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Type 2 diabetes mellitus–related sarcopenia (T2DMRS) is a common

complication in elderly and advanced diabetes patients that affects long-term

prognosis and quality of life. Skeletal muscle is the main unit of glucose

metabolism, and it is surrounded by extracellular matrix (ECM), which is a

microenvironment that acts as an efficient highway system. The ECM is

essential for cellular communication and nutrient transport and supports

muscle cell growth and repair. When this “ECM highway” fails to function

effectively because of damage or blockage, the development of T2DMRS can

be triggered or exacerbated. In recent years, the ECM has been widely

demonstrated to play a critical role in insulin resistance and skeletal muscle

regeneration. However, how the remodeling of skeletal muscle ECM

components specifically affects the T2DMRS mechanism of action has not

been scientifically described in detail. In this review, we comprehensively

summarize the T2DMRS-related mechanisms of ECM remodeling, suggesting

that collagen and integrins may be potential therapeutic targets.
KEYWORDS

extracellular matrix, type 2 diabetes, sarcopenia, collagen, integrins, skeletal
muscle regeneration
1 Introduction

Diabetes is a chronic metabolic disease that affects approximately 25% of the world’s

population over 65 years of age (1). Sarcopenia is a progressive, systemic skeletal muscle

disease that results in accelerated loss of muscle mass and function with age (2). Sarcopenia

has been described as an emerging complication of diabetes mellitus in the elderly

population, with prevalence rates ranging from 10% to 27% (3). People with type 2
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diabetes mellitus (T2DM) are more likely to develop sarcopenia

than those with normal blood glucose (4). T2DM and sarcopenia

tend to be intertwined, and this comorbidity has become an

important public health issue in today’s world.

There are complex interactions between T2DM and sarcopenia.

Muscle loss in patients with T2DM is primarily associated with

chronic inflammation, oxidative stress, insulin resistance, formation

of advanced glycosylation end products (AGEs), and

hyperglycemia, which collectively affect the muscle energy supply

and protein metabolism and, consequently, the development of

sarcopenia (5). Sarcopenia, in turn, has been found to be associated

with an increased risk of developing T2DM (6). Skeletal muscle is

the largest insulin-sensitive organ in the body. Approximately 80%

of glucose in the human body is absorbed by skeletal muscle and

stored in the form of glycogen (7). A decrease in the amount and

function of skeletal muscle, an important tissue for peripheral

glucose uptake, will diminish glucose uptake and exacerbate the

development of T2DM (8). T2DM and sarcopenia are deeply

intertwined pathogenetically, with skeletal muscle playing a

central role in their bidirectional effects.

The extracellular matrix (ECM), an important component of

the skeletal muscle niche, has been shown to be affected by aging (9)

and different stages of diabetes (10, 11), and it is closely linked to the

phenomenon of insulin resistance in skeletal muscle (12). However,

there are fewer relevant studies available to show data on specific

grading changes during diabetes onset. Therefore, more studies are

needed to comprehensively assess specific markers of diabetes onset

and aging. During the onset of T2DM, the ECM network in skeletal

muscle undergoes dynamic changes, altering the interactions

between cells and the ECM (13). Abnormal ECM remodeling

disrupts insulin signaling and glucose transport (14). Therefore,

the ECM plays a crucial role in regulating insulin sensitivity in

skeletal muscle. Additionally, the ECM has multiple roles in the

process of skeletal muscle regeneration, including providing

physical support, regulating cell behavior, storing growth factors,

and guiding the formation of new myofibers (11). The growth and

regeneration of skeletal muscle depend on the activation of muscle-

specific stem cells, known as satellite cells. The activation and

differentiation of satellite cells into myoblasts and their migration,

proliferation, and fusion into functional multinucleated myofibers

are all related to the synthesis and degradation of ECM proteins

(15). The ECM also undergoes dynamic changes during the growth

or repair of skeletal muscle, experiencing extensive remodeling

during muscle regeneration and continuously regulating cell

proliferation, migration, and differentiation (16).

T2DM may lead to sarcopenia, and conversely, sarcopenia can

initiate and exacerbate the onset and progression of T2DM;

however, there is currently a notable paucity of treatment

strategies for type 2 diabetes mellitus–related sarcopenia

(T2DMRS). Research has demonstrated that interventions such

as pharmacological treatment (17) and exercise (18) can

simultaneously address diabetes and sarcopenia while remodeling

the ECM. Consequently, the development of targeted therapies

focusing on the ECM may represent a promising avenue for

addressing this comorbidity. Given that the remodeling of skeletal
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muscle ECM components plays a pivotal role in enhancing insulin

resistance and promoting muscle regeneration, the mechanistic

implications of the ECM in the context of T2DMRS remain

inadequately elucidated. We systematically collated multiple

changes in the ECM in T2DM and sarcopenia, evaluated the

feasibility of various key ECM constituents as potential

therapeutic targets, and focused on their possible mechanisms of

action in influencing T2DMRS. This review provides important

theoretical foundations and offers guidance for the development of

targeted ECM remodeling strategies for T2DMRS treatment.
2 Overview of the ECM

The ECM consists of more than 300 proteins, including collagen,

proteoglycans, laminin, and elastin, which constitute the main

elements of the ECM. Each type of protein has different physical

and biochemical properties (19). As shown in Figure 1, structural

proteins, such as collagen and elastin, give the ECM strength and

toughness, respectively (20). Proteoglycans confer compressive

resistance to the ECM (21), and fibronectin and laminin facilitate

cell adhesion to the ECM (22). These ECM proteins provide

structural support to cells and regulate cell behavior, while ECM

remodeling enzymes regulate ECM turnover. The most important

enzymes involved in ECM remodeling are metalloproteinases, which

include two major families. The matrix metalloproteinase (MMPs)

family comprises a group of proteolytic enzymes capable of degrading

components such as collagen, elastin, and proteoglycans, promoting

tissue remodeling and turnover (23). A disintegrin and

metalloproteinase with thrombospondin motifs (ADAMTS) is also

responsible for the degradation of ECM components, particularly

proteoglycans (24). The ECM surrounds the cell and builds a three-

dimensional network architecture. Integrins, as the main adhesion

receptors of the ECM, are mediators of cell-ECM interactions and

play key roles in structural support and cell signaling. The ECM

receptor integrins and related proteins collectively shape the physical

environment around the cells and play a critical role in structural

support and cell signaling (25). ECM components are frequently

remodeled by surrounding cells through degradation, synthesis,

recombination, and modification and also play key roles in

regulating cell viability, growth, differentiation, and metabolism

(26). In skeletal muscle, each muscle fiber and its associated muscle

stem cells are surrounded by the ECM (27). The vast majority of

myopathies are accompanied by excessive accumulation of ECM,

such as collagen deposition, which leads to muscle fibrosis, which in

turn negatively affects muscle regeneration (21).
3 Collagen

Collagen is the most abundant structural component of the ECM.

It not only supports tissues and participates in growth, differentiation,

morphogenesis, and wound healing processes but also is necessary for

cell adhesion and migration (28). The collagen family includes 28

different members, of which types I, III, IV, V, VI, XII, XIII, XIV, XV,
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XVIII, and XXII have been shown to be present in mature skeletal

muscle (29). More than 90% of the collagen expressed in skeletal

muscle consists of collagen types I, III, and IV.

One of the hallmarks of insulin resistance in the skeletal muscle of

human and rodent populations with T2DM is collagen deposition,

characterized by a marked increase in the abundance of collagen I

(Col I), collagen III (Col III), and collagen IV (Col IV) (30–32).

Collagen has been shown to actively drive insulin resistance (33),

possibly through regulation of the insulin signaling pathway. Insulin

receptor substrate 1 (IRS1) phosphorylation may be inhibited, leading

to reduced phosphatidylinositol 3‐kinase (PI3K) activation and

thereby affecting the phosphorylation of its downstream signaling

molecule protein kinase B (Akt). Reduced Akt activation and glucose

transporter type 4 (GLUT4) membrane translocation ultimately

result in decreased glucose uptake capability (14). A study found

that the deposition of Col III and Col IV proteins in rodents with

skeletal muscle insulin resistance may be associated with the
Frontiers in Endocrinology 03
interaction of integrin a2b1 (32). Subsequently, the research team

demonstrated that Col IV protein deposition is associated with

reduced MMP-9 activity. In addition, COL1a1, a gene encoding the

a1 chain in Col I, was observed to be associated with transforming

growth factor beta (TGF-b) upregulation in T2DM rats. Given the

central role of TGF-b in promoting collagen deposition and fibrosis,

it is likely that COL1a1 overexpression is closely correlated with the

state of inflammation and fibrosis in the diabetic setting (34).

However, collagen transcription is downregulated in the skeletal

muscle of streptozotocin-induced type 1 diabetes mellitus (T1DM)

mice, which may be due to the inhibition of collagen synthesis by low

levels of TGF-b and an accumulation of AGEs (35), and the

concomitant increase in the levels of inflammatory cytokines and

MMPs may also promote collagenolysis (36).

Increased collagen content is also a feature of age-related

sarcopenia (37). Many aspects of collagen structure, including

collagen arrangement, cross-linking, and stacking density, affect
FIGURE 1

Function of key extracellular matrix (ECM) components and integrins. The figure illustrates the main functions of the key components of the
extracellular matrix and their receptor integrins.
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the regenerative capacity of skeletal muscle (38). Collagen

deposition may be triggered by a fibrotic process possibly

regulated by nuclear factor-kappa B (NF-kB) or the TGF-b/Smad

signaling pathway (39). Collagen directly interacts with myosatellite

cell surface receptors as a ligand, playing a key role in maintaining

satellite cell homeostasis and activating repair after injury (40). In a

zebrafish model of sarcopenia, an increase in collagen content

paralleled a dramatic decrease in mitochondrial density between

myofibers, with 100% mitochondrial damage (41). Collagen

deposition causes an increase in ECM stiffness, and abnormal

mechanical stresses affect cell shape as well as the mitochondrial

network structure (42). As a result, excessive reactive oxygen species

(ROS) are generated (43), enhancing forkhead box protein O

(FOXO) transcriptional activity (44). This FOXO transcriptional

activity then activates the expression of muscle atrophy F-box and

muscle RING finger 1, which are muscle-specific E3 ubiquitin

ligases involved in protein degradation processes that can impede

muscle regeneration (45). Collagen deposition may also be involved

in the inhibition of myogenic differentiation, leading to decreased

expression of myogenic differentiation 1 (MyoD) and other

regulators of myogenic differentiation (46).

Changes in collagen content in the diabetic setting may be

associated with various characteristics, such as inflammation, fibrosis,

accumulation of AGEs, MMPs, integrin-mediated cell-ECM

interactions, and lipid accumulation. Interestingly, the collagen

content of skeletal muscle is polarized in T1DM and T2DM, and the

mechanism responsible for the decrease in collagen content caused by

T1DM is unclear. Combined with the body’s energy metabolism

homeostasis mechanism, such a decrease may be a compensatory

response to muscle tissue catabolism in the high-glycemic state. The

main reason for the increase in collagen content in T2DM may be

lipid accumulation. Lipid accumulation is closely related to collagen

content, and lipid infusion may increase the content of collagen types I

and III in human skeletal muscle (47, 48). Collagen also regulates the

formation and function of adipose tissue (48). Another study supports

the idea that a decrease in MMP-9 content by itself does not

cause insulin resistance in skeletal muscle but does cause severe

muscle insulin resistance when combined with a high-fat diet,

probably because MMP-9 is not sufficient to degrade the collagen

deposits caused by lipid accumulation (49). This phenomenon also

provides a new perspective on why an excess supply and

underutilization of lipid fuels can induce insulin resistance in skeletal

muscle (30). Based on this, we speculate that the underlying

mechanism by which collagen affects T2DMRS may be that collagen

deposition forms a mechanical barrier that lengthens the insulin and

glucose diffusion pathways, thereby impeding insulin and glucose

signaling and metabolic processes in muscle and thus exacerbating

skeletal muscle insulin resistance (Figure 2). This process may inhibit

the PI3K/Akt/mTOR pathway while stimulating protein degradation

through FOXO family members and their downstream E3 ubiquitin

ligases and autophagy regulators (45). The imbalance between

decreased muscle protein synthesis and increased degradation is an

important mechanism underlying the development of sarcopenia. In

addition, collagen deposition may directly contribute to the
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development of sarcopenia by altering the physical properties of the

ECM, affecting stem cell differentiation, interfering with mitochondrial

function, and promoting muscle fibrosis. It has also been found that

collagen structure, rather than collagen content, is responsible for the

skeletal muscle fibrosis that occurs in sarcopenia and metabolic

disorders, among others (50). In conclusion, the mechanisms by

which collagen accumulation and structural changes exacerbate

skeletal muscle insulin resistance and muscle loss require further

exploration and validation. The development of small-molecule

drugs targeting collagen remodeling for the treatment of T2DMRS

holds significant research value, especially for elderly patients with

obesity, who are more prone to developing T2DMRS.
4 MMPs

MMPs are a class of protein hydrolases found in the ECM. The

expression level of MMPs is significantly increased in the serum and

other non-muscle tissues of patients with diabetes (51–53), a

phenomenon that may be closely related to the chronic

inflammation induced by diabetes and that may involve NF-kB
signaling pathway activation (54). MMP-2 and MMP-9 are two

important MMPs expressed in skeletal muscle (55). Their

polymorphisms may influence the pathogenesis of T2DM,

suggesting their potential value as biomarkers for predicting the

risk and progression of T2DM (56). MMPs are mainly responsible

for the degradation and turnover of matrix proteins in the ECM.

When their expression is altered, it can result in the aberrant

degradation of the ECM. This acts as the primary cause for the

onset of chronic degenerative conditions linked to diabetes (57).

Investigating MMP-mediated degradation activity in skeletal

muscle through enzyme profiling, Illesca et al. discovered that the

collagen deposition observed in the skeletal muscle of insulin-

resistant rats could be attributed to diminished MMP-2 activity

(58). Similarly, Kang et al. found that reduced MMP-9 activity also

induces type III and IV collagen deposition in insulin-resistant

skeletal muscle. They also reported that MMP-9 may regulate

myocyte responses to insulin in mice by regulating muscle

vasculature formation and potentially affecting perfusion-

regulating mechanisms; therefore, another reason for the

aggravation of muscular insulin resistance by MMP-9 deletion

may be the reduction in capillary number (49).

Increased expression of MMP-2 and MMP-9 is seen in a variety

of diseases associated with sarcopenia, and this increase may be

associated with muscle fiber regeneration and tissue inflammation

(59, 60). Targeting MMPs using specific strategies may prevent

disease progression. Omega-3, a nutritional supplement containing

EPA, DHA, and other ingredients, may reduce MMP-9 expression

through macrophage-regulated mechanisms, improving

myofibroblast engraftment, satellite cell activation, and muscle

regeneration (61). Empagliflozin, a sodium-glucose co-transporter

2 inhibitor, may inhibit sarcopenia-induced skeletal muscle fibrosis

and improve skeletal muscle function through the AMPKa/MMP-

9/TGF-b1/Smad pathway (59). In addition, MMP-9 inhibition may
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FIGURE 2

Collagen-mediated pathways in type 2 diabetes mellitus–related sarcopenia. In a healthy state, normal collagen levels allow for efficient delivery of
insulin and glucose to the muscle, maintaining a healthy muscle state. Binding of insulin to its receptor and activation of insulin receptor substrate 1
(IRS1) phosphorylation subsequently recruit and activate phosphatidylinositol 3‐kinase (PI3K)/protein kinase B (Akt), which facilitates the translocation
of GLUT4 to the cell membrane and increases the efficiency of glucose uptake by muscle. Akt then activates or inhibits multiple downstream targets.
For instance, Akt activates the mammalian target of rapamycin (mTOR) to promote protein synthesis and inhibits forkhead box protein O (FOXO),
which inhibits its downstream E3 ubiquitin ligases muscle atrophy F-box (MAFbx) and muscle RING finger 1 (MuRF-1), thereby inhibiting protein
degradation. In addition, Akt promotes myogenic differentiation of satellite cells by activating myogenic differentiation regulators such as myogenic
differentiation 1 (MyoD). In T2DM, collagen deposition increases the distance of the diffusion path for glucose and insulin, reduces the binding
efficiency of insulin to receptors, inhibits the IRS1/PI3K/Akt pathway, and impedes the transport of GLUT4 to the cell membrane, which reduces
muscle uptake and utilization of glucose. Akt subsequently activates or inhibits multiple downstream targets. mTOR is inhibited, inhibiting protein
synthesis, and FOXO is activated, promoting MAFbx and MuRF-1 expression, which accelerates protein degradation. In addition, myogenic
differentiation regulatory factors such as MyoD are inhibited, thereby inhibiting myogenic differentiation of satellite cells. Collagen deposition can
also cause impaired mitochondrial function and increased ROS levels, which not only inhibit the insulin signaling pathway but also activate members
of the FOXO family and their downstream E3 ubiquitin ligases, thereby accelerating protein degradation. Muscle loss can also cause continued
collagen production through inflammatory and fibrotic pathways.
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promote myofiber regeneration by enhancing muscle contractility,

improving muscle blood flow and metabolism, and modulating cell

membrane signaling (62).

Tissue inhibitors of metalloproteinases (TIMPs), another class

of proteins that regulate ECM synthesis and degradation, are

endogenous inhibitors of MMPs in the ECM. The delicate

coordination between the activity of MMPs and their inhibition

by TIMPs ensures ECM homeostasis and is involved in
Frontiers in Endocrinology 05
myofibroblast migration, fusion, and a wide variety of

physiological and pathological remodeling situations (63). In

skeletal muscle, elevated TIMP expression inhibits MMP activity

and causes collagen accumulation and cross-linking (64). The

MMP/TIMP ratio usually determines the extent of ECM protein

degradation and tissue remodeling (65). Dysregulation of the

MMP-2/TIMP-2 and MMP-9/TIMP-1 balance may directly cause

collagen disorders in patients with diabetes, and lowering the ratio
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may attenuate collagen deposition (66). A skeletal muscle MMP-1/

TIMP-1 imbalance during the aging process also increases the

number of collagen fibers, which in turn affects skeletal muscle

mass and function and leads to sarcopenia (67).

Currently, the MMPs that have garnered extensive research

attention in the realms of T2DM and sarcopenic diseases are

primarily MMP-2 and MMP-9. Interestingly, their changes

during disease progression exhibit opposing trends, which

seemingly complicates the role of MMPs in T2DMRS. However,

integrative analysis has revealed that the inflammatory responses

and collagen deposition associated with T2DMRS may increase

MMP expression levels. Consequently, MMP expression in

T2DMRS may be elevated, and yet, the degradation activity of

these MMPs in insulin-resistant skeletal muscle may be diminished.

This presents a scenario where, despite increased expression, the

MMPs remain insufficient to effectively degrade the deposited

collagen. This suggests that MMP activity, rather than quantity, is

more significant in collagen degradation. Therefore, understanding

the relationship between MMP quantity and activity throughout

disease progression is a crucial avenue for future research.

Additionally, as TIMPs are MMP antagonists, their expression

levels indirectly influence collagen alterations. Therefore, the

dynamic balance between MMPs and TIMPs may be pivotal in

maintaining collagen homeostasis. Clarifying the patterns of change

in MMP activity and TIMP inhibitory effects could contribute to the

development of therapeutic strategies for T2DMRS.
5 Hyaluronic acid

Hyaluronic acid (HA) accumulation is involved in the

pathogenesis of diabetes (68). HA synthesis may be caused by the

upregulation of NF-kB–controlled hyaluronan synthase 2 and is

coordinated with the synthesis of chemical elicitors of HA cross-

linking (69). HA increases the residual collagen content in diabetic

rats (70); this implies that HA may be indirectly involved in the

development of diabetes by affecting ECM remodeling. Kang et al.

found for the first time that the HA content is increased in the ECM

of insulin-resistant skeletal muscle and that the intravenous

injection of long-acting pegylated human recombinant PH20

hyaluronidase can reverse muscle insulin resistance by decreasing

HA levels in the muscle ECM (71). HA also regulates adipose tissue

function and influences adipogenesis (72); therefore, HA has value

as a research topic in studies of T2DMRS combined with obesity.

The expression level of cluster of differentiation 44 (CD44), a

major HA receptor, is positively associated with T2DM, and it

influences insulin resistance processes in skeletal muscle (73). HA-

mediated insulin resistance in skeletal muscle does require the

involvement of the CD44 receptor, and CD44-knockout mice

show improved insulin resistance in skeletal muscle along with

enhanced muscle vascularization, suggesting that HA-CD44

signaling may be involved in the pathogenesis of insulin

resistance and T2DM by modulating the transport of insulin and

glucose in muscle (71). As a candidate gene for the development of

obesity and diabetes, CD44 may be a key mediator of the systemic
Frontiers in Endocrinology 06
inflammation response associated with obesity and diabetes,

participating in the regulation of inflammatory responses. Anti-

CD44 antibody therapy has been shown to possibly lower blood

glucose levels while inhibiting macrophage accumulation (74).

However, the influence of HA and its receptors on skeletal

muscle regeneration remains unexplained. HA and its receptors

may improve T2DMRS via a mechanism that addresses insulin

resistance: by allowing glucose to effectively enter muscle tissue, HA

and its receptors may ensure an adequate supply of nutrients to the

muscle, subsequently ameliorating sarcopenia. Additionally, given

its effect on adipose tissue, the HA-CD44 pathway may emerge as a

novel target for treating T2DMRS in conjunction with obesity.
6 Laminin

Laminin is a heterotrimeric structural protein in the basal

lamina of skeletal muscle fibers that surrounds the myofibers and

forms an ecological niche for stem cells, providing an important

scaffold for tissue development, maintenance, and function (75).

The biological functions of laminin are largely realized through

interactions with specific cell surface receptors, such as integrin

family members. Specifically, satellite cells and myofibroblasts

interact with laminin through integrin a7b1. This interaction

plays a critical role in several key processes in satellite cells,

including proliferation, adhesion, migration, and, ultimately,

differentiation (76). For example, laminin-211, by binding to

integrin a7b1, may promote the activation of key cell survival

signaling pathways, such as PI3K/Akt (77). There are no studies

revealing the expression of laminin in sarcopenia, but it has been

found that treatments targeting laminin-111 may also promote

the value-added activation of satellite cells by repairing the

integrin microenvironment, resulting in effective muscle

regeneration (78). In addition, laminin-111 may play a role in

mechanical stability. It reinforces muscle segments to increase their

resistance to the shear stresses generated during muscle contraction,

thus stabilizing muscle segments and effectively protecting muscle

tissues from damage (79). Research has also revealed that the

utilization of laminin-111 in the development of biomaterial

scaffolds may enhance satellite cell activity and suppress the

deposition of fibrotic tissue, thereby enhancing muscle fiber

regeneration (80).

The specific role of skeletal muscle laminin in improving T2DM

has not been supported by evidence. However, it has now been found

that laminin and its receptor may improve the survival and function of

human pancreatic islets (81), and hydrogels containing laminin have

also been investigated as materials for the delivery of insulin-secreting

tissues (82). Therefore, laminin may also serve as a potential

therapeutic target for sarcopenia associated with T2DM, operating

primarily through its interactions with integrin receptors to activate key

signaling pathways that support the proliferation, migration, and

differentiation of muscle satellite cells. This activity facilitates muscle

regeneration and enhances muscle mass, thereby improving glucose

uptake and utilization, alleviating insulin resistance, and fostering a

positive feedback loop that hampers disease progression.
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7 Fibronectin

Fibronectin is the major non-collagenous glycoprotein in the

ECM and basement membrane and plays a central role in cell

adhesion by regulating cell polarity, differentiation, and growth.

The effects of diabetes on fibronectin expression in skeletal muscle

have not been fully explored, but it has been found that

patients with T2DM exhibit fibronectin accumulation in the

liver (83), kidneys (84), and other tissues. This fibronectin

accumulation may involve the activation of TGF-b, MAP

kinases, and connective tissue growth factors. Fibronectin

released from skeletal muscle may mediate exercise-induced

communication between muscle and the liver through hepatic

integrin a5b1 and its downstream pathways, facilitating systemic

autophagy activation and enhancing overall insulin sensitivity

(83). The interactions between fibronectin and integrins may

also trigger biomechanical regulatory mechanisms in which the

binding state of fibronectin to integrin receptors changes

according to mechanical stress, which in turn affects the

behavior of tip cells and promotes or inhibits vascular growth

and branching, with important implications for muscle blood

supply and nutrient transport (85). Therefore, the interactions

between fibronectin and integrins deserve attention. These

interactions not only provide a physical connection between the

cell and the surrounding ECM but also may influence cell

migration, proliferation, and differentiation by converting

mechanical stimuli into intracellular signals through integrin

mechanical switches.

Fibronectin is the preferred adhesion substrate for muscle stem

cells. In aging skeletal muscle, decreased levels of fibronectin, which

regulates the p38 mitogen-activated protein kinase (p38) and

extracellular signal–regulated protein kinase (ERK) senescence

pathways via integrin b1 and focal adhesion kinase (FAK), impair

the functioning of muscle stem cells and negatively affect the

regenerative capacity of skeletal muscle (86). Therefore, targeting

and elevating fibronectin levels may open new pathways for T2DMRS

treatment. Additionally, research has indirectly corroborated the

significance of increased fibronectin levels in muscle regeneration.

The transient accumulation of fibronectin in muscle after injury is

vital for the activation and proliferation of satellite cells, which are

muscle stem cells. The underlying mechanism may involve the

interaction between fibronectin and the frizzled-7/syndecan-4

receptor complex, which activates the Wnt7a signaling pathway,

subsequently inducing the expansion of the satellite cell pool (87).

However, when fibronectin accumulates excessively over time,

fibrotic lesions can develop in skeletal muscle (88), hindering the

function of satellite cells and adversely affecting the normal repair

processes of muscle tissue. Hence, we speculate that a moderate

upregulation of fibronectin expression is capable of activating the

positive progression of muscle regeneration. Insufficient or excessive

upregulation of fibronectin expression may have adverse effects on

the regenerative capacity of muscle. Thus, the adaptive elasticity of

fibronectin expression across different stages of T2DMRS is a

pressing subject warranting further exploration.
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8 Fibromodulin

Fibromodulin (FMOD) is a small leucine-rich proteoglycan in

the skeletal muscle ECM with functions including the promotion of

migration and angiogenesis. FMOD also has anti-inflammatory,

antifibrotic, and repair properties. Skeletal muscle development and

repair are highly regulated by FMOD (89). FMOD expression is

highly upregulated during muscle generation, which may be

attributed to the ability of FMOD to enhance the recruitment of

MSCs to areas of muscle damage or atrophy. Further studies have

confirmed that knocking down the FMOD gene in a mouse model

significantly reduces the number of myotubes formed and

suppresses the expression of genes related to muscle

differentiation (90). In addition, FMOD can regulate collagen

cross-linking, stacking, assembly, and fiber structure through

multivalent interactions (89). It regulates the activity of muscle

growth inhibitor (MSTN) in the collagen matrix by modulating

COL1a1 expression. The affinity between FMOD and MSTN

determines the binding efficiency of MSTN to the receptor activin

receptor type IIB, a process that directly affects the activity of the

TGF-b/Smad signaling pathway, which then regulates cell growth

and differentiation (90). FMOD may also facilitate the influx of

calcium ions by activating calcium channels in myoblasts, thereby

stimulating their differentiation into myotubes (91). Furthermore,

FMOD is effective in protecting myoblasts from the detrimental

effects of excessive lipid accumulation (92), which is beneficial for

muscle regeneration.

Research on FMOD and diabetes indicates that FMOD can

downregulate genes related to diabetes, counteracting the effects of

aging (92). FMOD can also suppress TGF-b1 levels in rat models of

streptozotocin-induced diabetes (93). These findings suggest the

potential role of FMOD in T2DMSR treatment approaches.

However, there is currently a lack of direct and robust

experimental evidence. Further validation is needed to confirm

the inhibitory effect of FMOD on the TGF/Smad signaling pathway

and clarify the mechanisms that reduce skeletal muscle fibrosis and

promote muscle regeneration.
9 Decorin

Decorin is an important component of the ECM and belongs to

a family of small leucine-rich proteoglycans. It not only provides

structural support to cells, but also regulates cell behavior and

function, and is involved in cell signaling and regulation. Myostatin,

as a member of the TGF-b superfamily of growth factors, is an

important negative regulator of skeletal muscle mass. Decorin is

able to bind to and block the effects of myostatin (94). TGF-b1
stimulates muscle growth inhibitor expression, whereas decorin

binds to TGF-b1 and blocks its signaling, thereby ameliorating

muscle fibrosis (95–97). In addition, decorin has the potential to

enhance the proliferation and differentiation of C2C12

myofibroblasts by inhibiting myostatin activity, thereby

promoting muscle regeneration (98). Studies have shown that
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exercise may lead to elevated decorin levels and downregulate

myostatin through competitive binding to promote myofiber

growth (99). Thus, the interaction between decorin and myostatin

may be critical. In addition, decorin secreted by skeletal muscle

might protect human islets from inflammation-induced cell death

in T2DM patients, thereby restoring pancreatic function and

reversing T2DM-related gene expression. Thus, targeting

upregulation of decorin may be potentially beneficial for

T2DMSR therapy, and muscle growth inhibitors may also play an

important role in this process of conversion.

To sum up, Table 1 summarizes the remodeling of these major

skeletal muscle extracellular matrix components in patients and

animal models of type 2 diabetes and sarcopenia.
10 Integrins

Integrins are transmembrane proteins located on the cell

surface that serve as bidirectional links between the ECM and the

cellular cytoskeleton. They transmit external stimuli to regulate

cellular processes, mediating the conversion of mechanical forces

into chemical signals and enabling biomechanical signal

transduction through force-chemical coupling (100). An

association between integrins (101) and the onset of diabetes has

been noted, with integrins even participating in the regulation of

insulin activity in muscle during the early stages of insulin

resistance (102). Seven a subunits of integrins are expressed in

skeletal muscle: a1, a3, a4, a5, a6, a7, and aV, all of which are

associated with the b1 subunit of integrins (12). The integrin b1
receptor is associated with the actin cytoskeleton via talin, and

integrin b1–deficient mouse skeletal muscle shows reduced levels of

talin and F actin, reduced AktSer-473 phosphorylation, and

significantly reduced integrin-linked kinase (ILK) expression,

which may contribute to the impairment of insulin-stimulated

glucose uptake and glycogen synthesis in skeletal muscle (103).

Research has found that the aggregation of integrin b1 may facilitate

the phosphorylation of the insulin receptor and IRS1, thereby

enhancing PI3K activity and stimulating the activation of Akt/

PKB (104). Integrins may also regulate signaling pathways for

collagen synthesis, contributing to the maintenance of ECM
Frontiers in Endocrinology 08
homeostasis. Integrin a1b1 is antifibrotic and negatively regulates

collagen production, whereas integrin a2b1 is pro-fibrotic,

increases ROS production, and positively regulates the synthesis

of collagen (e.g., collagen IV) (105). Integrin-collagen interactions

affect skeletal muscle insulin and glucose metabolism. Integrins may

also affect vascular density and function. The functions of integrins

a1b1 and a2b1 in endothelial cells are antagonistic. The expression

of a1b1 promotes vascular network formation (106), whereas a2b1
restricts vascular growth (107). It is evident that integrins may be

involved in regulating the homeostasis of the vascular system under

diabetic conditions.

Integrin b1 maintains skeletal muscle homeostasis and sustains

the expansion and self-renewal of this stem cell pool during

regeneration (108). Defective integrin signaling affects fibroblast

growth factor responsiveness, which further contributes to impaired

satellite cell proliferation and muscle regeneration (109). Activation

of integrin b1 signaling has the potential to restore the sensitivity of
fibroblast growth factor in aged skeletal muscle and enhance muscle

regeneration, which may involve the activation of their common

downstream effectors, ERK and Akt (108). Fibroblast growth factor

receptor binding to fibroblast growth factor activates a number of

intracellular signaling pathways, including p38a/b MAPK, ERK

MAPK, PI3K/Akt, phospholipase C gamma/protein kinase C, and

signal transducer and activator of transcription signaling, which

may regulate satellite cell function to promote skeletal muscle

regeneration (110). Integrin a7b1 is the major laminin receptor

on adult skeletal myoblasts and adult muscle fibers that connects

laminin to the cytoskeleton of the cell, and targeted deletion of the

integrin a7 subunit gene results in altered expression of the

laminin-a2 chain, resulting in muscle loss (111). In addition,

integrin b3 has been shown to play an important role in muscle

regeneration, and it may inhibit TGF-b1/Smad signaling by

regulating macrophage infiltration and polarization, thereby

reducing muscle fibrosis and promoting muscle regeneration (112).

Integrins, as pivotal mechanical sensors and regulators of

growth induced by mechanical loading, have been shown to

modulate muscle cell function in response to exercise and similar

modalities (113). The expression of integrin a7 increases with

exercise. Following repeated centrifugation exercise, integrin a7b1
can activate the Akt/mTOR/p70S6K signaling pathway, thereby

leading to efficient muscle growth induced by exercise (114).

Massage intervention after prolonged overloading exercise can

enhance the expression of membrane proteins integrin b1 and

basement membrane laminin 2, thus increasing muscle strength

and promoting skeletal muscle repair (115). Following eccentric

bicycle training, the increase in the level of the integrin b1-ILK-
RICTOR-Akt complex protein in human muscle leads to a

corresponding increase in muscle mass and strength (116).

ILK is an important downstream effector of integrins in skeletal

muscle that connects integrins to the actin cytoskeleton and to

many signaling pathways involved in integrin (117). ILK is involved

in the regulation of a wide range of cellular biological functions,

including cell differentiation, proliferation, migration, and

apoptosis, through activation in response to integrins (118). ILK

is absent in skeletal muscle. The muscle atrophy that occurs with
TABLE 1 Remodeling of major components of the skeletal muscle
extracellular matrix in type 2 diabetes mellitus and sarcopenia.

Skeletal muscle
Extracellular matrix

Type 2 diabetes
mellitus

Sarcopenia

Collagen I ↑[human (30, 31)] ↑[C57BL/6J mice (37)]

Collagen III ↑[human (30, 31)] ↑[C57BL/6J mice (37)]

Collagen IV ↑[C57BL/6J mice (32)] —

Matrix metalloproteinase-2 ↓[C57BL/6J mice (58)] ↑[C57BL/6J mice (60)]

Matrix metalloproteinase-9 ↓[C57BL/6J mice (49)] ↑[C57BL/6J mice (59)]

Hyaluronic acid ↑[C57BL/6J mice (71)] —

Fibronectin — ↓[C57BL/6J mice (88)]
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ILK deficiency in skeletal muscle closely resembles the phenotype of

integrin a7b1–deficient mice (119). Upregulation of the integrin

a7-ILK-Akt signaling pathway represents an important

compensatory mechanism that stabilizes and repairs myofibrillar

architecture in response to muscle injury (116). mTOR is a key

regulator of protein synthesis and myofiber growth and has two

distinct core components of multiprotein complexes, namely

mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2)

(120). mTORC1 is the primary regulator of protein synthesis (121),

while mTORC2 is a major regulator of cytoskeletal structure and

cell survival (122). Integrin a7b1 promotes myofibril growth via

FAK/mTORC1, which is the classical integrin-mediated pathway

emphasized in the current literature. In contrast, Boppart et al.

suggested that integrins may not rely on the role of mTORC1 in

muscle growth after mechanical stimulation but rather sustain the

maintenance and remodeling of muscle architecture through an

integrin-ILK-mTORC2-YAP–driven mechanosensing mechanism

(113). During the skeletal muscle response to mechanical stress, the

b1 integrin-ILK complex plays a key role by facilitating insulin-like

growth factor 1 receptor and IRS signaling to the PKB/Akt signaling

pathway (123).

FAK also plays a key role in integrin signaling. A decreased

regenerative capacity of skeletal muscle stem cells is associated with

impaired FAK signaling during aging (86). Liang et al. analyzed

miRNA profiles in the skeletal muscle of aged rats after exercise

intervention and found that Fak may be a hub gene associated with

aging-induced muscle loss (124). Luo et al. found that

phosphorylation of FAK by integrin b1 may activate downstream

signaling pathways, such as ERK and PI3K/Akt, and promote

muscle regeneration in differentiated muscles (125). Furthermore,

in skeletal muscle cells, FAK promotes normal insulin-stimulated

glucose transport and glycogen synthesis by maintaining the

integrity of the actin cytoskeleton (126). Bisht et al. observed that

insulin resistance led to reduced tyrosine phosphorylation of FAK

in C2C12 cells. They found that FAK may stimulate GLUT4

translocation by positively regulating the IRS1/PI3K/PKC

signaling pathway, thereby improving insulin sensitivity and

glucose uptake (127). Subsequently, in a FAK-silenced mouse

model, they found significantly reduced levels of IRS1 and Akt-

Ser473 phosphorylation in muscle and the liver, which further

contribute to insulin resistance (128).

Integrins and their related downstream targets may regulate

skeletal muscle insulin resistance in T2DMRS in several ways. First,

integrin-related proteins increase cytoskeletal stability and may

stimulate glucose uptake and glycogen synthesis processes in

skeletal muscle by facilitating actin remodeling. Second, integrins

and their downstream proteins may enhance the effective transport

of insulin and nutrients within muscle tissue by promoting muscle

angiogenesis. Third, integrin proteins can sense changes in ECM

mechanical properties and mediate the conversion of mechanical

forces to chemical signals, which may help to maintain normal

insulin signaling and muscle structure remodeling to ameliorate

skeletal muscle insulin resistance. Integrins may promote skeletal

muscle regeneration through mechanisms such as activation of

muscle stem cells, maintenance of muscle architecture, modulation
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of inflammatory responses, inhibition of fibrosis, and mediation of

mechanical signaling for activation of key growth pathways, which

in turn improves muscle insulin resistance. There are many

members of the integrin family, some of which are even

antagonistic to each other. Integrin b1, especially a7b1 in skeletal

muscle, has been demonstrated to play a positive regulatory role in

diabetes mellitus and sarcopenia. In addition, mechanotherapy,

which can activate integrin sensors and promote force-chemical

signaling, is a therapeutic strategy that deserves in-depth

exploration. In summary, integrins and related proteins have a

compounding role in regulating insulin sensitivity and muscle

regenerative capacity in skeletal muscle, as shown in Figure 3,

which makes them highly promising targets when exploring

therapeutic options for T2DMRS.
11 Therapeutic strategies

There is no recognized specific treatment for T2DMRS. Because

of the multiple bidirectional effects between sarcopenia and T2DM,

there is some commonality between the two in terms of treatment

strategies. Currently, some therapies remodel the ECM while

treating diabetes or sarcopenia. Therefore, targeting the ECM may

be an effective strategy for treating T2DMRS. The development of

targeted therapies focusing on the ECM is expected to be an

important way to address this complication. As shown in

Figure 4, studies have found that exercise training remodels

collagen (18), and integrins (110, 114); drugs modulate collagen

(129), hyaluronic acid (71), and MMPs (59); nutritional

interventions also have an effect on MMPs (61); and massage

may modulate integrin signaling (115). In addition, researchers

have attempted to develop a variety of biomaterials and scaffolds

that mimic skeletal muscle ECM components such as collagen (130)

and laminin (82).
12 Conclusions and perspectives

The ECM is critical for maintaining homeostasis in skeletal

muscle. In diabetes mellitus and sarcopenia, the ECM in skeletal

muscle undergoes extensive remodeling, which involves an abnormal

accumulation of collagen, HA, and other components. The resulting

ECM highway blockage forms a physical barrier that prevents the

efficient transport of nutrients such as insulin and glucose to the

muscle. This may be one of the mechanisms underlying T2DMRS

development. In addition, abnormal ECM remodeling can damage the

highway to the muscle, which may inhibit insulin signaling, impair the

normal function of insulin, affect mechanical signaling in skeletal

muscle, and affect muscle regeneration. Therefore, unclogging and

repairing this hidden highway may be an effective strategy for the

treatment of T2DMRS. Targeting the ECM may promote muscle

regeneration by increasing skeletal muscle insulin sensitivity and

improve T2DM insulin resistance by increasing muscle volume,

improving glucose uptake and utilization, and subsequently

producing a virtuous circle that counteracts disease development.
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FIGURE 3

Integrin signaling influences potential pathways in skeletal muscle insulin sensitivity and muscle regeneration. The normal activation of integrin
signaling regulates macrophage polarization and infiltration and inhibits macrophage transforming growth factor beta (TGF-b)/Smad signaling,
thereby improving muscle fibrosis and promoting muscle regeneration. (A) Integrin can activate skeletal muscle regeneration and repair signal
pathways such as p38 mitogen-activated protein kinase (MAPK), extracellular signal–regulated kinase (ERK) MAPK, PI3K/Akt, phospholipase C gamma
(PLCg)/protein kinase C (PKC), and signal transducers and activators of transcription (STAT) through interaction with fibroblast growth factor receptor
(FGFR). (B) Integrins also activate the ILK/MTORC2/Yap, FAK/ERK, and FAK/IRS1/PI3K/Akt/MTORC1 pathways to synergistically promote skeletal
muscle regeneration. (C) Integrins are involved in maintaining the stability of the actin cytoskeleton, (E) promoting insulin signaling pathway
activation and (D) muscle capillary neovascularization, and (F) thereby stimulating GLUT4 translocation and increasing glucose uptake and
insulin sensitivity.
FIGURE 4

Potential extracellular matrix-targeted therapies for type 2 diabetes mellitus–related sarcopenia. This figure illustrates potential ECM targeted
therapies for the treatment for T2DMRS. It also distinguishes the ECM remodeling targets of different therapies.
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The key to targeting ECM remodeling as a T2DMRS treatment

approach lies in restoring the dynamic balance of the ECM. After

comprehensively analyzing the current literature, we have identified a

striking common feature: collagen deposition is prevalent in patients

with T2DM and sarcopenia. Furthermore, inhibition of collagen

synthesis or promotion of its degradation ameliorates both skeletal

muscle insulin resistance and sarcopenia, which makes collagen a

promising target in the development of therapeutic strategies for

T2DMRS. MMPs, TIMPs, and integrins associated with the dynamic

homeostasis of collagen also have significant research value. Other

ECM components and related proteins also have some potential as

targets for disease intervention, but more research is needed.

Correcting sarcopenia is expected to be the cornerstone of

improving glycemic stability and long-term prognosis in elderly

patients with T2DM. The development of novel drugs or therapies

targeting the ECM is expected not only to lower blood glucose levels

but also to promote muscle health, thereby significantly improving

clinical benefits and increasing the healthy life expectancy of elderly

patients with diabetes. However, a number of potential challenges

remain in this process. First, ECM components are complex and

diverse and vary across tissues and disease states, which makes it

difficult to develop drugs or other therapies that can specifically target

skeletal muscle ECM components. Therefore, we need to strengthen

basic research on ECM components in different tissues and disease

states, such as using histological techniques to identify altered

components specific to the T2DMRS state, or consider a multi-

targeted drug development strategy. In addition, the dense structure

of the ECM and its role as a physical barrier may limit the effective

delivery of therapeutic drugs. This could be improved by developing

novel drug delivery vehicles, such as nanotechnology carriers,

optimizing topical delivery modalities, and exploring combined

applications with physical therapies to enhance drug penetration. It

should not be overlooked that adverse effects associated with muscle

fibrosis may be triggered when modulating ECM remodeling. For

example, drugs that down-regulate MMP activity by targeting it may

lead to a decrease in collagen degradation capacity, thus causing

muscle fibrosis. Therefore, in future studies, the issue of precise

dosage needs to be explored in conjunction with the use of

antifibrotic adjuvants to mitigate side effects. Despite the many

challenges of targeted ECM therapy, it is expected to bring new

breakthroughs in the treatment of T2DMRS through in-depth study

of its structure and function, innovative technological tools, and

optimization of combined treatment protocols.

As research has progressed, our understanding of the role of the

ECM has evolved from the traditional perception of it being a

structural scaffold to that of it serving as a key signaling molecule

that regulates integrin-mediated mechanotransduction pathways.

Mechanical stimulation has been shown to promote ECM

remodeling and integrin signaling in skeletal muscle. The

conversion from mechanical stimulation to chemical signals

regulates insulin resistance and muscle regeneration in skeletal
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muscle. Exercise is currently the preferred strategy for sarcopenia

treatment, but its mechanism of regulating the ECM and integrins

needs to be further elucidated to provide a scientific basis for the

continued development of evidence-based exercise programs

targeting the ECM. Considering the motor impairment and

related risks faced by elderly patients with T2DM, non-

pharmacological therapies that are suitable for patients with

limited movement, such as massage and acupuncture, have broad

application prospects. In summary, the hidden highway comprising

the ECM and integrins may become a risk prediction marker and

potential target for T2DMRS treatment.
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