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Background: As the global prevalence of diabetes mellitus reaches epidemic

proportions, research into new therapeutic targets that address the underlying

pathomechanisms of the disease is essential. Recent studies have elucidated the

fundamental role of intestinal metabolic pathways in human health and disease

processes and yet, the underlying cause of metabolic dysregulation in diabetes is

largely unknown. Therefore, this systematic review aimed to identify the intestinal

metabolomic profiles associated with gestational diabetes mellitus, type 1

diabetes mellitus, pre-diabetes mellitus, and type 2 diabetes mellitus.

Methods: A systematic review of databases and grey literature repositories

identified primary literature published between 2005 and 2022, that

investigated patterns of human- and microbial-derived metabolite

concentration in individuals with diabetes.

Results: Data extracted from thirty-four eligible studies revealed 272 metabolites

that were associated with diabetes diseases; the majority correlated with

incidence of type 2 diabetes mellitus only. Inter-study discrepancies were

reported based on the biospecimen type used in metabolomic analyses,

namely blood, stool, or urine.

Conclusion: The results of this review emphasise the paucity of research

investigating gestational and type 1 diabetes mellitus intestinal metabolic

perturbations. Furthermore, the potential for inter-study bias in downstream

metabolomic analyses based on sample type warrants further investigation.
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Introduction

The metabolites produced by enterocytes and commensal gut

microbes directly regulate host immune responses and have the

potential to contribute to metabolic inflammation (1). In healthy

individuals, the metabolites contributed by eubiotic gut microbiota

confer a plethora of benefits to the host, including nutrient synthesis

and metabolism, inhibition of pathogen colonisation, regulation of

host gene expression and metabolism, and regulation of the gut-

immune axis (2–5). In contrast, the metabolites contributed by the

dysbiotic gut microbiota promote pathogen colonisation and

virulence, and dysregulate host physiology through modulation of

intestinal mechanics and disturbed immune homeostasis (6).

Through a multifaceted process of immunological crosstalk, the

microbial metabolites released by dysbiotic microbiota act as

immune-modulators that alter intestinal immune function and

regulate the niches of microbe colonisation in the intestine;

thereby creating conditions that favour the stabilisation of the

dysbiotic configuration and inflammatory milieu (7, 8). It is

therefore not surprising that an increasing volume of literature

has implicated the metabolome of the gut microbiota in the

development of diabetes and a range of metabolic disorders (9, 10).

However, discrepancies exist with respect to identifying the core

diabetes-associated metabolites, and whether these metabolites help

or hinder diabetic aetiology (11–13). Additionally, much of the

current metabolomics research targets processes specific to type 2

diabetes mellitus (T2DM) only, given that T2DM accounts for

approximately 90% of all diabetes diagnoses (4, 14–16). Therefore,

research that also profiles the microbial and metabolomic profiles in

individuals with gestational diabetes mellitus (GDM), and type 1

diabetes mellitus (T1DM) conditions is urgently needed to improve

our understanding of diabetes pathophysiology.

To date, no systematic review has synthesised published intestinal

metabolomic signature data encompassing all types of DM. In

addressing this, we conducted this systematic review to collate, and

recapitulate the main findings of studies that have investigated

intestinal metabolite profiles in the context of GDM, T1DM,

prediabetes (PreDM), and T2DM conditions. Furthermore, this

review analysed the effect of study methods on metabolomic

findings, by reviewing study findings in light of the collection

techniques, and downstream analysis tools employed by researchers.

This review ultimately aimed to synthesise and critically review existing

literature so future diabetes research can be directed to the

identification of pathophysiologically important metabolite markers.
Methods

Systematic review protocol

This systematic review was conducted in accordance with the core

methods and processes outlined by the Preferred Reporting Items for

Systematic Review and Meta-Analyses (PRISMA) 2020 Statement and

the Cochrane Collaboration Handbook for Systematic Reviews of

Interventions (17, 18).
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Eligibility criteria

This review included primary research that profiled the

concentration of human- and microbial-derived metabolites in

human cohorts with DM. Articles were not excluded based on the

type of diabetes disease reported (PreDM, T1DM, T2DM, or

GDM); provided the study only characterised the gut in a human

population. Studies that characterised the gut metabolome of

animals were excluded, based on the established anatomical,

metabolic, and physiological differences between animal and

human models (19–21).

Articles that were published over a seventeen-year period were

screened (January 1, 2005, to June 30, 2022). This search period

ensured research published prior to, and over the course of, the

National Institutes of Health Human Microbiome Project (2007-

2016) was screened for inclusion (22). Additionally, this

commencement date correlates with the establishment of the

HMDB and METLIN databases; the first standardised repositories

of metabolomic data (23, 24). To ensure this review investigated the

gut metabolome as the independent variable in the context of

diabetes disease, only studies that reported on gut-associated

metabolites were eligible for inclusion. That is, (i) metabolites

that are utilised or produced as either intermediate or end-

products of metabolic processes by human enterocytes or

intestinal microbiota, (ii) reported in HMDB as originating from

an intestinal biological location (whether directly from the intestinal

organ, or from non-excretory fluid of faeces), or (iii) cited in

existing literature as having a direct link with the gastrointestinal

system. Only primary research literature was included for review;

therefore, meta-analyses, review articles, systematic reviews, and

commentaries were excluded, in addition to those that implemented

an intervention (dietary, surgical, lifestyle) as part of the

experimental methods. Similarly, only articles that were published

(or translated for publication) in English were considered for

inclusion in this systematic review.
Information sources and database searches

Five electronic white literature databases were accessed for

article screening; namely PubMed, Scopus, Excerpta Medica

database (EMBASE), Web of Science, and the Cumulative Index

to Nursing and Allied Health Literature (CINAHL). To ensure a

comprehensive review of all existing primary literature was

conducted, four grey literature databases were also consulted,

spanning both National and International literature repositories;

namely ProQuest Dissertations and Theses Global, Analysis and

Policy Observatory (APO), Clinical trials.gov, and the International

Network of Agencies for Health Technology Assessment

Database (INAHTA).

Databases were searched using key search terms included in the

National Library of Medicine’s (NLM) Medical Subject Headings

(MeSH) Index. In doing so, searches exploited current indexing in

databases such as PubMed, ClinicalTrials.gov, and Embase that are

modelled on, or indexed according to, MeSH classifications.
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As depicted in Figure 1, search strings were compiled from

combinations of five main groups of search terms; (‘diabetes’ or

‘diabetic’); (‘impaired fasting glucose’ or ‘impaired glucose

tolerance’); (‘gut’ or ‘intestine’ or ‘intestinal’ or ‘gastrointestine’

or ‘gastrointestinal’ or ‘bowel’); (metabolite’ or ‘metabolites’

or ‘metabolomic’ or ‘metabolomics’ or ‘metabolome’ or

‘metabolomes ’) ; ( ‘spectroscopy ’ or ‘spectroscopic ’ or

‘spectrometry’ or ‘spectrometric’).

Search strategies were applied consistently across all five

databases and all four grey literature repositories, with database-

specific filters, limiters and expanders applied, as required. To

ensure method repeatability, a comprehensive record of the

inputs and outputs of every literature search was assembled in

Microsoft Excel (v. 2019). Results from every targeted search were

labelled and indexed into Smart Groups in referencing software,

Endnote X9. Using both the ‘Find Duplicates’ function and manual

screening, all duplicate records were then identified and excluded

from the library, as per the PRISMA Statement process (17).
Frontiers in Endocrinology 03
Data collection and synthesis of results

At the completion of screening, one reviewer (KG) extracted

specific data from the included articles and compiled these items

into a Microsoft Excel (v. 2019) spreadsheet. The data items extracted

from each article were: study and cohort descriptors (bibliographical

details, diabetes disease investigated, experimental study design,

cohorts and respective sizes, any inclusion/exclusion criteria applied

to the study cohorts, and type of biological samples used for

metabolome analysis), and analysis descriptors (overall

metabolomics analysis approach, and metabolomics technique/

s employed).

In addition to these data, the key metabolome data from each

article was extracted and tabulated according to the metabolites that

every publication reported as being significantly associated with a

diabetes disease. Publication findings were synthesised according to

whether metabolites were reported as being increased or decreased

in cohorts with diabetes; in addition to the number of times each
FIGURE 1

Terms and operators comprising search string queries applied to database and grey literature repository searches. Figure developed using
BioRender software.
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metabolite appeared in individual publications. This summation of

metabolite count data highlights which targets warrant further

investigation as potential diabetes biomarkers.

All metabolites identified by articles in this systematic review

were annotated with the relevant HMDB primary accession number

(25); to avoid simultaneous use of synonymous metabolites. Where

a reported metabolite could not be matched to a HMDB entry, it

was instead annotated with the compound identifier (CID) assigned

by the NLM PubChem database. Furthermore, if the reported target

did not match a specific HMDB entry (i.e., the target corresponds to

a mixture of isomers or chemical species), then the HMDB ID of the

most common compound variant was provided as an example.

To ensure consistency in reporting, metabolite targets from

different publications were consolidated under a single compound

name if listed as synonyms within the HMDB. Additionally, in

keeping with the focus of this systematic review, only data

pertaining to gut-derived metabolites were extracted from

publications; that is, those metabolites known to originate from

an intestinal biological location (whether directly from the intestinal

organ, the gut microbiota, or from non-excretory fluid of faeces) or

cited as having a direct link with the gastrointestinal system.

Moreover, only metabolites identified using metabolomics tools

are reported (i.e., not with commercially available laboratory assays

including, for example, ELISAs). This ensured standardisation in

the findings between different methodologies.
Risk of bias in individual studies

Despite targeting a similar panel of gut-derived metabolites,

significant methodological differences exist between research

articles that investigate a facet of the intestinal metagenome.

These differences extend from biological specimen collection

techniques, to the methods and instruments used for downstream

analyses. In addressing these discrepancies, this article aimed to

evaluate if the employed methods of the included articles

significantly impacted the metabolomic outputs reported. To

achieve this, metabolomic findings were reported according to the

type of biological specimen used in metabolomic analyses, and also

based on the diabetes disease against which the findings were

reported. Within these groups, Chi-Square tests of association

were conducted to determine if the levels of any key gut-

associated metabolites were significantly increased or decreased

relative to (i) any diabetes disease type (i.e., T1DM, GDM,

PreDM, or T2DM), or (ii) the reported sample collection method

(i.e., blood, stool, or urine). These Chi-Square tests were conducted

using R software, with Post-hoc pairwise tests conducted using the

chisq.posthoc.test package to confirm significance of correlations

between individual variables.
Results

The search strategy originally yielded 3,099 records. After

removal of duplicate records, 2,042 records were screened by title
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and abstract and 1,953 studies were excluded having not met the

defined inclusion criteria. The remaining eighty-nine full text

articles were screened; from which, a total of thirty-four articles

were included as part of the systematic review. In summarising this,

Figure 2 depicts the study workflow for this review and details the

number of articles included and excluded at each stage of the

identification and screening processes.

The key cohort and analysis descriptors from the thirty-four

reviewed records are summarised in Table 1 according to the type of

diabetes disease targeted; detailing the location, experimental

design, sample type and associated storage conditions, study

cohorts, and metabolomics methods incorporated.

Table 2 lists the gut-associated metabolites reported as being

significantly associated with diabetes. In this table, metabolites are

reported alongside the sample type/s used in sourcing analysis, and

colour-coded depending on whether the target was found to be

increased or decreased in DM cohorts relative to non-diabetes (ND)

control cohorts. Additionally, all 272 metabolites are listed with the

corresponding HMDB primary accession number, to facilitate

cross-referencing with the chemical repository.

Figure 3 demonstrates the proportions of reviewed studies that

investigated each DM disease (inner ring), and, within each disease

type, the proportion of studies that incorporated blood, urine and/

or stool samples in metabolomic analyses (outer ring). The relative

proportions depicted in Figure 3 are based on the number of

metabolites (targets listed in Table 2) each study reported as

being significantly associated with DM.
Summary of cohort descriptors

Thirty-four articles were analysed in this systematic review. The

concentration of gut metabolites in individuals with T1DM was

investigated in four studies (26–29); seven studies investigated

GDM cohorts (30–36); eight studies investigated PreDM, or

PreDM and T2DM cohorts (2, 37–43); and fifteen studies

investigated T2DM cohorts only (44–58). Given the pre-

determined exclusion criteria for this systematic review, all thirty-

four studies incorporated an observational experimental design,

with no interventional input. Cohort sizes varied significantly

between studies depending on study objectives and stringency of

inclusion/exclusion criteria. As depicted in Figure 3, across all

diabetes diseases, the majority of metabolomic findings were

obtained from blood components (plasma and/or serum).

However, as outlined in Table 1, eleven studies analysed two

types of biological samples (plasma and urine, plasma and stool,

plasma and serum, stool and urine, or stool and serum).
Summary of analysis descriptors

Of the thirty-four studies reviewed, fifteen employed targeted

metabolomic approaches; the majority of which targeted bile acids

(BA), short-chain fatty acids (SCFA), or trimethylamine N-oxide

(TMAO) and precursor metabolites. Fourteen articles incorporated
frontiersin.org
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untargeted metabolomic analyses, while an additional five studies

combined targeted and untargeted metabolomic approaches. The

details of each metabolomic method are outlined in Table 1. Briefly,

mass spectrometry (MS) analyses were the most widely employed

method; specifically, liquid chromatography-mass spectrometry

configurations were employed in thirty-seven analyses (75.5%),

gas chromatography-mass spectrometry methods were utilised

in nine articles (18.3%), while capillary electrophoresis-mass

spectrometry was used in a single study (2.5%). Nuclear magnetic

resonance (NMR) metabolomic analyses were incorporated in five

analyses (12.8%). Differential mobility spectroscopy and high-

performance liquid chromatography with ultra-violet spectroscopy

were each utilised in one analysis (2.5% per method).
Summary of metabolomic findings

Analysis of metabolomic findings revealed a total of 272

metabolites, across thirty-eight chemical classes and sub-classes,

determined to be significantly associated with incidence of diabetes.

Amino acid compounds were the most widely identified across all

diabetes diseases; whilst only single metabolite targets were

identified from several smaller classes of organoheterocyclic

compounds (such as lactones and dihydrofuran compounds). The

metabolites most widely cited as elevated in the reviewed studies

were amino acids, leucine, and isoleucine. In contrast, levels of the

sphingolipid metabolite, sphingomyelin, were most consistently
Frontiers in Endocrinology 05
observed to be decreased, with three articles reporting down-

regulation in T2DM cohorts, relative to non-diabetes controls. As

Table 2 depicts, consistent reporting of increased or decreased

metabolite levels was predominantly observed in T2DM cohorts

only; across other diabetes diseases, reported metabolites were only

supported by single findings. This also reflects the trend depicted in

Figure 3, in which the largest metabolite profiles were obtained from

studies of T2DM (59.22%).

Analysis of the core metabolome shared between all the diseases

revealed four metabolites to be significantly associated with T1DM,

GDM, PreDM and T2DM cohorts (Figure 4). Of these, the alpha-

hydroxy acid, 2-hydroxybutyric acid and the branched-chain amino

acid (BCAA), valine, were determined to be consistently elevated.

Whilst the amino acid, alanine, and BCAAs, leucine/isoleucine were

also reported across all disease types, discrepancies existed between

studies as to whether these compounds were increased or decreased

in T1DM cohorts. In addition to these core metabolites, a further

eleven targets were identified as being shared across three of the

diabetes diseases (Figure 4). These included glucose, mannose, 3-

hydroxybutyric acid, palmitic acid, and ketoisocaproic acid which

were all reported as being significantly elevated across three

different diabetes disease types. Tyrosine, tryptophan, palmitoleic

acid, phosphatidylcholines, phosphatidylcholines, and triglycerides

were also reported across three diabetes diseases, but findings of

increased or decreased levels were discrepant between articles,

depending on the sample type used in downstream metabolomic

analyses. Pathways involved in the biosynthesis of BCAAs valine,
FIGURE 2

Workflow of systematic review identification, screening, and inclusion processes. APO, Analysis Policy Observatory; INHATA, International Network
of Agencies for Health Technology Assessment; WAT, wrong article type; WPG, wrong population group; WRT, wrong result type; WSD, wrong study
design. Schematic adapted from PRISMA 2020 Flow Diagram (17).
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TABLE 1 Key cohort and analysis descriptors of studies included in systematic review.

Study details Sample Cohort details and participant criteria Metabolomic approach

T1DM studies

(29) Spain
Observational case-control study

Plasmaa

Urinea(24-hr)
Age: 6–11 years. Sex: Mixed (27 female, 22 male). n =
49 (34 T1DM, 15 ND controls)
Inclusion criteria: Under metabolic control
Exclusion criteria: Psychological or DKA-
associated diseases

Untargeted fingerprint analysis (i) LC-MS; HPLC and
QTOF with FS, ESI+/- (ii) CE-MS; CE and TOF-MS
with FS, ESI+

(28) Netherlands
Observational case-control study

Plasmaa,b

Stoola,b
Age: 18–65 years. Sex: Mixed (49 female, 54 male). n =
103 (53 T1DM, 50 ND controls)
Inclusion criteria: Western European descent/dietary
pattern, normal BMIe

Exclusion criteria: Altered microbiota composition, poor
glucose regulation, microvascular complications

Targeted plasma SCFA analysis; LC-MS using HPLC
and ion trap MS with SIM, ESI-. Targeted stool SCFA
analysis; HPLC-UV

(27) Finland and Estonia
Prospective longitudinal
cohort study

Serum
Stool

Age: From 0–36 months (longitudinal). Sex: Mixed (18
female, 15 male).
n = 33 (4 T1DM, 7 T1DM-seroconvertsc, 22 controls)
Inclusion criteria: Positive HLA DR-DQ allele cord
blood testing
Prospective monitoring criteria: Infections,
antibiotic use

Untargeted serum profiling; (i) UPLC-MS (lipids), (ii)
GC×GC-TOFMS (metabolites). Targeted stool
metabolite analysis; (i) U-HPLC with orbitrap MS, ESI+,
FS, (ii) Hybrid quadrupole orbitrap MS with ESI+/-, FS

(26) Denmark Observational cross-
sectional study

Plasmaa Age: ~46–72 years. Sex: Mixed (89 female, 122 male).
n = 211 (161 T1DM, 50 ND controls)
Inclusion criteria: >18 years. T1DM cohort; T1DM
diagnosis (WHO criteria) and albuminuria status
stratification
Exclusion criteria: DKD, renal failure/dialysis/
transplant, RAAS-blocking treatment change (≤1mo),
antibiotic or immunosuppressive use

Targeted analyses; UHPLC MS/MS with ESI+/- and SR

GDM studies

(36) China
Observational case-control study

Plasmaa Age: No range defined. Sex: Female only (GDM study),
n = 40 (20 GDM, 20 ND pregnant controls)
Inclusion criteria: Diagnosis at 24–26 weeks (IADPSG
criteria)
Exclusion criteria: Pre-existing DM, CVD, infection,
abnormal liver/kidney function

Untargeted profiling; 1H-NMR spectroscopy

(35) China
Observational case-control study

Seruma Age: ~26–35 years. Sex: Female only (GDM study). n =
52 (24 GDM, 28 ND pregnant controls)
Inclusion criteria: Diagnosis at 24–28 weeks (IADPSG
criteria), single birth.
Exclusion criteria: Pregnancy complications, pre-
existing DM, CVD, cerebrovascular disease,
hypertension, GIT symptoms, anti-/pro-/prebiotic use

Targeted SCFA analysis; GC-MS with ESI+. Targeted
BA, TMAO and TMAO-derivative analyses; UPLC-MS
with ESI- and MRM

(34) China
Nested case-control study

Seruma,b Age: ~27–35 years. Sex: Female only (GDM study). n =
269 (131 GDM, 138 ND pregnant controls)
Inclusion criteria: GDM diagnosis at 24–28 weeks
(IADPSG criteria)
Exclusion criteria: Alcohol consumption, pre-existing
DM, infection, CVDs, abnormal liver/kidney function

Targeted FFA analysis; UPLC/QTOFMS with ESI+
(FFAs) and UPLC/TQMS with ESI- (BAs). Untargeted
profiling; GC/TOFMS with electron impact ionisation
and FS

(33) Czech Republic
Observational case-control study

Plasmad Age: 21–45 years. Sex: Female only (GDM study).
n = 124 (84 GDM, 20 ND non-pregnant controlsc, 20
ND pregnant controls)
Selection criteria: Cohorts stratified based on trimester
and FPG or PPG increase

Targeted SCFA analysis; LC-MS/MS using triple-
quadrupole MS with ESI+ and MRM

(32) China
Observational case-control study

Stoola,b Age: No range defined. Sex: Female only (GDM study).
n = 62 (31 GDM, 31 ND pregnant controls)
Inclusion criteria: GDM diagnosis at 24–28 weeks
(IADPSG criteria)
Exclusion criteria: Pre-existing IFG, infection, abnormal
liver/kidney function, CVD

Untargeted profiling; 1H-NMR spectral profiling

(31) Portugal
Observational case-control study

Plasmaa Age: 18–44 years. Sex: Female only (GDM study).
n = 93 (12 GDM, 32 preGDMc, 49 pregnant ND controls)

Untargeted metabolomic/lipidomic analysis; 1D 1H
NMR spectroscopy

(Continued)
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TABLE 1 Continued

Study details Sample Cohort details and participant criteria Metabolomic approach

GDM studies

Inclusion criteria: GDM (IASPSG criteria), clinical treatment
not yet commenced

(30) China
Observational case-control study

Stoola

Urinea
Age: ~26–35 years. Sex: Female only (GDM study). n =
107 (59 GDM, 48 pregnant ND controls)
Inclusion criteria: GDM diagnosis at 24–28 weeks
(WHO criteria)
Exclusion criteria: Pre-existing DM, pregnancy
complications, GIT symptoms, fetal chromosomal/
structural abnormalities, anti-/pro-/prebiotic use within
1 month

Untargeted analysis; GC-MS

PreDM and T2DM studies

(39) Germany
Observational case-control study

Plasmab

Urinea,b
Age: ~35–59 years. Sex: Baseline characteristic not
described. n = 51 (12 PreDM, 39 controls)
Inclusion criteria: IGT diagnosis (WHO criteria)
Exclusion criteria: CVD, kidney or liver diseases, or
severe inflammation

Untargeted analysis; UPLC-QTOF-MS using reverse-
phase UPLC coupled with QTOF-MS in ESI+/-

(37) United States
Observational cohort study

Plasmaa,b Age: 25–75 years (4-year longitudinal study). Sex: Mixed
(55 female, 51 male). n = 106
Exclusion criteria: Pre-existing diseases (including renal,
CVD or inflammatory disease), bariatric surgeries/
liposuction
Prospective monitoring criteria: Diabetes incidence,
infection, and antibiotic use

Untargeted analysis; LC–MS/MS with HILIC and RPLC
separation, ionisation (+/-) and FS

(42) India
Observational case-control study

Plasmab

Serumb
Age: 30–60 years. Sex: Mixed (42 female, 60 male). n =
102 (17 PreDM, 50 T2DM, 35 ND controls)
Inclusion criteria: Cohorts stratified by HbA1c (ADA
guidelines) and DM treatment
Exclusion criteria: Antibiotic use, major GIT surgery,
chronic clinical disorder

Targeted analysis; HPLC coupled with PDA detector

(2) International repository
Retrospective case-control study

Plasmab

Urineb
Age: ~36–73 years. Sex: Mixed (replication cohort: 321
female, 399 male; case cohort: female only).
n = 3113 (115 T2DM, 822 PreDM, 2176 ND controls)
Analysis criteria: Retrospective analysis of TwinsUK
and KORA studies. Cohorts stratified based on fasting
glucose. PreDM cohort; IFG diagnosis

Untargeted profiling; (i) UPLC-MS/MS with linear ion-
trap and ESI+/-, (ii) GC-MS with electron
impact ionisation

(43) France, Germany and
Denmark
Retrospective case-control study

Serumb Age: 39–67 years. Sex: Mixed (~973 female, 985 male).
n = 1958 (765 T2DM, 654 PreDM, 539 ND controls)
Inclusion criteria: Recruited from MetaCardis study. DM
diagnosis (ADA criteria)
Exclusion criteria: Non-metabolic CVD, antibiotic use,
or abdominal surgery/radiotherapy/cancer

Targeted ImP analysis; UPLC-MS/MS

(41) China
Observational case-control study

Stoola

(midstream)
Age: 30–60 years. Sex: Mixed (25 female, 35 male). n =
60 (20 T2DM, 20 PreDM, 20 ND)
Inclusion criteria: Urumqi Uyghur subjects. DM
diagnosis (AD guidelines).
Exclusion criteria: Antidiabetic/lipid-lowering drugs,
anti-/pre-/sym-/probiotic use, CVD, kidney disease,
cancer, pregnancy/lactation, cognitive impairments,
specialised diet, pets

Untargeted analyses; UPLC-Q-TOF/MS using orbitrap
MS with ESI+/-

(40) Finland
Observational sub-cohort study

Seruma,b Age: ~57–67 years (7-year follow-up). Sex: Male only. n =
531
Prospective monitoring criteria: Recruited from
population-based METSIM cohort. Disease incidence,
drug treatment, and health status monitored at follow-up.
Subjects with T1DM or who developed T2DM
were excluded

Targeted serum analysis; NMR spectroscopy. Targeted
choline pathway analysis; LC-MS/MS with MRM+

(Continued)
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TABLE 1 Continued

Study details Sample Cohort details and participant criteria Metabolomic approach

PreDM and T2DM studies

(38) China
Observational case-control study

Plasmaa,b Age: ~50–74 years. Sex: Mixed (174 female, 119 male).
n = 293 (114 T2DM, 81 PreDM, 98 ND controls)
Inclusion criteria: > 40 y/o. DM cohorts defined using
WHO diagnostic criteria
Exclusion criteria: CVD, renal or autoimmune disease,
cancer, antibiotic use

Untargeted lipidome analysis; LC-MS/MS using UPLC
with QTOF and ESI+/-

T2DM studies

(58) Canada
Observational case-control study

Plasmaa,b Age: ~23–63 years. Sex: Male only. n = 221 (67 T2DM,
106 IR ND controlsc, 48 IS ND controls)
Inclusion criteria: Stable metformin dose (≥3mo)
Exclusion criteria: Smoking, high alcohol intake, other
antidiabetic drug use (≥ 6wks), lipid-lowering
medication withdrawal, other chronic diseases/
infections, or altered endocrine/hepatic function

Targeted AA analysis; LC-MS using UHPLC with
tandem quadrupole MS

(57) China
Observational case-control study

Plasmaa,b Age: 40–85 years. Sex: Mixed (77 female, 85 male). n =
162 (122 T2DM, 40 ND controls)
Inclusion criteria: Han ethnicity. T2DM cohort;
stratified by retinopathy status
Exclusion criteria: Other diseases/infections, pregnancy/
lactation, cognitive impairments, vegetarian diet, or
anti-/probiotic use

Targeted TMAO quantitative analysis; LC-MS/MS with
ESI+, MRM

(56) International repository
analysis
Retrospective cohort study

Serumb Age: ~49–73 years. Sex: Mixed (1,845 female, 695
male). n = 2,540 (case cohort: n=1,018 TwinsUK;
replication cohort: n=1,522 ARIC)
Analysis criteria: Recruited from TwinsUK and
ARIC cohorts.

Untargeted profiling; (RP)UPLC-MS/MS with ESI+/-
and HILIC/UPLC–MS/MS with ESI-

(55) Denmark
Observational case-control study

Seruma,b Age: ~50–66 years. Sex: Mixed (187 female, 179 male).
n = 366 (75 T2DM, 277 ND controls)
Inclusion criteria: Caucasian Danish subjects recruited
from MetaHIT study
Exclusion criteria: GIT disease, bariatric surgery,
immune-altering medications, antibiotic use

Combined targeted-untargeted analysis; GC × GC-
TOFMS (metabolome) and UHPLC-QTOFMS with ESI
+ (lipidome)

(54) Netherlands Observational
case-control study

Plasma
Urine

Age: ~41–69 years. Sex: Mixed (~64 female, 74 male). n
= 138 (52 T2DM, 34 IBDc, 52 ND controls)
Inclusion criteria: Recruited from CODAM study.
Caucasian ethnicity, >40 years, one or more T2DM
risk factor

Targeted lactate analysis; UPLC-MS/MS using RPLC
with MRM-

(53) United States Prospective
longitudinal cohort study

Plasmab Age: 25–75 years (<8-year follow-up). Sex: Mixed (55
female, 54 male). n = 109
Inclusion criteria: High BMIe, normal/PreDM OGTT
Exclusion criteria: Eating disorder or psychiatric
disease, hypertriglyceridemia, uncontrolled
hypertension, high alcohol intake, pregnancy/lactation,
bariatric surgery

Untargeted metabolome analysis; LC-MS using RPLC/
HILIC with ESI and FS. Untargeted lipidome analysis;
DMS with quadrupole ion-trap (Lipidyzer platform).

(52) China
Observational case-control study

Plasmab Age: ~43–65 years. Sex: Mixed (862 female, 1,832
male). n = 2694 (1346 T2DM, 1348 ND controls)
Inclusion criteria: Han ethnicity, newly diagnosed
T2DM (WHO criteria)
Exclusion criteria: <30 y/o, ≥ 40 kg/m2, hyperlipidaemia
treatment, systemic/acute illness, or chronic
inflammatory/infective disease

Targeted TMAO analysis; LC-MS/MS using stable
isotope dilution LC with online MS/MS

(51) Germany
Observational case-control study

Plasmaa,b

Seruma,b
Age: 55–79 years. Sex: Male only. n = 100 (40 T2DM,
60 ND controls)
Inclusion criteria: >54 years, recruited from the
population-based KORA F3 cohort

Combined targeted and untargeted analysis; Serum -
UHPLC/MS/MS2 (Metabolon) and ESI-MS/MS
(Biocrates). Plasma - 1H-NMR spectroscopy (Chenomx).

(Continued)
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leucine and isoleucine were determined to have the highest

enrichment ratio and strongest enrichment p-value; followed by

pathways involved in the biosynthesis of phenylalanine, tyrosine

and tryptophan, and unsaturated fatty acids (Figure 5). Biosynthesis

of the alpha-amino acid, tryptophan, is a highly enriched metabolic

pathway (Figure 5), and the metabolite is also shown to share a high

number of metabolic relationships within the network (degree = 96,

betweenness = 10279.40).
Frontiers in Endocrinology 09
Figure 5 depicts the enrichment ratios and p-values from

enrichment analyses conducted on the metabolites reported as being

significantly associated with the incidence of T1DM, GDM, PreDM

and T2DM (Table 2). Bar plot depicts the top twenty-five metabolite

pathways (according to calculated p-value) enriched in diabetes disease,

based on the gut-associated metabolites collated in this systematic

review. Data and correspondingmetabolite-metabolite network for this

enrichment analysis are presented in Supplementary Table S1.
TABLE 1 Continued

Study details Sample Cohort details and participant criteria Metabolomic approach

T2DM studies

(50) United States
Observational prospective
cohort study

Plasmaa,b Age: ~37–75 years (5-year follow-up). Sex: Mixed (~712
female, 804 male).
n = 1516 (1216 T2DM, 300 ND controls)
Inclusion criteria: Prospectively recruited based on
T2DM status-cardiac event risk. Adverse cardiac event/
all-cause mortality investigated at follow-up.
Exclusion criteria: Acute coronary syndrome (<30 days)

Targeted TMAO analysis; LC-MS/MS; stable isotope
dilution LC with online triple quadrupole MS

(49) Indonesia
Observational cross-sectional study

Stoola

(methanol
treatment)

Age: 34–63 years. Sex: Male only. n = 75 (25 T2DM, 21
obesec, 29 ND)
Inclusion criteria: Adult residents of Yogyakarta city
(>3yrs)
Exclusion criteria: Local or systemic disease or
infection. Defined medication, antimicrobials, intensive
disease therapy, or high pro-/prebiotic use

Targeted SCFA analysis; 1H-NMR spectroscopy.
Targeted BA analysis; LC-MSMS with ESI-, MRM
and SIM

(48) Finland
Observational sub-cohort study

Plasmab Age: 50–64 years (7.4-year follow-up). Sex: Male only. n
= 5169
Prospective monitoring criteria: Disease incidence, drug
treatment, and health status monitored. Recruited from
METSIM cohort; baseline T2DM cases excluded

Untargeted profiling; UHPLC-MS/MS with heated ESI

(46) China
Observational case-control study

Stoolb,d Age: 40–58 years. Sex: Mixed (47 female, 53 male). n =
100 (65 T2DM, 35 ND controls)
Exclusion criteria: Constipation/diarrhoea, hepatitis,
high alcohol intake, smoking, pro-/antibiotic use.
T2DM cohort; metformin or TCM treatment

Targeted SCFA analysis; GC-MS. Untargeted
endogenous metabolite analysis; UPLC-QTOF-MS with
ESI +/-

(47) China
Observational case-control study

Seruma,b

Stoola,b
Targeted SCFA analysis; Triple quadrupole GC-MS with
electron impact, SIM. Targeted BA analysis; UPLC-MS/
MS with MRM, ESI-

(45) China
Observational cross-sectional study

Seruma,b

Stool
(crushed)

Age: ~43–69 years. Sex: Mixed (32 female, 58 male).
n = 90 (30 T2DM/DKDc, 30 T2DM, 30 ND controls)
Inclusion criteria: T2DM (ADA criteria), DKD
Exclusion criteria: >75 years, special dietary habit,
laxative or anti-/probiotic use, yogurt consumption
within 2 months, obesity, infection, renal/liver/gut
bacteria-altering diseases

Targeted SCFA analysis; GC-MS with SIM

(44) China
Observational case-control study

Stoola Age: ~51–68 years. Sex: Mixed (21 female, 29 male). n
= 50 (21 T2DM/DRc, 14 T2DM, 15 ND controls)
Inclusion criteria: T2DM (ADA criteria), DR
(diagnosed by SLO/FA), normal diet/bowel movements,
stable metformin dose
Exclusion criteria: Other eye diseases, corticosteroid/
pro-/antibiotic use, GIT surgery, autoimmune disease,
hypertension, obesity, tumours, organ transplant

Untargeted analyses; UHPLC-MS; UHPLC coupled with
orbitrap MS
Studies presented alphabetically according to DM disease type. aSamples stored between -86 and -80°C prior to analyses; bFasting sample; cResults of these cohorts not included in comparative
analyses of DM cohorts relative to ND control cohorts; dSamples stored at -20°C short-term; eNormal BMI defined as 18.5–25 kg/m2. ADA, American Diabetes Association; BA, bile acid; BMI,
body mass index; CE-MS, capillary electrophoresis-mass spectrometry; CVD, cardiovascular disease; DKD, diabetic ketoacidosis; DR, diabetic retinopathy; ESI, electrospray ionisation; FA,
fluorescein angiography; FFA, free fatty acid; FPG, fasting plasma glucose; GDM, gestational diabetes mellitus; GIT, gastrointestinal tract; HILIC, hydrophilic interaction; HPLC, high-
performance liquid chromatography; IADPSG, International Association of the Diabetes and Pregnancy Study Groups; IFG, impaired fasting glucose; LC-MS, liquid chromatography-mass
spectrometry; METSIM, METabolic Syndrome in Men; MRM, multiple reaction monitoring; MS, mass spectrometry; ND, non-diabetes; NMR, nuclear magnetic resonance; PDA, photo diode
array; PPG, postprandial glucose; PreDM, prediabetes mellitus; QTOF, quadrupole time of flight; RAAS, renin-angiotensin-aldosterone system; RPLC, reverse-phase liquid chromatography;
SCFA, short-chain fatty acid; SIM, selected ion monitoring; SLO, scanning laser ophthalmoscopy; SRM, selected reaction monitoring; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes
mellitus; TMAO, trimethylamine N-oxide; UPLC, ultra performance liquid chromatography; -UV, ultraviolet (spectroscopy); WHO, World Health Organisation.
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TABLE 2 Gut-associated metabolites reported as significantly associated with diabetes diseases.

Metabolite HMBD ID Association with diabetes disease

Amino acids, peptides, and analogues

Aceturic acid HMDB0000532 ↓ T2DM blood (2)

Acetyl-arginine HMDB0004620 ↑ T1DM urine (29)

Acetyl-aspartic acid HMDB0000812 ↑ GDM blood (34)

Acetyl-L-tyrosine HMDB0000866 ↑ T2DM stool (46)

Alanine HMDB0001310 ↓ T1DM blood (26), GDM blood (31)
↑ PreDM blood (37), GDM blood (34)c, T2DM blood (55, 58)

Allantoic acid HMDB0001209 ↑ GDM stool (30)

2-Aminobutanoic acid HMDB0000650 ↑ GDM blood (34)

g-Aminobutyric acid HMDB0000112 ↑ GDM blood (34)

Aminomalonic acid HMDB0001147 ↑ GDM blood (34)

Arginine HMDB0303361 ↓ T2DM blood (58)

L-Aspartic acid HMDB0000191 ↑ T2DM blood (55), T2DM stool (44)

Betaine HMDB0000043 ↓ GDM blood (31)
↑ T2DM blood (50)

Cinnamoyl glycine HMDB0011621 ↓ PreDM blood (37), T2DM blood (56)

Citrulline HMDB0000904 ↓ T2DM blood (2, 58)
↑ T1DM blood (26)

Creatine HMDB0000064 ↑ T2DM blood (48, 53)b

Creatinine HMDB0000562 ↓ GDM blood (31)
↑ T2DM blood (51)

Cysteine HMDB0000574 ↓ GDM blood (34)

Cysteine-glycine HMDB0000078 ↓ GDM urine (30)

Cystine HMDB0000192 ↑ T1DM urine (29), T2DM blood (53)b

N-(4,5-Dihydro-1-methyl-4-oxo-1H-imidazol-2-yl) alanine HMDB0034912 ↓ T2DM stool (44)

Dimethylarginine HMDB0003334
HMDB0001539

↓ T2DM blood (2)
↑ T1DM blood (26)

Dimethylglycine HMDB0000092 ↑ T2DM blood (48)

Ectoine HMDB0240650 ↓ T2DM blood (53)b

Glutamic acid HMDB0000148^ ↑ GDM blood (34), T2DM blood (55, 58)

Glutamine HMDB0000641 ↓ GDM urine (30), T2DM blood (58)

N-g-L-Glutamyl-D-alanine HMDB0036301 ↑ T2DM stool (44)

g-Glutamyl-glutamine HMDB0029147 ↑ PreDM stool (41), T2DM stool (41, 44)

g-Glutamyl-histidine HMDB0029151 ↓ T2DM blood (53)b

g-Glutamyl- isoleucine HMDB0011170 ↑ T2DM blood (51)

Glutamyl-lysine HMDB0004207 ↑ T2DM stool (44)

Glutamyl-valine HMDB0028832 ↑ T2DM blood (51)

Glycine HMDB0000123 ↓ GDM urine (30), T2DM blood (58)

Glycyl-histidine HMDB0028843 ↑ T2DM stool (51)

Histidine HMDB0000177 ↓ T2DM blood (42, 58)

(Continued)
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TABLE 2 Continued

Metabolite HMBD ID Association with diabetes disease

Amino acids, peptides, and analogues

Homocitrulline HMDB0000679 ↑ T1DM blood (26), T2DM blood (51)

Homocysteine HMDB0000742 ↑ GDM stool (32)

Leucine & Isoleucinea HMDB0000687
HMDB0000172

↓ T1DM blood (26)
↑ T1DM blood (27), T1DM urine (29), GDM blood (34), PreDM blood (2,
40)b, T2DM blood (2, 42, 51, 55, 58)

Lysine HMDB0000182 ↑ T1DM urine (29), PreDM stool (41)

3-Methoxytyrosine HMDB0001434 ↑ GDM urine (30)

Methionine HMDB0000696 ↓ PreDM blood (42)
↑ T2DM blood (42)

N-Methyl-glutamic acid HMDB0062660 ↓ GDM urine (30)

N-Methyl-proline HMDB0094696 ↓ T2DM blood (53)b

Noropthalmic acid HMDB0005766 ↓ T2DM stool (44)

Phenylacetylglutamine HMDB0006344 ↓ PreDM urine (39)d

↑ T2DM blood (51)

Phenylalanine HMDB0000159 ↓ T1DM blood (26)
↑ T2DM blood (51, 58)

Proline HMDB0000162 ↓ GDM blood (31)
↑ GDM blood (36), T2DM blood (2, 55)

Proline betaine HMDB0004827 ↓ T2DM blood (53)b, T2DM stool (44)

Trimethyllysine HMDB0001325 ↓ T2DM blood (53)b

Tyrosine HMDB0000158 ↓ T1DM blood (26)
↑ PreDM stool (41), T2DM blood (42, 58)

Valine HMDB0000883 ↑ T1DM blood (27), T1DM urine (29), GDM stool (30), GDM blood (34),
PreDM blood (40)b, T2DM blood (2, 42, 55)

Azoles

Imidazole propionate HMDB0002271 ↑ PreDM blood (43), T2DM blood (43, 56)

Benzoic acids and derivatives

2-(Ethylamino)-4,5-dihydroxybenzamide HMDB0032852 ↓ T2DM stool (44)

Gentisic acid HMDB0000152 ↓ T2DM stool (44)

Hippuric acid HMDB0000714 ↓ PreDM blood (37), PreDM urine (39)d

(4-Hydroxybenzoyl)choline HMDB0029559 ↓ T2DM stool (44)

3-Hydroxyhippuric acid HMDB0006116 ↓ PreDM urine (39)d

Salicyluric acid HMDB0000840 ↑ T2DM blood (48)

Benzopyrans

3'-Deaminofusarochromanone HMDB0041328 ↓ T2DM stool (44)

Bi- and oligothiophenes

5-(1-Propynyl)-5'-vinyl-2,2'-bithiophene HMDB0038430 ↓ T2DM stool (44)

Carbohydrates and carbohydrate conjugates

N-Acetylgalactosamine-4-sulphate HMDB0000781 ↓ GDM stool (32)

N-Acetyl-D-glucosamine HMDB0000215 ↑ T2DM blood (55)

N-Acetylhexosamine HMDB0248228 ↑ T2DM blood (51)

(Continued)
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TABLE 2 Continued

Metabolite HMBD ID Association with diabetes disease

Carbohydrates and carbohydrate conjugates

1,5-Anhydroglucitol HMDB0002712 ↓ T2DM blood (2, 51)

Arabinose HMDB0000646 ↑ T2DM blood (2)

Ethyl glucuronide HMDB10325 ↑ T2DM blood (53)b

Erythritol HMDB02994 ↑ PreDM blood (2), T2DM blood (53)b

Fructose HMDB0000660 ↑ PreDM blood (2), T2DM blood (2)

Fucitol HMDB0304954 ↓ PreDM blood (37)

Galactitol HMDB0000107 ↓ GDM urine (30)
↑ GDM blood (36)

D-Galactose HMDB0000143 ↑ GDM urine (30)

Glucose HMDB0000122 ↑ GDM urine (30), PreDM blood (2), T2DM blood (2, 51)

Glucuronic acid HMDB0000127 ↑ T2DM blood (51)

Glycerol HMDB0000131 ↓ GDM blood (36)

Maltose HMDB0000163 ↓ GDM blood (34)
↑ T2DM blood (51)

Mannose HMDB0000169 ↑ GDM blood (34), PreDM blood (2), T2DM blood (2, 51)

Threitol HMDB04136 ↑ GDM blood (34), T2DM blood (53)b

Threonic acid HMDB0000943 ↓ GDM blood (34)

Trehalose HMDB0000975 ↓ GDM urine (30)

Carboxylic acids and derivatives

Acetic acid HMDB0000042 ↓ T1DM blood (28), T2DM stool (46)
↑ T2DM blood (47)

Isobutyric acid HMDB0001873 ↓ T2DM stool (46)
↑ GDM blood (35), T2DM blood (47)

Isocitric acid HMDB0000193 ↓ GDM stool (30)

Methylmalonic acid HMDB0000202 ↓ GDM blood (36)

Propionic acid HMDB0000237 ↓ T1DM blood (28), T2DM stool (45, 46)
↑ T2DM blood (47)

Succinic acid HMDB0000254 ↓ T2DM stool (44)

Coumarins and derivatives

Protorifamycin I HMDB0039057 ↑ PreDM stool (41)

Dihydrofurans

2-Methylascorbic acid HMDB0240294 ↓ GDM urine (30)

Dipeptides and hybrid peptides

Carnosine HMDB0000033 ↓ T2DM stool (44)

Lysyl-Cysteine 18218224 ↑ T1DM blood (29)

Valyl-asparaginyl-alanine 145458842 ↑ T1DM blood (29)

Fatty acids and conjugates

Adrenic acid HMDB0002226 ↑ T1DM blood (29), PreDM blood (30)

Arachidic acid HMDB0002212 ↑ GDM blood (34)

(Continued)
F
rontiers in Endocrinology
 12
 frontiersin.org

https://doi.org/10.3389/fendo.2025.1559638
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Gough et al. 10.3389/fendo.2025.1559638
TABLE 2 Continued

Metabolite HMBD ID Association with diabetes disease

Fatty acids and conjugates

Arachidonic acid HMDB0001043 ↑ GDM blood (34), PreDM blood (30)

Butyrate HMDB0000039 ↓ T2DM stool (46)
↑ T2DM blood (47)

Capric acid HMDB0000511 ↑ T2DM blood (53)b

Caproic acid HMDB0000535 ↓ T2DM blood (47, 51), T2DM stool (46)
↑ GDM blood (35)

Citraconic acid HMDB0000634 ↓ GDM urine (30)

5,6-Dichlorotetradecanoic acid 101254179 ↑ PreDM blood (38), T2DM blood (38)

10,20-Dihydroxyeicosanoic acid HMDB0031923 ↓ PreDM blood (37), T2DM blood (53)b

9,10-Dihydroxy-12-octadecenoic acid HMDB0004704 ↓ T2DM stool (46)

Docosapentaenoic acid HMDB0006528 ↑ GDM blood (34)

Docosatrienoic acid HMDB02823 ↑ GDM blood (34)

Dodecanoic acid HMDB0000638 ↑ GDM blood (34)

5-Dodecenoic acid HMDB0000529 ↓ T2DM blood (2)
↑ PreDM stool (41)

Eicosadienoic acid HMDB05060 ↑ GDM blood (34)

Eicosapentaenoic acid HMDB0001999 ↓ T2DM stool (44)

Eicosatrienoic acid HMDB0002925 ↑ GDM blood (34), T2DM blood (53)b

2-Ethylhexanoic acid HMDB0031230 ↑ GDM blood (34)

Gondoic acid HMDB0002231 ↑ GDM blood (34)

Heptadecanoic acid HMDB0002259 ↑ GDM blood (34)

Heptadecenoic acid HMDB60038 ↓ T2DM blood (2)
↑ GDM blood (34), T2DM blood (53)b

Heptanoic acid HMDB0000666 ↓ T2DM blood (2, 51)

Hexadecadienoic acid HMDB0302694 ↑ GDM blood (34), T2DM blood (53)b

Hexadecatrienoic acid HMDB0302991 ↑ T2DM blood (53)b

2-Hydroxyadipic acid HMDB0000321 ↑ PreDM stool (41)

2-Hydroxydecanoate HMDB0094656 ↓ T1DM blood (29), GDM urine (30)

Hydroxyisocaproic acid HMDB0000746 ↓ T2DM blood (53)b

Hydroxyisovaleric acid HMDB0000407^ ↓ T2DM blood (53)b

Hydroxypalmitoleic acid 46235676^ ↑ T2DM blood (53)b

Isovaleric acid HMDB0000718 ↓ T2DM stool (46)
↑ GDM blood (35), T2DM blood (47)

Myristic acid HMDB0000806 ↓ T2DM blood (2)
↑ T2DM blood (53)b

Myristoleic acid HMDB0002000 ↓ T2DM blood (2)
↑ T2DM blood (53)b

Nonadecenoic acid HMDB0302287 ↑ GDM blood (34)

Octadecanedioic acid HMDB0000782 ↑ T2DM blood (53)b

9-Octadecenoic acid HMDB62703 ↑ GDM blood (34)

(Continued)
F
rontiers in Endocrinology
 13
 frontiersin.org

https://doi.org/10.3389/fendo.2025.1559638
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Gough et al. 10.3389/fendo.2025.1559638
TABLE 2 Continued

Metabolite HMBD ID Association with diabetes disease

Fatty acids and conjugates

Oleic acid HMDB0000207 ↑ T1DM blood (29)

Palmitic acid HMDB0000220 ↑ T1DM blood (29), GDM blood (34), PreDM blood (39)

Palmitoleic acid HMDB03229 ↓ T2DM blood (2)
↑ T1DM blood (29), GDM blood (34), T2DM blood (53)b

Pelargonic acid HMDB0000847 ↓ T2DM blood (2, 51)

Pentadecanoic acid HMDB0000826 ↓ T2DM blood (2)
↑ T2DM blood (53)b

Stearic acid HMDB0000827 ↑ PreDM blood (39)

Tetradecanedioic acid HMDB0000872 ↓ PreDM blood (37), T2DM blood (53)b

9E-Tetradecenoic acid HMDB0062248 ↑ GDM blood (34)

Tridecanoic acid HMDB0000910 ↕ T2DM blood (53)b

Valeric acid HMDB0000892 ↓ T2DM blood (47), T2DM stool (46)
↑ GDM blood (35)

Fatty acid esters

Acylcarnitine C10:3 Not Defined ↑ T2DM slool (53)b

Decanoylcarnitine HMDB0000651 ↑ PreDM urine (39)d

Dibutyl decanedioate HMDB0041220 ↓ GDM stool (32)

Glutarylcarnitine HMDB0013130 ↑ T2DM blood (53)b

Hexanoylcarnitine HMDB0000756 ↑ T2DM blood (53)b

Hydroxybutyrylcarnitine HMDB0013127 ↑ PreDM blood (38), T2DM blood (38)

Methyl hexadecenoic acid HMDB0061859 ↓ T2DM blood (2)

Octanoylcarnitine HMDB0000791 ↓ T2DM blood (2)
↑ PreDM urine (39)d

Palmitoylcarnitine HMDB0000222 ↑ T2DM stool (46)

Valerylcarnitine HMDB0013128 ↓ T2DM blood (53)b

Fatty acyls

Deoxyglucose HMDB0062477 ↑ T2DM blood (51)

1-Octen-3-yl glucoside HMDB0032959 ↓ T2DM stool (44)

N-(3-oxooctanoyl)-homoserine lactone 127293 ↓ T2DM blood (38)

Thromboxane B3 HMDB0005099 ↓ T2DM stool (44)

Furanoisoflavonoids

Cristacarpin HMDB0034025 ↑ T2DM stool (41)

Glycerolipids

Diacylglycerol HMDB0242173 ↑ T2DM stool (46)

Glyceryl monooleate HMDB0254854 ↑ GDM blood (34)

1-Myristoylglycerol HMDB0304951 ↑ T2DM blood (48)

1-Oleoylglycerol HMDB0011567 ↑ T2DM blood (48)

1-Palmitoleoylglycerol 9883914 ↑ T2DM blood (48)
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TABLE 2 Continued

Metabolite HMBD ID Association with diabetes disease

Glycerolipids

Triglycerides HMDB0005356^ ↓ PreDM blood (38)
↑ T1DM blood (27)
↕ T2DM blood (38, 55)

Glycerophospholipids

Glycerophosphocholine HMDB0000086 ↓ T2DM blood (51)

Linoleoyl lysophosphatidylcholine HMDB0010386 ↑ T2DM blood (48)

Lysophosphatidylcholines HMDB0010379^ ↓ T1DM blood (29), PreDM blood (39), T2DM blood (38, 53)b

↑ PreDM stool (41), T2DM blood (55), T2DM stool (46)

Lysophosphatidylethanolamines HMDB0011472^ ↑ T2DM blood (53)b

Phosphatidylcholine HMDB0000564^ ↓ PreDM blood (38), T2DM blood (38, 55)
↑ T1DM blood (29), T2DM blood (51, 53)b,c, T2DM stool (46)

Phosphatidylethanolamine HMDB0060501 ↑ T1DM blood (29), T2DM blood (53)b, T2DM stool (41)
↕ T2DM blood (55)e

Phosphatidylinositol HMDB0009783^ ↑ T2DM blood (53)b

Phosphatidylserine HMDB0014291 ↑ PreDM blood (38), T2DM blood (38)

Hydroxy acids and derivatives

2-Hydroxybutyric acid HMDB0000008 ↑ T1DM blood (26), GDM blood (34), PreDM blood (2), T2DM blood (48)

3-Hydroxybutyric acid HMDB0000011 ↑ T1DM blood (26), GDM blood (33), T2DM blood (51)

3-Hydroxycapric acid HMDB0002203 ↓ PreDM blood (37)

Lactic acida HMDB0001311
HMDB0000190

↑ T2DM blood (2, 54, 55), T2DM urine (54)

Malic acid HMDB0000156 ↓ GDM stool (32)
↑ GDM blood (34), T2DM blood (2)

Indoles and derivatives

b-Carboline HMDB0012897 ↓ T2DM stool (44)

4-Formylindole HMDB0341228 ↓ PreDM blood (37)

Hydroxyindoleacetate HMDB0000763 ↓ GDM stool (30)

Indole-3-carboxylic acid HMDB0003320 ↓ T2DM stool (44)

Indolelactic acid HMDB0000671 ↓ PreDM blood (37)

Indole propionic acid HMDB0002302 ↓ T2DM blood (53)b, T2DM stool (44)

Tryptophan HMDB0000929 ↓ T1DM blood (26)
↑ PreDM urine (39)d, T2DM blood (42)

Keto acids and derivatives

Ketoisocaproic acid HMDB0000695 ↑ GDM blood (34), PreDM blood (2), T2DM blood (2, 55)

Ketoisovaleric acid HMDB0000019 ↑ PreDM blood (2)

3-Methyl-2-oxovaleric acid HMDB0000491 ↑ PreDM blood (2), PreDM urine (2), T2DM blood (2), T2DM urine (2)

Octenoylcarnitine HMDB0240723 ↑ T2DM blood (38)b

Oxoglutaric acid HMDB0000208 ↑ T2DM blood (55)

2-Oxoisovaleric acid HMDB0000019 ↑ T2DM blood (55)

Pyruvic acid HMDB00243 ↑ GDM blood (34), T2DM blood (53, 55)b

(Continued)
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TABLE 2 Continued

Metabolite HMBD ID Association with diabetes disease

Lactones

Matricin HMDB0036643 ↑ PreDM stool (41)

Lineolic acids and derivatives

Cucurbic acid HMDB0029388 ↑ PreDM stool (41)

Hydroxylinolenic acid HMDB0011108 ↑ T2DM blood (53)b

Linoleic acid HMDB0000673 ↑ T1DM blood (29), GDM blood (34)

Linolenic acid HMDB0001388 ↑ T1DM blood (29), GDM blood (34)

g-Linolenic acid HMDB0003073 ↑ GDM blood (34)

Macrolides and analogues

Epothilone A HMDB0251873 ↑ PreDM stool (41)

Organic sulfuric acids and derivatives

Indoxyl sulfate HMDB0000682 ↑ T2DM blood (51)

Methyl-4-hydroxybenzoate sulfate HMDB0168668 ↓ PreDM blood (37)

Organonitrogen compounds

Choline HMDB0000097 ↑ T2DM blood (50)

Phytosphingosine HMDB0004610 ↓ T2DM stool (44)

Trimethylamine-N-oxide HMDB0000925 ↓ GDM blood (31)
↑ T2DM blood (50, 52, 57)

Organooxygen compounds

Butanone HMDB0000474 ↑ GDM stool (32)

3-Dehydroshikimate HMDB0304122 ↓ GDM urine (30)

Kynureinine HMDB0000684 ↑ T2DM blood (51)

Methanol HMDB0001875 ↓ GDM blood (31)

Phenols

Capsaicin HMDB0002227 ↓ T2DM stool (44)

p-Hydroxyfelbamate HMDB0060669 ↓ T2DM stool (44)

Tyrosol HMDB0004284 ↓ T2DM stool (44)

Phenylpropanoic acids

Hydrocinnamic acid HMDB0000764 ↓ T2DM blood (56)
↑ T2DM blood (55)

Hydroxyphenyllactic acid HMDB0000755 ↑ T2DM blood (48)

Prenol lipids

Anhydrorhodovibrin 5368308 ↑ PreDM stool (41)

ar-Artemisene HMDB0039155 ↓ T2DM stool (44)

Astaxanthin HMDB0002204 ↓ T2DM stool (44)

Dehydrovomifoliol HMDB0036819 ↑ PreDM stool (41)

Galbanic acid HMDB0030163 ↓ T1DM blood (29)

Ginkolide C HMDB0036860 ↓ T2DM stool (44)

Isobornyl propionate HMDB0038249 ↓ T2DM stool (44)

(Continued)
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TABLE 2 Continued

Metabolite HMBD ID Association with diabetes disease

Prenol lipids

Manoalide HMDB0254329 ↑ PreDM stool (41)

Oleanolic acid HMDB0002364 ↓ T2DM stool (46)

Quassin HMDB0036587 ↑ PreDM stool (41)

Ubiquinone-2 HMDB0006709 ↓ T2DM stool (44)

Purines and purine derivatives

7-Methylguanine HMDB0000897 ↓ T2DM stool (44)

1-Methylhypoxanthine HMDB0013141 ↓ T2DM stool (44)

Methyluric acid HMDB0003099^ ↓ PreDM urine (39)d

Methylxanthine HMDB0010738^ ↓ PreDM urine (39)d

Uric acid HMDB0000289 ↓ PreDM urine (39)d

↑ PreDM blood (2), T2DM blood (48)

Xanthine HMDB0000292 ↑ PreDM urine (39)d, T2DM blood (48), T2DM stool (44)

Purine nucleosides

Adenosine HMDB0000050 ↓ T2DM stool (44)

N6-Carbamoyl-L-threonyladenosine HMDB0041623 ↑ T2DM blood (53)b

N2,N2-Dimethylguanosine HMDB0004824 ↑ T2DM blood (53)b

1-Methyladenosine HMDB0003331 ↑ T2DM blood (53)b

Pyridines and derivatives

N-Methylnicotinamide HMDB0003152 ↑ T1DM blood (26)

Niacinimide HMDB0001406 ↓ T2DM stool (44)

Nicotinic acid HMDB0001488 ↓ GDM urine (30)

Pyrimidine nucleosides

Cytidine HMDB0000089 ↓ T2DM stool (44)

Pyrimidines and derivatives

Cytosine HMDB0000630 ↓ T2DM stool (44)

3-Methylcytosine HMDB0011601 ↓ T2DM stool (44)

Thymine HMDB0000262 ↑ T2DM stool (44)

Uracil HMDB0000300 ↓ T2DM stool (44)

Quinolines and derivatives

Kynurenic acid HMDB0000715 ↓ GDM stool (30)
↑ T2DM blood (48)

Xanthurenic acid HMDB0000881 ↑ T2DM blood (48)

Sphingolipids

Ceramides HMDB0004949^ ↕ T2DM blood (55)

Sphingomyelin HMDB12096 ↓ T1DM stool (27), T2DM blood (2, 51, 55)
↑ T2DM blood (53)b

Sphingosine 1-phosphate HMDB0000277^ ↑ T2DM blood (53)b

(Continued)
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TABLE 2 Continued

Metabolite HMBD ID Association with diabetes disease

Steroids and steroid derivatives

5a-Androstan-3a,17a-diol HMDB0000458 ↓ T2DM blood (53)b

Androsterone glucuronide HMDB0002829 ↓ T2DM blood (53)b

Androsterone sulfate HMDB0002759 ↓ T2DM blood (53)b

Chenodeoxycholic acid HMDB0000518 ↓ T2DM stool (49)
↑ T2DM blood (47)

Cholestane-3b-5a,6b-triol HMDB0003990 ↑ PreDM stool (41)

Cholesterol HMDB0000067 ↓ T2DM blood (2)

Cholic acid HMDB0000619 ↓ GDM blood (34), T2DM stool (46, 49)
↑ T2DM blood (47)

7-Dehydrodesmosterol HMDB0003896 ↑ PreDM stool (41), T2DM stool (41)

Dehydroepiandrosterone sulfate HMDB0001032 ↓ T2DM blood (53)b

Dehydrolithocholic acid 5283906 ↓ GDM blood (34)

Deoxycholic acid HMDB0000626 ↑ T2DM blood (47)

Deoxycholic acid 3-glucuronide HMDB0002596 ↑ T1DM blood (29)

Dihydroxyvitamin D3 HMDB0000430 ↓ T2DM blood (53)b

6,7-Diketolithocholic acid 137333800 ↑ GDM blood (34)

Estrone glucuronide HMDB0004483 ↑ PreDM stool (41)

Glycochenodeoxycholic acid HMDB0000637 ↓ T2DM stool (49)
↑ PreDM blood (39)d

Glycocholic acid HMDB0000138 ↓ T2DM stool (46)
↑ T2DM blood (47)

Glycodeoxycholic acid HMDB0000631 ↓ T2DM stool (49)
↑ T2DM blood (47)

Glycolithocholic acid HMDB0000698 ↓ T2DM stool (49)

Glycoursodeoxycholic acid HMDB0000708 ↓ T2DM stool (46, 49)
↑ GDM blood (35)

Hyodeoxycholic acid HMDB0000733 ↑ GDM blood (34)

Isodeoxycholic acid HMDB0002536 ↑ GDM blood (34)

Lithocholic acid HMDB0000761 ↑ GDM blood (34), T1DM stool (27)

Physalolactone B HMDB0034200 ↓ T2DM stool (44)

Scillaren A 441870 ↑ PreDM stool (41)

Taurochenodeoxycholic acid HMDB0000951 ↑ T2DM blood (47)

Taurodeoxycholic acid HMDB0000896 ↓ T2DM stool (49)
↑ T2DM blood (47)

Teasterone 13475125 ↑ PreDM stool (41)

Taurohyodeoxycholic acid 119046 ↑ GDM blood (34)

Tauroursodeoxycholic acid HMDB0000874 ↓ T2DM stool (49)

Taurolithocholate sulfate HMDB0002580 ↑ GDM blood (35)

Taurolithocholic acid HMDB0000722 ↓ T2DM stool (49)

Ursodeoxycholic acid HMDB0000946 ↓ T2DM stool (49)

(Continued)
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Across all four diabetes diseases, discrepancies were reported

between articles as to the concentrations of metabolites in the same,

and different sample types. For example, fatty acids butyrate,

heptadecenoic acid, and myristic acid were reported as both

increased and decreased in blood samples collected from T2DM

cohorts (relative to respective non-diabetes cohorts); but were also

reported to be elevated in stool samples fromT2DMcohorts. Further

exemplifying this discrepancy; the concentration of key bile acids

glycodeoxycholic acid, glycocholic acid, cholic acid and

chenodeoxycholic acid were reported to be elevated in blood

samples but decreased in stool samples collected from T2DM

cohorts. The concentrations of four metabolites was dependent on

carbon configuration, isomer structure or metabolite species:

namely, ceramide, tridecanoic acid, and phosphatidylethanolamine

and triglyceride compounds.
Specimen type used in studies of diabetes
correlates with disease type and
metabolite regulation findings

Chi-Square tests of association revealed evidence of a significant

correlation between the type of specimen used in metabolomic

analysis, and whether metabolite levels were reported as being

increased or decreased (p = 3.5e-8). Incorporation of stool samples

was significantly associated with identification of decreased

metabolite levels; whilst the opposite was true of studies that

utilised blood samples, as this specimen type was significantly

associated with the identification of increased metabolite levels.

Further Chi-Square testing revealed a significant correlation

between the type of diabetes and specimen used in metabolomic

analyses (p = 1.4e-9). Post-hoc testing of this correlation revealed

significant associations between two groups; GDM studies

identified metabolites more from urine biospecimens, while

T2DM studies identified metabolites more from stool and less

from urine samples. Finally, statistical analyses revealed no

significant association between type of diabetes disease and

whether metabolite levels were reported as being increased

or decreased.
Frontiers in Endocrinology 19
Discussion

Metabolic disorders, particularly T1DM, GDM and T2DM, are

physiologically distinct diseases, with very different causes,

treatments, and outcomes. As such, the aim of this review was

not to directly compare these aetiologies, but to collectively

synthesise published metabolomics data and identify common

disease targets; thereby maximising the future research potential

of identified biomarkers. In achieving this, our review identified a

core metabolomic signature that is common to all DM diseases. The

four metabolites that comprise this shared diabetes metabolome are

the alpha hydroxy acid, 2-hydoxybutyric acid, the amino acid,

alanine, and BCAAs, valine, and the leucine/isoleucine isomer

system (Table 2, Figure 4). As a by-product of protein

metabolism, 2-hydroxybutyric acid has been positively correlated

to the impairment of pancreatic b-cells (59) as a well-established

early hallmark of insulin sensitivity, and resistance (60).

Corroborating this, the findings of our review showed the

metabolite to be elevated in blood samples taken from T1DM

(26), GDM (61, 62), PreDM (2), and T2DM (48) cohorts.

Similarly, concentrations of valine were significantly higher across

all DM diseases in blood (2, 27, 40, 42, 55), stool (63), and urine

(29); an expected finding given valine is widely associated with the

incidence of oxidative stress, decreased insulin secretion, and high

glucose levels (64). In contrast to 2-hydroxybutyric acid and valine,

the role of leucine and isoleucine in DM is controversial. Some

studies report that, alongside valine, the BCAAs have a detrimental

effect on human metabolic health by decreasing insulin secretion;

and even linking isoleucine with increased T2DM risk (65).

However, other studies report that the metabolite acutely

stimulates insulin production and plays an important role in

ameliorating adiposity and maintaining glucose homeostasis (66,

67). In our review, the concentration of leucine and isoleucine were

found to be elevated in the blood (2, 27, 34, 40, 42, 51, 55, 58) and

urine (29) of individuals with DM, whilst leucine was reported to be

decreased in T1DM cohorts (26). These contradictory findings

reiterate the need for future studies that provide clarity around

the regulatory profiles of these BCAAs in different biological sample

types, and across the spectrum of diabetes diseases.
TABLE 2 Continued

Metabolite HMBD ID Association with diabetes disease

Stilbenes

Piceid HMDB0030564 ↑ T2DM stool (41)

Tetrapyrroles and derivatives

Biliverdin HMDB0001008 ↓ T2DM blood (53)b
Arrows indicate direction of metabolite regulation in diabetes cohorts, relative to non-diabetes cohorts: increased (↑), decreased (↓), or reported as both increased or decreased depending on
carbon structure or metabolite species (↕). Metabolites grouped by chemical class or subclass (according to HMDB) and recorded with sample type used in metabolomic analyses. Metabolites
listed if reported as significantly discriminative between cohorts; with statistical significance recognised at p < 0.05, or threshold specified in-text based on independent correction analysis.
aIndependent components or carbon configuration not distinguished by retention time in all publications; bCorrelation with DM is inferred based on significant associations with an alternate
model predictive of diabetes, such as high HOMA-IR or glucose dispostition index; cDenotes findings from serum samples in instances of contradictory findings of metabolite levels in blood
components; dReported as trend between cohorts, no statistical significance reported in publication; ^ Example HMDB ID number provided, accession numbers vary depending on carbon
structure or metabolite species. GDM, gestational diabetes mellitus; HMDB, Human Metabolome Database; PreDM, prediabetes mellitus; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes
mellitus; TUDCA, Tauroursodeoxycholic acid.
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The majority of studies analysed in this review characterised the

human intestinal metabolome associated with T2DM (Figures 3, 4).

The focus of research on T2DM is commensurate with its high

prevalence (86.4% of Australasian DM diagnoses (2, 27, 34, 40, 42,

51, 55, 58)). Our review has drawn attention to the unmet need for

GDM- and T1DM-specific metabolomic research, given the distinct

pathophysiological processes associated with the development of DM

diseases. Our review has also highlighted the importance of appropriate

interpretation of GDM studies; ensuring any significant findings are

drawn from comparisons of appropriate disease and control cohorts.

This is best exemplified in the findings of Ivanovova et al. (2021), who

demonstrated significant differences in the levels of multiple SCFAs

between GDM and non-pregnant cohorts, but not between GDM and

pregnant-non-GDM cohorts. For future studies in the field of GDM-

research, this highlights the importance of incorporating proper

phenotype controls in study designs. Doing so will ensure

conclusions can be drawn regarding the impact of GDM, and not

pregnancy itself; a period that is already well-known to involve

significant changes to the female gut microbiota and metabolome (33).
Frontiers in Endocrinology 20
Our findings reinforce that biological sample type has a significant

impact on metabolomic findings. This is best exemplified by

comparing independent findings published by Zhou et al. (2019,

2020) (68, 69); which indicated that the levels of the same BA and

SCFA metabolite targets were elevated in serum yet decreased in stool

collected from the same participant cohorts. Overall, our review

identified twenty-seven metabolites that were both increased and

decreased, depending on whether blood, urine or stool was used in

metabolomic analyses (Table 2). BAs were the most frequently

discrepantly reported chemical species; with decreased levels in stool

samples, yet increased levels in blood samples fromDM cohorts. A site-

specific difference is expected given only an estimated 5% of primary

and secondary BAs are excreted in stool, while up to 95% are

reabsorbed by the terminal ileum and transported back to the liver

via portal circulation (62). However, literature reports that diabetes

initiates changes in BA metabolism and composition (70, 71), and is

accompanied by an increase in BA stool excretion; which does not

support the decreased levels seen in stool profiles reported in the

reviewed studies. Such discrepancies highlight the potential bias that
FIGURE 3

Schematic representing research targets of thirty-four studies analysed in this systematic review. Relative proportions based on counts of
metabolites considered significantly different between cohorts depending on diabetes disease type (inner ring) and biological sample type (outer
ring). Figure developed using R Studio software.
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sample type and collection methods may impose on metabolomic

findings and emphasise that researchers should consider the inherent

advantages and disadvantages of each sample type when designing

studies that target human- and microbial-derived metabolites in

the gut.

All results incorporated in this systematic review were based on

findings from non-invasive, or minimally invasive sample types

including stool, urine, and blood components (plasma/serum).

Across all four DM diseases, blood was the most utilised sample,

with stool the second most frequently utilised in T2DM and PreDM

studies, and urine the second most utilised in T1DM and GDM studies

(Figure 3). The incorporation of urine sample collection from T1DM

and GDM cohorts is pragmatic in the clinical context given the often

routine requirement for these patient groups to submit samples for

urine ketone, protein and albumin testing, and hence easier

recruitment to research studies. However, the discrepancies reported

here, and in studies such as that of Deng, Xu, Shen, et al. (2023) (48),

underline the importance of careful selection of sample types to ensure

results provide the most accurate representation of the metabolome at

the target organ site. Researchers may also consider the use of other

sample types to analyse host-gut interactions, such as saliva, exhaled

breath, or invasive sample types, such as tissue biopsies (26).

This systematic review also reported discrepant findings in the

levels of twenty-six metabolites between studies that incorporated the

same sample type in downstream metabolomic analyses (Table 2).

These findings highlight the need for guidelines that standardise

collection methods for biological samples used in metabolomic

analyses. This could include best practice recommendations for

sample collection times (such as first/second morning urine
Frontiers in Endocrinology 21
sampling), the preferred use of single-batch consumables to prevent

inter-batch variability generating inconsistent artefacts, and

recommendations to reduce contamination in tissue collection (for

example, using protected specimen brush techniques in mucosal-

luminal sampling) (68, 69). Enforcing the standardisation of these

collection and preparation methods will work to limit inter-sample

variability and maintain the biological and metabolic integrity of

samples consistently across study cohorts (68).

In addition to sample type selection, pre-analytical procedures

are well known to influence microbiome and metabolome readouts.

In particular, collection and storage methods have a well-

established impact on the accuracy and precision of downstream

metabolomic results (65, 72), and metabolite extraction technique/s

are critical to either preventing or causing biases in results (73). The

majority of studies included in this review reported sample handling

procedures in line with best practice guidelines (74) (Table 1).

However, given the different sample types, chemical targets,

metabolomic approaches and MS or NMR instrumentation used

in each of the thirty-four reviewed studies (Table 1), the pre-

treatment extraction and derivisation processes varied widely, and

may explain discrepancies between studies. Therefore, while sample

preparation methods have been comprehensively reviewed in the

literature (29), further comparative analyses are required to

elucidate inter-method and inter-platform biases.

Much of the research reviewed in this study reported differential

concentrations of targeted metabolites; however, it is not made clear

whether these markers were differentially increased or decreased

between cohorts. Additional discrepancies also exist in the

reporting of metabolite marker regulation; further confusing the
FIGURE 4

Venn diagram representation of metabolites significantly associated with diabetes mellitus diseases. Figure represents 272 total metabolites reported
as being significantly associated (either positively or negatively) with each of the four diabetes disease types. Metabolites shared between diabetes
diseases are tallied in overlapping circles. Figure developed based on findings of thirty-four primary research articles reviewed in systematic review.
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role these metabolites play as either a ‘cause or cure’ to diabetes.

This iterates the need for standardised reporting in future clinical

metabolomics publications. Potential measures for implementation

may include standardised reporting of fold changes between

cohorts, as well as cross-referencing and reporting targets

alongside primary accession codes linked to a publicly accessible

database, such as HMDB, KEGG, PubChem, ChEBI, or UniProt.

Doing so will prevent chemically synonymous compounds being

misreported as novel targets and maximise the research potential of

future studies in the metabolomics field.

A limitation of this review is the comparison of metabolite

concentrations on a dichotomous scale; increased or decreased

concentrations depending on healthy or diabetes status. Performing

a quantitative comparison of metabolomic concentrations across the

various study cohorts falls outside the scope of this systematic review

and warrants further study. Therefore, further meta-analysis of the

metabolomics data synthesised here is required to quantitatively

compare metabolite concentrations; taking into consideration the
Frontiers in Endocrinology 22
inter-method effects of metabolomics tools, platform-specific biases,

and the array of analytical pipelines consulted by researchers. Future

statistical analysis should also consider controlling for participant

baseline characteristics that vary from study to study; for instance,

age, sex, duration of diabetes, race, genetic background, diet/lifestyle

factors, or the use of any antidiabetic treatments or known

microbiome-altering medications and supplements. Furthermore,

the results of this review do not account for metabolome changes over

time, or those stemming from diabetes-associated comorbidities

(such as diabetic nephropathy, neuropathy, or retinopathy) which

are known to further perturb the gut microbiota and metabolism (44,

45). It would therefore be pertinent for future studies to consider the

effects attributable to the incidence and stage of comorbidities, by

sub-stratifying participant cohorts accordingly. The results of our

review may also be considered in conjunction with future

microbiome-metabolome correlative analyses that incorporate tools

such as 16S ribosomal RNA gene sequencing or whole genome

shotgun sequencing. Alternatively, publicly available datasets, such
FIGURE 5

Enrichment ratio and p-value from enrichment analyses of the top twenty-five pathways associated with those metabolites reported as being
significantly associated with diabetes diseases. Bar lengths represent enrichment ratio, calculated by the number of hits divided by the expected
number of hits within each pathway. Enrichment analysis conducted on metabolites determined to be significantly associated with incidence of
diabetes disease (Table 2) and those with primary accession numbers indexed in the HMDB library. Enriched metabolic pathways are ordered
according to decreasing p-value. Metabolite pathways defined based on KEGG human metabolic pathways library. Enrichment analysis conducted
and visualised by MetaboAnalyst program.
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as that curated by Muller, Algavi, and Borenstein (2022) (75) from

faecal samples, provide fully processed, and benchmarked

microbiome-metabolome integration tools to enable correlative

analyses. Linking metabolomic outputs to microbial profiles is a

key future research target, as it will provide a deeper insight into the

functional capacity of the microbiota.
Conclusions

In conclusion, this systematic review analysed the findings of

thirty-four articles investigating the intestinal metabolome associated

with the incidence of T1DM, GDM, PreDM, and T2DM. Extracted

data mapped the concentrations of 272 intestinal metabolites across

thirty-eight chemical classes and sub-classes. To date, the majority of

diabetes metabolome research has been conducted in T2DM cohorts;

and while the experimental, and clinical importance of these studies is

undeniable, this review highlights a bias in the research foci that has

left GDM and T1DM diseases understudied. Our review also

described a novel comparison of metabolite levels between blood,

stool, and urine samples in DM cohorts. This is significant given few

studies have investigated the potential biasing effect of sample type on

the downstream identification of primary and secondary metabolites.

The results of this work, and of other newly emerging research in the

field (64), urge caution in directly inferring associations between the

stool metabolome and the incidence of systemic diseases, such as

diabetes. Overall, the key metabolites identified in this review warrant

further investigation as potential diagnostic biomarkers or targets in

the treatment of DM.
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