

4o, and ChatGPT-o1. To ensure consistency, all LLMs generated

their PEMs on September 29, 2024. 4 LLMs were selected for this

task. We used the web version for all 4 models. Each model was

instructed to generate content resembling a doctor’s response,

without disclosing its AI identity. The models were also

specifically asked to respond as nephrology experts. Additionally,

the ADA guidelines in PDF format were uploaded for ERNIE Bot

4.0, GPT-4o, and ChatGLM4. Before inputting the prompt to the

LLMs, we required that the 3 LLMs, ERNIE Bot 4.0, GPT-4o, and

ChatGLM4, have successfully read the ADA Guidelines attachment
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that we uploaded (the attachment is named “ame Guidelineslyl and

then we required them to generate PEMs based on the ADA

Guidelines according to the prompt. Since the ChatGPT-o1 does

not support uploading documents, we generate the science material

via prompt only. The PEM created by the physician followed the

same set of instructions and questions. Detailed prompts are

provided in Supplementary Table 1 of the Supplementary

Materials. All materials were crafted to meet the reading level of a

6th-grade education, as recommended by the American Medical

Association (AMA) (8). Standardized formatting was applied to all

generated materials, using a consistent font and size.
2.3 Assessments of PEMs

All PEMs underwent professional evaluation. We assembled a

review panel consisting of 7 experts in nephrology and

endocrinology, each with a minimum of 5–10 years of clinical

experience in the management of DKD. The experts conducted

their evaluations in a blinded manner, meaning they did not know

whether the PEM was physician-sourced or generated by LLMs.

The evaluation was based on the Likert scale, covering 3

dimensions: accuracy, completeness, and safety. Based on the pre-

experimental data, a medium effect size was assumed (Cohen’s d =

0.5, PS = 0.65), the significance level was set at a = 0.05, and

statistical efficacy was set at 1-b = 0.8, and after performing the

efficacy analyses, 50 patients were ultimately enrolled in the

evaluation. We then selected the 2 PEMs with the highest scores

from expert assessments and invited 50 people with diabetes to

assess and score their comprehensibility, completeness, and safety.

We collected demographic data including age, gender, occupation,

type of diabetes, duration of diabetes, and presence of proteinuria in
Frontiers in Endocrinology 03
all patients. The evaluation of accuracy used a six-point Likert scale,

while completeness and safety were assessed using a three-point

Likert scale. Patient comprehensibility was rated using a five-point

Likert scale. The specific assessment questions employed in this

study are provided in Supplementary Table 2 of the Supplementary

Materials. The whole flow chart is shown in Figure 1.
2.4 Statistical analysis

Categorical variables in this study were described using

frequencies and percentages. Continuous variables were first

assessed for normality using the Shapiro-Wilk test. Results of

expert assessments results were assessed using Friedman’s test

followed by Dunn’s multiple comparisons test for describing

differences between PEMs. Results of patient assessments and

when comparing differences between guideline-based and non-

guideline-based generated PEMs were assessed using the paired t-

test for variables that fit a normal distribution; theWilcoxon signed-

rank test was used for variables that did not fit a normal

distribution. Data were analyzed using GraphPad Prism 9.5.1

(GraphPad Software, San Diego, CA, USA) and SPSSAU (Version

25.0). A p-value of < 0.05 was considered statistically significant.
3 Results

3.1 Basic characters of evaluators

All nephrologists and endocrinologists involved in the

evaluation had an M.D. or Ph.D. degree and extensive clinical

work experience. A total of 50 patients participated in the
FIGURE 1

The workflow of this study.
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evaluation, with 56% (28/50) being male. The average age of the

patients was 43.26 years. In terms of age distribution, 14% (7/50) of

the patients were between 14 and 30 years old, 52% (26/50) were

between 31 and 50 years old, and 34% (17/50) were over 50 years

old. Regarding occupational background, 24% (12/50) of the

patients were farmers, 16% (8/50) were office workers, 12% (6/50)

were government employees, 10% (5/50) were professionals or

technical personnel, 6% (3/50) were business managers, and 6%

(3/50) were students. The remaining 26% of patients were engaged

in other occupations, including manual laborers, freelancers, and

retirees. With respect to diabetes diagnosis, 82% (41/50) of the

patients had a confirmed diagnosis of type 2 diabetes, 16% (8/50)

had type 1 diabetes, and 1 patient was diagnosed with latent

autoimmune diabetes in adults (LADA). In terms of duration of

diabetes, 25 (50%) patients had a duration of 5 years or more, and

25 (50%) had a duration of less than or equal to 5 years.

Additionally, 18% (9/50) of the patients had proteinuria.
3.2 Expert evaluations of all PEMs

In terms of the total scores, the PEMs generated by ERNIE Bot

4.0 are comparable to the physician-sourced PEM, the PEMs

generated by other LLMs generally had lower scores than the

physician-sourced PEM(Figure 2A). In terms of accuracy, the

accuracy of PEMs generated by LLMs was acceptable with the

exception of PEM generated by ChatGLM4 (guideline-based

version) (Figure 2B). Of all the PEMs, the PEM generated by

ERNIE Bot 4.0 (non-guideline-based) had the highest accuracy,

followed by the physician-sourced PEM (Figure 2B). In terms of

completeness, PEMs generated by the 2 LLMs, GPT-4o (p=0.0050)

and ChatGLM4 (p = 0.0001), based on the guidelines were

significantly different from the physician-sourced PEM

(Figure 2C). In terms of safety, there was no significant difference

in safety between all PEMs, including those generated by LLMs and

that sourced by the physician (Figure 2D). All experts agreed that

these PEMs do not cause any harm to patients. In our study, 2 PEMs

from ERNIE Bot 4.0 (non-guideline-based) and the physician

performed better in terms of accuracy, completeness, and safety.
3.3 Patient evaluations of PEMs generated
by ERNIE Bot 4.0 and physician

Because 2 PEMs from the physician and ERNIE Bot 4.0 (non-

guideline based) scored highest in expert assessments, we

performed patient assessments of ERNIE Bot 4.0 non-guideline-

based generated PEM against the physician-sourced PEM. Patient

assessments were similarly conducted in a blinded manner. We

found that ERNIE Bot 4.0 performed on par with physicians in

terms of patient comprehensibility, completeness, and safety. 60%

(30/50) of patients felt that ERNIE Bot 4.0 performed as well or

better than the physician. In fact, the non-guideline-based version

of the PEM generated by ERNIE Bot 4.0 even scored slightly higher

than the physician-sourced PEM (Figure 3A).
Frontiers in Endocrinology 04
Additionally, in a survey of a group of patients with a disease

duration of more than 5 years, 64% (16/25) thought that the non-

guideline-based version of the PEM (patient education material)

generated by ERNIE Bot 4.0 was superior to the physician-provided

PEM, whereas 28% (7/25) preferred to think that the physician-

provided PEM was more effective, and another 8% (2/25) were

neutral (Figure 3B). In contrast, among patients with a disease

duration of less than or equal to 5 years, 52% (13/25) thought that

the physician-provided PEM was superior, while 28% (7/25) tended

to think that the non-guideline-based version of the PEM generated

by ERNIE Bot 4.0 was better, and an additional 20% (5/25) were

neutral on both (Figure 3B).

In addition, 9 of the 50 participating patients had proteinuria,

and 6 of these patients gave higher scores to the PEM generated by

ERNIE Bot 4.0 (Figure 3C).
3.4 Comparison of guideline-based and
non-guideline-based PEMs

The evaluation results of the two versions of PEMs based on the

guidelines and those not based on the guidelines generated by LLMs

(ERNIE Bot 4.0, GPT-4o, and ChatGLM4) are presented in

Figure 4. There is no difference in accuracy, completeness, or

safety between the two versions of PEMs generated by ERNIE Bot

4.0 (Figure 4A). For the 2 versions of PEMs generated by GPT-4o,

differences were observed in terms of completeness (p = 0.0156)

(Figure 4B). Interestingly, in our study, LLMs performed worse with

guidelines than without guidelines. Compared to the guideline-

based PEM, ChatGLM4 performed somewhat better when the PEM

was not generated based on the guidelines, especially in terms of

completeness (p = 0.0213) and safety (p = 0.0300), which may be

related to the ability of the models to process long texts

(9) (Figure 4C).
4 Discussion

Early diagnosis and intervention are essential to slow down the

progression of DKD; therefore, patient education plays a key role in

the management of early DKD (10). As artificial intelligence

evolves, its potential for patient education comes under scrutiny.

To assess the accuracy, completeness, safety, and comprehensibility

of LLMs in generating PEMs for early DKD, 4 LLMs (ERNIE Bot

4.0, GPT-4o, ChatGLM4, and ChatGPT-o1) were selected to

generate PEMs under the same conditions, including guideline-

based and non-guideline-based versions. These PEMs were then

blindly evaluated by a group of medical experts, along with the

physician-sourced PEM. The results showed that experts considered

the PEMs generated by all LLMs to be relatively well-accepted in

terms of accuracy and safety. In addition, 50 patient evaluators were

unknowingly assessed on the 2 PEMs that scored highest in expert

assessments. The 2 PEMs were from the physician and ERNIE Bot

4.0 (non-guideline-based). The results show that the PEM

generated by ERNIE Bot 4.0 (non-guideline-based) was
frontiersin.org
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comparable to, or even slightly better than, the physician-sourced

PEM on some rating dimensions in patient assessments. Our

findings suggest that LLMs have great potential for generating

high-quality PEMs. This is in line with existing literature, where

AI techniques can play an important role in patient education (7).

Our study utilized a dual approach that included both expert and

patient assessments, which is different from previous studies that

focused only on expert or patient assessments.

Interestingly, in patient assessments, we found that acceptance and

preference for PEMs may vary between patient groups. For example,

patients with longer disease duration or those experiencing proteinuria

showed a stronger preference for the PEM generated by the LLM.
Frontiers in Endocrinology 05
ERNIE Bot 4.0, in particular, achieved a high level of acceptance among

patients with longer disease duration. This could be related to the AI’s

ability to provide personalized, accurate, and timely content, along with

the efficiency of generating diverse educational materials quickly. In

contrast, patients with shorter disease duration were more likely to

prefer the physician-sourced PEM. However, due to the relatively small

sample size, further studies with larger patient cohorts are necessary to

assess the broader applicability and value of LLM-generated PEMs in

clinical settings. Based on these results, when designing PEMs in the

future, we can adjust the educational materials according to the

patient’s background, such as adjusting the level of linguistic

complexity, visual design, and difficulty of the content, so as to
FIGURE 2

Expert assessments. (A–D) Comparison of total, accuracy, completeness, and safety scores for different PEMs; no, no guidelines; *p < 0.05,
**p < 0.01, ***p < 0.001, ****p< 0.0001.
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improve the accessibility and usefulness of the PEMs. Patient feedback

can also be incorporated into the content creation process, allowing

LLMs to evolve and delivermore effective PEMs. This dynamic patient-

centered approach ensures that information is presented in a way that

is most appropriate for each individual.

In addition, we observed differences in integrity and safety between

guideline-based PEMs and non-guideline-based PEMs, especially those

generated by GPT-4o and ChatGLM4. One possible explanation for
Frontiers in Endocrinology 06
the underperformance of the guideline-based LLMs could be the

complexity of the PDF format, challenges related to text extraction,

and the potential loss of context (11). Parsing complex medical

documents often requires advanced contextual understanding and

information extraction capabilities, which are areas where LLMs still

face significant challenges (12). The possibility for LLMs to

misinterpret or omit crucial information can lead to incomplete or

inaccurate content. To address these issues, future research should
FIGURE 3

Patient assessments. (A) Comparison of 2 PEMs in terms of total scores, patient comprehensibility, completeness, and safety scores; (B) Assessments
of 2 PEMs in patients with different disease duration; (C) Assessments of 2 PEMs in patients with proteinuria; ns, not significant.
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focus on improving LLMs’ performance in understanding long-form

documents and extracting critical information. Incorporating advanced

techniques such as named entity recognition and relationship

extraction could enhance the model’s ability to process complex,

multi-paragraph medical texts (13).
Frontiers in Endocrinology 07
AI technology has demonstrated considerable potential in

medical education, not only improving the quality of education

but also facilitating personalized learning. In addition, AI can

enhance educational effectiveness by streamlining assessment and

feedback processes in medical education (14). In clinical decision
FIGURE 4

Comparison of guideline-based and non-guideline-based versions of PEMs generated by LLMs in expert assessments. (A) Total, accuracy,
completeness, and safety scores for 2 versions of PEMs generated by ERNIE Bot 4.0; (B) Total, accuracy, completeness, and safety scores for 2
versions of PEMs generated by GPT-4o; (C) Total, accuracy, completeness, and safety scores for 2 versions of PEMs generated by ChatGLM4;
ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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support and intelligent question-and-answer systems, AI

applications have significantly improved healthcare efficiency,

contributing to overall improvements in healthcare service quality

(15). Studies by Wang et al. and others have shown that LLM-

generated information, such as patient profiles for kidney stone

treatment, can be highly accurate with minimal omissions (16). In

addition, research in primary diabetes care and diabetic retinopathy

(DR) screening has demonstrated significant improvements in

patient self-monitoring and adherence through the use of LLMs

(17). Our study adds to this body of evidence and further confirms

the potential of LLMs in patient education, with both expert and

patient evaluations showing positive results.

Our study highlights the potential of AI in educating patients with

DKD and suggests that in some cases AI may be superior to traditional

physician-led education. Traditional physician-generated educational

materials often adopt a “one-size-fits-all” approach, which may not be

suitable for diverse patient populations with varying needs and

comprehension (18). For instance, cultural factors can influence

patient comprehension and engagement with health information

(19). LLMs can overcome this limitation by offering more

personalized content, not only addressing disease management but

also providing advice on diet, exercise, and emotional support (20). By

generating customized PEMs, LLMs can improve patient

understanding, increase motivation for treatment adherence, and

enhance the overall patient education experience.

Management of DKD requires not only pharmacological

interventions but also ongoing patient self-management in terms of

diet, exercise, and glucose monitoring (21). To avoid missed treatment

opportunities due to patient misinterpretation of PEMs during self-

management, we need to ensure that PEMs generated by LLMs for

patients with DKD are accurate, clear, and clinically credible. However,

LLMs are still susceptible to the problem of ‘hallucination’, where they

may generate responses that appear reasonable but are factually

incorrect or incomplete (22, 23). This issue is of particular concern in

healthcare contexts where the accuracy of information is paramount.

Additionally, LLMs sometimes use assertive language that may lead

patients to place undue trust in potentially inaccurate information (24).

To mitigate the risks of misinformation, we recommend the

implementation of safeguards, such as content proofreading and

expert review, to detect and correct errors in a timely manner. AI

tools can be developed to automate the cross-validation of AI-generated

medical information against the latest clinical guidelines, academic

research, specialized medical databases, and reputable medical journals.

For instance, AI-generated content could be cross-referenced with

authoritative sources, such as the American Diabetes Association

(ADA) guidelines for diabetes management, the Improving Global

Prognosis in Kidney Disease (KDIGO) guidelines for chronic kidney

disease (CKD) management, and the International Society of

Nephrology (ISN) guidelines for diabetic kidney disease (DKD). This

process would help identify potential inconsistencies or discrepancies in

educational materials, ensuring their accuracy and alignment with

current clinical standards. In addition, to improve the accuracy,

clarity, and completeness of the PEMs further, we propose to train

these models on the DKD-specific dataset. Such specialized datasets can

be created by collecting high-quality data from medical literature,
Frontiers in Endocrinology 08
clinical cases, and patient feedback, enabling the models to generate

more accurate and contextually relevant PEMs for DKD patients. A

similar approach in ophthalmology has shown that training LLMs on

specialized datasets can improve accuracy in generating content related

to that specialty (25). The diversity and quality of training datasets are

directly related to the validity and reliability of LLM-generated PEMs. It

is therefore essential to ensure that training data includes cases from

different stages of disease progression and relevant clinical guidelines.

We propose the establishment of a public registry or database to track

and report potential errors or gaps in DKD-related educational content.

Such a platform would provide valuable feedback for improving LLM

performance, ensuring that misinformation is minimized, and enabling

the identification and correction of medical factual errors, outdated

guidelines, and misinterpreted treatment recommendations. This

transparent, trackable system will be essential in advancing the

development of reliable LLMs for clinical education and improving

the quality of patient care. Nevertheless, LLM-generated PEMsmay still

convey incomplete medical information, which may lead to a biased

understanding of the disease process in patients with DKD. Differences

in the training datasets of different models may lead them to provide

different professional advice (26), and their completeness may in some

cases not meet the medical standards required for patient education.

Therefore, we recommend that LLMs automatically generate

disclaimers that make it clear that the information provided is for

informational purposes only and should not be used as a substitute for

professional medical advice. We also recommend protecting against

potential legal risks associated with misinformation.

Several limitations of this study should be acknowledged. First, all

cases were sourced from a single medical center. This may limit the

generalizability of the findings. Additionally, the small sample size

constrained the ability to detect significant differences between groups.

Future studies should incorporate multicenter designs and larger,

randomized samples to better validate these findings. Moreover, the

scoring system used in this study was somewhat subjective and lacked

comprehensive assessment criteria. To address this, we recommend the

development of a standardized system for evaluating educational

materials for DKD patients. In addition, a single PEM from a

physician source may limit the generalizability of the findings, but it

follows existing guidelines and is consistent with materials widely used

in clinical practice at our institution. If feasible, in the future we would

be willing to include additional physician-generated PEMs for

comparison or perform sensitivity analyses to enhance the reliability

of the results. Finally, the absence of a widely recognized Chinese

readability assessment tool limited the ability to provide a

comprehensive and objective evaluation of the readability of the

materials in the study. Future research should aim to create or adopt

an established tool for readability assessment in Chinese to ensure a

more robust evaluation of educational materials.
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