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Background: Type 2 diabetes mellitus (T2DM) is a common comorbidity of

chronic obstructive pulmonary disease (COPD), which significantly increases the

risk of rehospitalization and mortality in patients with COPD. Therefore, the

purpose of this study was to identify the influencing factors of COPD

complicated by T2DM and to construct a visualized disease prediction model.

Method:We included the medical records of 1,773 patients with COPD treated at

Quzhou People’s Hospital from 2020 to 2023. Subjects were randomly divided

into a training set (n = 1,241) and a test set (n = 532) in a 7:3 ratio. Variable

selection was performed using the least absolute shrinkage and selection

operator (LASSO), Pearson correlation, and multicollinearity diagnostics.

Variables were then refined through backward stepwise selection based on the

Akaike Information Criterion (AIC) to construct a nomogram. The accuracy of the

nomogram was evaluated using receiver operating characteristic (ROC) curves,

calibration curves, and the Hosmer–Lemeshow test (H-L test). The clinical utility

of the model was evaluated using decision analysis curves (DCA). Additionally, k-

fold cross-validation (k = 10) was performed to rigorously assess model stability

and mitigate the risk of overfitting. A sex-stratified subgroup analysis was also

conducted to address potential sex-related bias.

Results: The prevalence of T2DM in COPD patients was 27.13%. Seven

independent predictors of COPD complicated by T2DM were identified:

arterial partial pressure of carbon dioxide (PCO2) (OR = 1.04, 95%CI: 1.02–

1.05), neutrophil number (NEUT) (OR = 1.15, 95%CI: 1.10–1.19), C-reactive

protein (CRP) (OR = 1.01, 95%CI: 1.01–1.02), erythrocyte sedimentation rate

(ESR) (OR = 1.03, 95%CI: 1.02–1.05), bilirubin (OR = 0.92, 95%CI: 0.88–0.96),

triglyceride (TG) (OR = 1.33, 95%CI: 1.13–1.56), and body mass index (BMI) (OR =

1.16, 95%CI: 1.11–1.20). The model demonstrated good predictive performance,

with a C-index of 0.78. The area under the curve (AUC) values were 0.79 (95%CI:

0.76–0.81) for the training set and 0.80 (95%CI: 0.76–0.84) for the test set,

consistent with the k-fold cross-validation average AUC of 0.79 (95%CI: 0.76–

0.81). Calibration curves and the H-L test (P >0.05) indicated good agreement

between predicted and observed outcomes. DCA curves demonstrated clinical
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utility across threshold probabilities. Subgroup analysis showed robust

performance in both male (0.82, 95%CI: 0.77–0.86) and female (0.71, 95%CI:

0.60–0.83) groups, with no significant difference in discriminatory ability

(DeLong P = 0.101).

Conclusion: In this study, we developed and internally validated a visualized

prediction model for early identification of T2DM risk in patients with COPD. This

tool may facilitate targeted prevention strategies by identifying high-risk

populations. While the model demonstrated good performance, external

validation is still required to confirm its generalizability.
KEYWORDS

chronic obstructive pulmonary disease, type 2 diabetes mellitus, complication,
prediction, nomogram
1 Introduction

Chronic obstructive pulmonary disease (COPD) is the third

leading cause of death worldwide (1). It affects over 200 million

people and causes approximately 3.3 million deaths annually, with

both prevalence and mortality rates increasing rapidly (2). Among

individuals aged 30–79, the prevalence of COPD had reached

10.3%, and 80.5% of cases occurring in developing countries (3).

As the largest developing country in the world, China accounts for

25% of global COPD cases (4), with a prevalence of 8.6% among

adults aged ≥20 years and 13.7% among those aged ≥40 years (5).

As a major public health challenge, COPD contributes to

population disease burden through both widespread prevalence

and complex comorbidity profiles. Approximately 40% of COPD

patients have one or more complications (6), imposing a substantial

disease burden on Chinese society.

COPD increases the risk of developing type 2 diabetes mellitus

(T2DM), which is the most common complication, with a

prevalence of up to 30% in COPD patients (7). Moreover,

complicated by T2DM is associated with a higher risk of 30-day

readmission and longer hospital stays in COPD patients (8, 9).This

relationship was bidirectional, as T2DM also increases the risk of

developing COPD. Evidence suggests that T2DM significantly

impairs lung function in COPD patients. For every 1 mmol/L

increase in blood glucose levels, there is a reduction of 25 ml in

forced vital capacity (FVC) (95%CI: −11 ml to 39 ml), a decrease of

0.71% in FVC percentage (95%CI: −0.34% to 1.08%), a reduction of

13 ml in forced expiratory volume in 1 s (FEV1) (95%CI: −2 ml to

25 ml), and a decrease of 0.46% in FEV1 percentage (95%CI: −0.09%

to 0.83%) (10). Furthermore, the coexistence of COPD and T2DM

reduced patients’ exercise capacity and quality of life, increases

mortality risk and raises the likelihood of developing other chronic

conditions such as heart failure and kidney disease (11–13).

Therefore, it was necessary to explore the influencing factors of

COPD complicated by T2DM.
02
Currently, studies increasingly explore the comorbidity

mechanisms of COPD and T2DM and observe that chronic

inflammation may link them. High levels of inflammatory factors

in COPD, such as C-reactive protein (CRP) and tumor necrosis

factor a (TNF-a), are considered risk factors for developing T2DM

(14). In addition, oxidative stress (15, 16) and obesity (17) are other

potential risk factors. Studies had found that excess oxidative

substances and adipocytes could promote the production of

inflammatory factors, thereby aggravating systemic inflammation

and increasing the risk of T2DM in COPD. However, the

mechanisms among these influential factors are complex and

have not yet reached a clear consensus in many aspects (16).

Moreover, studies on risk prediction models specifically for

COPD complicated by T2DM are relatively scarce, limiting our

ability to fully understand and effectively manage this disease.

Consequently, this study utilized least absolute shrinkage and

selection operator (LASSO) regression and mutivariable logistic

regression to identify potential factors influencing the occurrence of

T2DM in COPD patients. Additionally, we constructed a

nomogram to facilitate early diagnosis and intervention. This

model has clinical application value by promoting more precise

screening, prevention, and management of high-risk populations

for COPD complicated by T2DM, thereby enhancing the cost-

effectiveness of public health resource utilization.
2 Methods

2.1 Study population

This retrospective case–control study utilized data from patients

treated in the Department of Respiratory and Critical Care

Medicine at Quzhou People’s Hospital from 2020 to 2023. The

sample size was calculated based on the events per variable (EPV)

criterion (18). We anticipated incorporating seven core predictor
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variables into the model and adopted a conservative EPV threshold

of 20. The training set was allocated 70% of the data, while a 10%

buffer was reserved for invalid samples to account for data

omissions or quality-related exclusions. Consequently, a

minimum final sample size of 223 cases was required.

After screening, 1,773 patients were included, and the specific

screening process is shown in Figure 1. COPD diagnosis followed

the Global Initiative for Chronic Obstructive Lung Disease (GOLD)

guidelines (19): a prior clinical COPD diagnosis or post-

bronchodilator forced expiratory volume in 1 s (FEV1)/forceful

lung volume (FVC) <70% with a stable clinical profile for ≥3

months. T2DM patients diagnosis required (1): a previous clinical

diagnosis (2), random blood glucose level ≥11.1 mmol/L (3), fasting

blood glucose level ≥7.0 mmol/L, or (4) blood glucose level ≥11.1

mmol/L at 2 h after glucose loading, according to the Guidelines for

the Prevention and Control of T2DM (20). The study was approved

by the Ethics Committee of Quzhou People’s Hospital (2024–122)

and conducted in accordance with the Declaration of Helsinki.
2.2 Inclusion and exclusion criteria

Inclusion criteria (1): Age ≥18 years (2); clinically stable (no

exacerbations for ≥3 months) (3); complete laboratory and test data

(4); provided signed informed consent and demonstrated good

compliance. Exclusion criteria: Patients were excluded if they met

any of the following conditions (1): Presence of respiratory diseases

other than COPD, such as interstitial pneumonia or asthma (2);

diagnosis of type 1 diabetes mellitus (3); presence of acute or

chronic complications (4); comorbidities including thyroid

disease, severe liver or renal insufficiency, malignancies, recent

surgery, or major trauma.
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2.3 Clinical data collection

Patient demographics collected included: age, sex, height, weight,

body mass index (BMI), past medical history, history of smoking and

alcohol consumption. Admission laboratory tests indicators included:

neutrophil count (NEUT, ×109/L), C-reactive protein (CRP, mg/L),

erythrocyte sedimentation rate (ESR, mm/h), partial pressure of carbon

dioxide (PCO2, mmHg), total cholesterol (TC, mmol/L), triglycerides

(TG, mmol/L), high-density lipoprotein (HDL, mmol/L), low-density

lipoprotein (LDL, mmol/L), total bilirubin (mmol/L), albumin (Alb, g/L),

globulin (Glb, g/L), hemoglobin (HGB, g/L), platelet count (PLT,

×109/L), D-dimer (mg/L), prothrombin time (PT, S), activated partial

thromboplastin time (APTT, S), alanine aminotransferase (ALT, U/L),

and aspartate aminotransferase (AST, U/L).
2.4 Statistical analysis

The normality of continuous variables was assessed using the

Kolmogorov–Smirnov test. Normally distributed variables were

described by mean (SD) and compared between groups using

Student’s t-test, while non-normally distributed variables were

described by median (Q1, Q3) and compared using the Mann–

Whitney U test. Categorical variables were presented as n (%) and

compared using the chi-square test or Fisher’s exact test.

The study population was randomly divided into training and

test sets in a 7:3 ratio. Mann–Whitney U test, Student’s t-test, and

chi-square test were used to compare differences in clinical

indicators between the two sets and two groups. In the training

set, variables were initially selected using LASSO regression.

Subsequently, the variables identified by LASSO regression

underwent further screening using Pearson correlation analysis
FIGURE 1

Screening process for subjects in this study.
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(r <0.7) and multicollinearity diagnosis (VIF <4). The resulting

variables were incorporated into a multivariate logistic regression

model. The final diagnostic model of COPD combined with T2DM

was constructed using backward stepwise selection based on the

Akaike Information Criterion (AIC), and a nomogram was

developed. The diagnostic model was evaluated using receiver

operating characteristic curves (ROC), calibration curves, the

Hosmer–Lemeshow test (H-L test), and decision curve analysis

(DCA), and was internally validated using the test set. To further

evaluate the robustness of the prediction model and address

potential overfitting concerns inherent in a single data split, we

performed k-fold cross-validation (k = 10) on the entire dataset. In

addition, we conducted subgroup analysis to evaluate the model’s

performance in male and female subgroups, thereby further

validating the generalizability of the predictive model.

Statistical analyses were performed using SPSS version 26.0 and

R version 4.4.2, and results were considered statistically significant

at a two-sided P <0.05.
3 Results

3.1 Clinical characteristics of the study
population

A total of 1,773 COPD patients were included in this study, of

whom 481 (27.13%) were also diagnosed with T2DM. The average

age of the patients was 72.32 years, with 262 (14.78%) females and

1,511 (85.22%) males. All patients were randomly divided into a

training set (n = 1,241) and a test set (n = 532) in a 7:3 ratio.

Variable characteristics showed no significant differences between

the two sets (P >0.05, Table 1).

In both the training and test sets, the COPD with T2DM group

exhibited significantly higher levels of inflammatory markers

compared to the COPD without T2DM group, including NEUT

(training set: 6.83 vs 4.82, P <0.001; test set: 6.65 vs 4.83, P <0.001),

ESR (training set: 33.00 vs 24.00, P <0.001; test set: 33.00 vs 24.00,

P <0.001), and CRP (training set: 31.40 vs 18.50, P <0.001; test set:

31.40 vs 18.50, P <0.001). Blood lipid profiles also differed

significantly, with elevated TG (training set: 1.46 vs 1.08, P <0.001;

test set: 1.51 vs 1.10, P <0.001) and LDL (training set: 3.00 vs 2.81,

P <0.001; test set: 3.16 vs 2.80, P <0.001), but reduced HDL (training

set: 0.99 vs 1.14, P <0.001; test set: 1.00 vs 1.16, P <0.001).

Additionally, the COPD with T2DM group showed higher blood

gas indices, specifically PCO2 (training set: 51.80 vs 47.70, P <0.001;

test set: 51.90 vs 47.70, P <0.001). Conversely, total bilirubin levels

(training set: 9.00 vs 11.00, P <0.001; test set: 9.00 vs 11.00, P <0.001)

were significantly lower in the COPD with T2DM group (Table 2).
3.2 Selection of study variables

The 26 variables in the training set underwent variable selection

via LASSO regression (Figure 2A), and coefficient changes for each

variable were shown in Figure 2B. Using 10-fold cross-validation,
Frontiers in Endocrinology 04
the optimal model was obtained at l = 0.021 (Log(l) = −3.86). A

total of 14 variables were selected: PLT, HGB, APTT, NEUT, CRP,

ESR, PCO2, HDL, LDL, TG, bilirubin, weight, BMI, and age.

Subsequent Pearson correlation analysis and multicollinearity

diagnostics revealed strong collinearity between BMI and weight

(r = 0.865,VIF >4). Given BMI’s superior utility in quantifying

obesity, weight was excluded (Table 3).
3.3 Construction of the nomogram

Subsequently, 13 candidate variables were retained for logistic

regression analysis. Backward stepwise selection based on AIC

further refined the model, resulting in seven independent

predictors. The final model demonstrated good discrimination

(C-index = 0.78; Table 4).

The model indicated that elevated levels of PCO2 (OR = 1.04,

95%CI: 1.02–1.05), NEUT (OR = 1.15, 95%CI: 1.10–1.19), CRP (OR

= 1.01, 95%CI: 1.01–1.02), ESR (OR = 1.03, 95%CI: 1.02–1.05), TG

(OR = 1.33, 95%CI: 1.13–1.56), and BMI (OR = 1.16, 95%CI: 1.11–

1.20) were significantly associated with an increased risk of COPD

combined with T2DM. Conversely, a higher level of bilirubin (OR =

0.92, 95%CI: 0.88–0.96) was associated with a decreased risk of

developing COPD complicated with T2DM.

A nomogram was constructed by assigning scores proportional to

the regression coefficients (Figure 3). Summing the individual scores

yields a total point value, which corresponds to the T2DM risk

probability on the bottom axis. Based on total scores, a risk

classification system was established, categorizing patients into three

groups (Figure 4): low-risk (score: 0.0–64.9; T2DM probability: 6.8%),

medium-risk (score: 65.0–88.1; T2DM probability: 22.6%), and high-

risk (score: 88.1–189.2; T2DM probability: 52.1%).
3.4 Validation of the nomogram

The area under the curve (AUC) for the training set and test set

was 0.79 (95%CI: 0.76–0.81) and 0.80 (95%CI: 0.76–0.84),

respectively (Figure 5). To provide a more robust assessment of

model performance, k-fold cross-validation was conducted on the

entire cohort. The average AUC across the 10 validation folds

(Figure 6) was 0.79 (95%CI: 0.76–0.81). The consistency of AUC

values across folds, along with the average AUC closely aligning

with those observed in the independent test set (0.80) and the

training set (0.79), demonstrated that the nomogram possessed

robust predictive performance and stability.

Calibration curves for the training and test sets indicated good

agreement between predicted probabilities and actual outcomes

(Figures 7A, B). The H-L test showed good calibration (training set:

c² = 10.58, P = 0.23; test set: c² = 12.06, P = 0.15). Furthermore,

decision curve analysis demonstrated significant clinical utility of

the nomogram (Figures 7C, D), yielding net clinical benefit across a

threshold probability range of 2% to 64% in clinical practice.

Given the imbalanced sex ratio (85.22% male) in our study, we

assessed potential sex-related bias to enhance the model’s
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TABLE 1 The equilibrium test of the training set and test set.

Variables Total (n = 1,773) Test (n = 532)
Training

(n = 1,241)
Statistic P

Age, Mean ± SD 72.32 ± 9.22 72.55 ± 9.02 72.22 ± 9.31 0.68* 0.497

Height, Mean ± SD 164.46 ± 7.67 164.28 ± 7.80 164.53 ± 7.61 −0.62* 0.534

Weight, Mean ± SD 58.96 ± 11.39 58.97 ± 11.38 58.96 ± 11.39 0.02* 0.981

BMI, Mean ± SD 21.79 ± 3.86 21.86 ± 3.96 21.76 ± 3.82 0.53* 0.599

With T2DM, n(%) 0.01** 0.924

No 1,292 (72.87) 393 (73.87) 899 (72.44)

Yes 481 (27.13) 139 (26.13) 342 (27.56)

Smoke, n(%) 0.27** 0.605

No 687 (38.75) 211 (39.66) 476 (38.36)

Yes 1,086 (61.25) 321 (60.34) 765 (61.64)

Drink, n(%) 3.38** 0.066

No 1,133 (63.90) 357 (67.11) 776 (62.53)

Yes 640 (36.10) 175 (32.89) 465 (37.47)

Gender, n(%) 0.41** 0.522

Female 262 (14.78) 83 (15.60) 179 (14.42)

Male 1,511 (85.22) 449 (84.40) 1,062 (85.58)

Past medical history, n(%) 0.70** 0.403

No 1,457 (82.18) 431 (81.02) 1,026 (82.68)

Yes 316 (17.82) 101 (18.98) 215 (17.32)

PLT, M (Q1, Q3) 223.00 (174.00, 275.00) 227.50 (178.75, 280.00) 221.00 (173.00, 274.00) −1.80*** 0.072

HGB, M (Q1, Q3) 30.40 (29.10, 32.80) 30.40 (29.10, 33.52) 30.30 (29.00, 32.50) −0.70*** 0.484

PCO2, M (Q1, Q3) 47.70 (44.90, 52.30) 47.70 (45.25, 52.30) 47.70 (44.80, 52.30) −0.29*** 0.772

NEUT, M (Q1, Q3) 5.27 (3.73, 7.82) 5.24 (3.63, 7.84) 5.28 (3.77, 7.79) -0.73*** 0.466

ESR, M (Q1, Q3) 24.00 (22.00, 33.00) 24.00 (21.00, 33.00) 24.00 (22.00, 33.00) −0.78*** 0.438

CRP, M (Q1, Q3) 18.70 (14.40, 31.40) 18.70 (13.53, 31.40) 18.70 (14.60, 31.40) −1.18*** 0.239

D-Dimer, M (Q1, Q3) 0.78 (0.38, 1.44) 0.74 (0.37, 1.50) 0.79 (0.38, 1.42) −0.15*** 0.884

PT, M (Q1, Q3) 13.50 (13.00, 14.20) 13.50 (12.90, 14.20) 13.50 (13.00, 14.20) −0.59*** 0.555

APTT, M (Q1, Q3) 38.10 (34.90, 42.00) 38.50 (35.10, 42.60) 38.10 (34.90, 41.70) −1.14*** 0.256

ALT, M (Q1, Q3) 18.00 (12.00, 26.00) 18.00 (12.00, 26.00) 18.00 (12.00, 26.00) −0.61*** 0.541

AST, M (Q1, Q3) 22.00 (18.00, 28.00) 22.00 (18.00, 27.00) 22.00 (18.00, 28.00) −0.12*** 0.905

Alb, M (Q1, Q3) 36.10 (32.80, 39.10) 36.40 (33.20, 39.00) 36.00 (32.60, 39.20) −1.05*** 0.293

Glb, M (Q1, Q3) 29.90 (26.80, 33.60) 30.00 (26.90, 33.73) 29.90 (26.70, 33.60) −0.80*** 0.422

Bilirubin, M (Q1, Q3) 10.00 (8.00, 12.00) 10.00 (8.00, 12.00) 10.00 (8.00, 12.00) −1.14*** 0.256

TC, M (Q1, Q3) 4.43 (3.61, 5.46) 4.47 (3.64, 5.41) 4.43 (3.58, 5.47) −0.41*** 0.685

TG, M (Q1, Q3) 1.16 (0.89, 1.63) 1.17 (0.89, 1.65) 1.15 (0.89, 1.62) −0.26*** 0.795

HDL, M (Q1, Q3) 1.06 (0.93, 1.23) 1.08 (0.95, 1.23) 1.05 (0.92, 1.23) −1.11*** 0.269

LDL, M (Q1, Q3) 2.84 (2.33, 3.30) 2.84 (2.37, 3.30) 2.84 (2.31, 3.30) −0.19*** 0.849
F
rontiers in Endocrinology
 05
*t-test, **Chi-square test, ***Mann–Whitney test.
SD, standard deviation; M, Median; Q1, 1st Quartile; Q3, 3rd Quartile.
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TABLE 2 Analysis of clinical features in COPD with T2DM and only COPD patients.

Factors

Training Test

Without T2DM
(n = 899)

With T2DM
(n = 342)

Statistic P
Without T2DM

(n = 393)
With T2DM
(n = 139)

Statistic P

Age, Mean ± SD 71.42 ± 9.26 74.34 ± 9.11 −4.98* <.001 71.75 ± 9.17 74.82 ± 8.19 −3.49* <.001

Height, Mean
± SD

164.24 ± 7.57 165.30 ± 7.68 −2.19* 0.029 164.25 ± 7.85 164.37 ± 7.66 −0.15* 0.881

Weight, Mean
± SD

57.59 ± 10.47 63.54 ± 11.66 −8.26* <.001 57.79 ± 11.34 63.46 ± 12.42 −4.94* <.001

BMI, Mean ± SD 21.35 ± 3.72 23.21 ± 3.69 −7.85 <.001 21.39 ± 3.73 23.49 ± 4.36 −5.45* <.001

Smoke, n (%) 2.39** 0.122 17.73** <.001

No 333 (37.04) 143 (41.81) 135 (34.35) 76 (54.68)

Yes 566 (62.96) 199 (58.19) 258 (65.65) 63 (45.32)

Drink, n (%) 0.01** 0.911 3.36** 0.067

No 563 (62.63) 213 (62.28) 255 (64.89) 102 (73.38)

Yes 336 (37.37) 129 (37.72) 138 (35.11) 37 (26.62)

Gender, n (%) 10.21** 0.001 19.68** <.001

Female 112 (12.46) 67 (19.59) 45 (11.45) 38 (27.34)

Male 787 (87.54) 275 (80.41) 348 (88.55) 101 (72.66)

Past medical history, n (%) 24.11** <.001 13.11** <.001

No 714 (79.42) 312 (91.23) 304 (77.35) 127 (91.37)

Yes 185 (20.58) 30 (8.77) 89 (22.65) 12 (8.63)

PLT, M (Q1, Q3) 222.00 (174.50, 273.00) 221.00 (163.25, 274.75) −1.08*** 0.279 230.00 (185.00, 283.00) 222.00 (166.50, 271.50) −1.33*** 0.184

HGB, M (Q1, Q3) 30.40 (29.10, 32.20) 30.30 (28.90, 103.00) −0.72** 0.473 30.40 (29.30, 33.00) 30.00 (28.50, 68.35) −2.28*** 0.023

PCO2, M (Q1, Q3) 47.70 (43.70, 51.10) 51.80 (49.60, 52.80) −9.06** <.001 47.70 (44.40, 51.70) 51.90 (49.60, 53.10) −6.00*** <.001

NEUT, M
(Q1, Q3)

4.82 (3.50, 7.17) 6.83 (4.85, 9.05) −9.44*** <.001 4.83 (3.35, 6.93) 6.65 (5.04, 9.34) −6.35*** <.001

ESR, M (Q1, Q3) 24.00 (20.00, 33.00) 33.00 (32.50, 33.00) −11.06*** <.001 24.00 (17.00, 32.50) 33.00 (32.50, 33.00) −7.40*** <.001

CRP, M (Q1, Q3) 18.50 (12.80, 26.72) 31.40 (25.12, 31.60) −11.55*** <.001 18.50 (12.66, 23.20) 31.40 (22.38, 31.65) −7.51*** <.001

D-Dimer, M
(Q1, Q3)

0.75 (0.37, 1.30) 0.98 (0.45, 1.60) −3.72*** <.001 0.63 (0.35, 1.30) 1.01 (0.51, 1.81) −3.42*** <.001

PT, M (Q1, Q3) 13.50 (13.00, 14.20) 13.50 (13.00, 14.30) −0.95*** 0.342 13.50 (13.00, 14.10) 13.50 (12.90, 14.30) −0.02*** 0.984

APTT, M
(Q1, Q3)

38.30 (35.00, 42.15) 37.70 (34.62, 41.08) −2.15*** 0.031 38.80 (35.30, 42.60) 37.60 (34.50, 42.75) −1.19*** 0.234

ALT, M (Q1, Q3) 17.00 (12.00, 26.00) 20.00 (14.00, 25.00) −2.57*** 0.010 17.00 (12.00, 24.00) 22.00 (14.50, 30.00) −4.04*** <.001

AST, M (Q1, Q3) 22.00 (18.00, 28.00) 22.00 (18.00, 27.00) −0.03*** 0.974 21.00 (18.00, 27.00) 24.00 (19.00, 28.00) −2.13*** 0.033

Alb, M (Q1, Q3) 36.20 (32.95, 39.50) 35.00 (31.80, 39.00) −2.58*** 0.010 36.80 (33.60, 39.20) 35.20 (32.45, 38.50) −2.65*** 0.008

Glb, M (Q1, Q3) 29.90 (26.80, 33.60) 29.75 (26.60, 33.45) −0.26*** 0.791 29.80 (26.70, 33.70) 30.30 (27.00, 33.85) −0.61*** 0.544

Bilirubin, M
(Q1, Q3)

11.00 (8.00, 12.00) 9.00 (8.00, 10.00) −4.94*** <.001 11.00 (8.00, 12.00) 9.00 (8.00, 10.00) −3.75*** <.001

TC, M (Q1, Q3) 4.35 (3.56, 5.32) 4.66 (3.74, 5.51) −1.69*** 0.092 4.31 (3.61, 5.25) 4.86 (3.73, 5.52) −2.01*** 0.044

TG, M (Q1, Q3) 1.08 (0.86, 1.54) 1.46 (1.02, 1.77) −6.49*** <.001 1.10 (0.86, 1.53) 1.51 (1.04, 1.77) −4.10*** <.001

HDL, M (Q1, Q3) 1.14 (0.92, 1.28) 0.99 (0.91, 1.10) −6.87*** <.001 1.16 (0.95, 1.26) 1.00 (0.94, 1.08) −5.16*** <.001

LDL, M (Q1, Q3) 2.81 (2.26, 3.30) 3.00 (2.44, 3.33) −3.73*** <.001 2.80 (2.33, 3.19) 3.16 (2.53, 3.49) −4.37*** <.001
F
rontiers in Endocrin
ology 06
 frontie
*t-test, **Chi-square test, ***Mann–Whitney test.
SD, standard deviation; M, Median; Q1, 1st Quartile; Q3, 3rd Quartile.
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generalizability (Figure 8). Subgroup analysis demonstrated that the

model maintained good predictive performance in both sexes (male:

0.82, 95%CI: 0.77–0.86; female: 0.71, 95%CI: 0.60–0.83), with no

significant difference in predictive capability between male and

female subgroups according to DeLong’s test (P = 0.101).
4 Discussion

COPD and T2DM are chronic non-communicable diseases of

global concern. Substantial evidence indicates that COPD

significantly increases the risk of developing T2DM (21, 22).

Concurrently, COPD complicated by T2DM also increases the

risk of hospital readmission and mortality in patients (8, 9, 23).

In this study, we investigated clinical characteristics associated with

the prevalence of COPD combined with T2DM and developed an

early diagnostic model incorporating PCO2, NEUT, CRP, ESR, TG,

BMI, and bilirubin. The model demonstrated robust performance

and clinical predictive value, offering a novel and reliable tool for

early identification of T2DM risk in COPD patients.

Chronic inflammation is a key shared pathophysiological

mechanism in COPD and T2DM. Neutrophils, the predominant

inflammatory cells in COPD (24), are also elevated in diabetes and

served as significant predictors (25, 26). In addition, CRP has been

shown to be an independent risk factor for COPD combined with

T2DM and to exacerbate insulin resistance (27). Our findings

showed that inflammation-related factors were all elevated in the

COPD with T2DM group compared to the COPD-only group, with

NEUT, CRP, and ESR identified as independent predictors.

Elevated peripheral blood neutrophil count is directly

proportional to FEV1 and emphysema severity (28, 29).

Furthermore, neutrophils cause lung tissue damage and worsen

lung inflammation by releasing proteases and oxidants. Crucially,

enhanced elastase secretion by neutrophils exacerbates diabetic

insulin resistance (30). CRP and ESR are also important

inflammatory markers in COPD that promote the expression of

inflammatory cells during acute exacerbations of COPD symptoms

and enhance insulin resistance leading to T2DM. Therefore, early

and appropriate anti-inflammatory treatment in COPD patients

is crucial.
Frontiers in Endocrinology 07
Our research also revealed that patients with both COPD and

T2DM exhibited higher arterial PCO2 levels compared to those with

COPD alone. Furthermore, T2DM risk increased with rising PCO2

levels. This association may be linked to the increased accumulation

of advanced glycation end products (AGEs) in the vascular

endothelial cells of patients with COPD (31). AGEs stimulate the

expression of inflammatory genes by binding to the receptor for

advanced glycosylation end products (RAGE) and promote the

release of CRP and TNF (32–34). Additionally, AGE–RAGE

interactions are more pronounced in the lungs and peripheral

airways of COPD patients than in those without COPD (35),

leading to thickened lung capillary basement membranes and

reduced alveolar ventilation, therey impairing CO2 excretion.

Consequently, CO2 accumulates in the body, elevating arterial

PCO2 levels. Excessive levels of CO2 in the body further stimulate

the expression of inflammatory factors through the NF-kB signaling

pathway (36), thereby contributing to insulin resistance and

increasing T2DM risk. This highlights the importance of

preventing CO2 retention through early ventilatory support in

COPD patients to mitigate T2DM comorbidity.

Obesity, a critical T2DM risk factor, is associated with

dyslipidemia. Our study revealed that patients with COPD and

T2DM exhibited higher levels of TG and LDL, and lower levels of

HDL compared to those with COPD alone. Additionally, we

identified increased TG and BMI levels as independent predictive

factors for T2DM, corroborating previous findings (37). Reduced

physical activity, common in COPD patients due to respiratory

limitations and its higher prevalence in older adults (27, 38, 39),

promotes glucose intolerance and sarcopenic obesity. Furthermore,

substantial evidence suggests that lipids can activate monocytes in

the vasculature, enhancing the inflammatory response through the

NF-kB and JNK pathways (40, 41) to promote insulin resistance.

Consequently, these insights emphasize the need for clinicians to

encourage physical activity, a balanced diet, and lipid control in

COPD patients early on to reduce T2DM risk.

In addition to inflammation and obesity, oxidative stress

significantly contributes to the development of T2DM in COPD.

Consistent with prior research (42), our study indicates that serum

bilirubin exerts a protective effect against the development of

T2DM. Patients with COPD exhibit increased oxidative stress due
FIGURE 2

Lasso regression variable selection. (A) Number of retained features across log (l) values; (B) Coefficient shrinkage paths with AUC (top axis).
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TABLE 3 Pearson correlation and multicollinearity analysis among variables.

Variables PLT HGB APTT NEUT PCO2 Bilirubin HDL CRP TG Weight ESR Age LDL BMI VIF

1.167

1.061

1.060

1.083

1.037

0.024 1 1.043

0.020 −0.092** 1 1.103

.060* 0.005 −0.070* 1 1.172

0.027 −0.075** −0.087** −0.091** 1 1.112

0.045 −0.034 −0.120** −0.047 0.118** 1 4.066

.008 −0.071* −0.129** 0.331** −0.019 0.024 1 1.227

.011 0.043 −0.032 0.005 −0.057* −0.044 −0.006 1 1.025

0.061* −0.092** 0.166** −0.070* 0.239** 0.049 0.056 −0.036 1 1.132

0.028 −0.019 −0.097** −0.066* 0.131** 0.865** −0.008 −0.011 0.056 1 4.043
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PLT 1

HGB −0.163** 1

APTT 0.084** 0.007 1

NEUT 0.151** 0.095** 0.017 1

PCO2 −0.087** 0.031 −0.050 0.105** 1

Bilirubin −0.087** 0.051 0.069* −0.020 −

HDL −0.058* −0.017 −0.049 −0.062** −

CRP 0.116** −0.032 0.155** 0.141** 0

TG −0.032 −0.080** −0.082** 0.011 −

Weight −0.091** 0.051 0.039 0.056* −

ESR 0.247** −0.056* 0.152** 0.139** 0

Age −0.096** 0.054 0.034 −0.009 0

LDL 0.068* −0.051 −0.053 0.004 −

BMI −0.106** 0.073* 0.026 0.038 −

*p <0.05,** p <0.01.
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to exposure to exogenous particles, smoking, and endogenous

inflammation. Excessive oxidative stress disrupts the activity of

antioxidants such as glutathione (GSH) and decreases the

expression of the antioxidant transcription factors erythroid 2-

related factor 2 (Nrf2) and the related gene heme oxygenase 1

(HO-1) (43). These molecules are essential for protecting pancreatic

b cells from oxidative stress damage (44). At the same time,

oxidative stress enhances lung inflammation, creating a vicious

cycle. Serum bilirubin is a potent antioxidant that has been shown

to be effective in alleviating damage caused by oxidative stress (45).

These results suggested that mildly elevated serum bilirubin levels

may play an important role in preventing T2DM in COPD patients.

In this study, we identified seven predictors of COPD combined

with T2DM, including: PCO2, NEUT, CRP, ESR, bilirubin, TG, and

BMI. Our novel predictive model demonstrated strong

discriminatory ability and important clinical value. Notably,

despite a significant gender imbalance in the study, gender

subgroup analysis revealed that the model maintained good

predictive performance in both male and female subgroups, with

no statistically significant difference in predictive ability between the

two groups. This result indicates that the predictive model we
Frontiers in Endocrinology 09
established has relatively consistent applicability across patients of

different genders, enhancing its potential for clinical translation.

From a public health perspective, our findings highlight the

substantial increased risk of T2DM in patients with COPD. Our

model established a three-level risk stratification based on the total

score, with COPD patients in the high-risk group exhibiting a

significantly elevated probability of developing T2DM.

Consequently, targeted early interventions for the high-risk group

are warranted to prevent subsequent hospitalization burdens.

Furthermore, this model demonstrates particular suitability for

routine screening in COPD outpatient clinics. By inputting

patients’ basic blood gas parameters, complete blood count, lipid

profile, and BMI data during consultations, clinicians can rapidly

obtain individualized risk scores, thereby enhancing clinical

resource allocation efficiency.

However, this study had several limitations. First, this study was a

single-center study with a limited sample size and no external

validation, which might lead to an incomplete understanding of the

findings. Although we used a 7:3 random split combined with k-fold

cross-validation to minimize overfitting, and our internal validation

showed robust performance, we acknowledged that external

validation is still the gold standard for assessing model

generalizability. Therefore, future research should focus on multi-

center studies with external validation to confirm its reproducibility

and clinical applicability. Secondly, although our subgroup analysis

indicated no statistically significant difference in the model’s

predictive capability between male and female patients, the

pronounced male predominance in our study raises potential

concerns about sex-related differences impacting the generalizability

of our model. Current epidemiological evidence suggests that COPD

incidence rates are converging between sexes in developed countries

(46), potentially linked to changing smoking patterns and differential

susceptibility to environmental exposures. Importantly, substantial

evidence highlights sex-based dimorphism in inflammatory

responses (47). These differences might influence key predictors in

our model—particularly neutrophil activation and oxidative stress

pathways. While our model demonstrated preliminary utility for risk
FIGURE 3

Nomogram for COPD with T2DM reserving CRP, NEUT, PCO2, ESR, TG, Bilirubin,BMI as predictors.
TABLE 4 Multivariate logistic analysis for influence factors in patients
with COPD and T2DM.

Variables b S.E Z P OR (95%CI)

Intercept −7.75 0.70 −10.56 <.001 –

PCO2 0.04 0.01 4.91 <.001 1.04 (1.02–1.05)

NEUT 0.14 0.02 6.65 <.001 1.15 (1.10–1.19)

CRP 0.01 0.004 3.40 <.001 1.01 (1.01–1.02)

ESR 0.03 0.01 6.41 <.001 1.03 (1.02–1.05)

Bilirubin −0.09 0.02 −3.99 0.046 0.92 (0.88–0.96)

TG 0.29 0.08 3.43 <.001 1.33 (1.13–1.57)

BMI 0.05 0.02 7.56 <.001 1.16 (1.11–1.20)
OR, Odds Ratio; CI, Confidence Interval.
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FIGURE 5

The ROC of the training and test set.
FIGURE 4

Three-level risk stratification of the predictive model. (A) Patient distribution across risk groups; (B) T2DM probability per risk group (Low: 6.8%,
Middle: 22.6%, High: 52.1%).
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FIGURE 6

The AUC values across different folds.
FIGURE 7

Model validation. (A) Calibration curve (training set, n=1241); (B) Calibration curve (test set, n=532); (C) Decision curve analysis - training set;
(D) Decision curve analysis - test set.
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stratification in both sexes, the limited female sample size precludes

definitive exclusion of gender as an effect modifier. Future studies

should proactively incorporate gender as a covariate in multivariate

modeling and conduct formal interaction analyses to evaluate its role

as a potential effect modifier. Furthermore, this was a retrospective

study, and the collection of clinical data was incomplete, including

pulmonary function indicators, readmission rate, survival and death

indicators, which limited the comprehensiveness of the analysis.

Therefore, future studies should include prospective cohort studies

to explore the accuracy of our findings from multiple perspectives

and gain a more complete understanding of the relationship between

COPD and T2DM.
5 Conclusion

The prediction model based on NEUT, CRP, ESR, PCO2, TG,

BMI, and bilirubin demonstrated good predictive accuracy and

clinical application value in this study. However, its generalizability

to broader populations requires external validation and could

provide a more scientific reference for the screening and

prevention of early COPD complicated with T2DM.
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Shamagian L, Garcıá-Acuña JM, Aguiar-Souto P, et al. Statins modulate feedback
regulation mechanisms between advanced glycation end-products and C-reactive
protein: evidence in patients with acute myocardial infarction. Eur J Pharm Sci.
(2013) 49:512–8. doi: 10.1016/j.ejps.2013.05.001

35. Wu L, Ma L, Nicholson LF, Black PN. Advanced glycation end products and its
receptor (RAGE) are increased in patients with COPD. Respir Med. (2011) 105:329–36.
doi: 10.1016/j.rmed.2010.11.001

36. Radi R. Interplay of carbon dioxide and peroxide metabolism in mammalian
cells. J Biol Chem. (2022) 298:102358. doi: 10.1016/j.jbc.2022.102358
Frontiers in Endocrinology 14
37. Ye T, Yang Y, Wang K, Wang M, Sun J, Du Y, et al. Neutrophil to lymphocyte
ratio as a predictor for type 2 diabetes mellitus in patients with chronic obstructive
pulmonary disease: a cohort study of 404 cases. Nan fang yi ke da xue xue bao = J South
Med University. (2017) 37:1308–14. doi: 10.3969/j.issn.1673-4254.2017.10.05

38. Ishii M, Yamaguchi Y, Hamaya H, Ogawa S, Imura M, Akishita M.
Characteristics of factors for decreased lung function in elderly patients with type 2
diabetes. Sci Rep. (2019) 9:20206. doi: 10.1038/s41598-019-56759-3

39. Matera MG, Hanania NA, Maniscalco M, Cazzola M. Pharmacotherapies in
older adults with COPD: challenges and opportunities. Drugs aging. (2023) 40:605–19.
doi: 10.1007/s40266-023-01038-0

40. Leonarduzzi G, Gamba P, Gargiulo S, Biasi F, Poli G. Inflammation-related gene
expression by lipid oxidation-derived products in the progression of atherosclerosis.
Free Radical Biol Med. (2012) 52:19–34. doi: 10.1016/j.freeradbiomed.2011.09.031

41. van Diepen JA, Berbée JF, Havekes LM, Rensen PC. Interactions between
inflammation and lipid metabolism: relevance for efficacy of anti-inflammatory
drugs in the treatment of atherosclerosis. Atherosclerosis. (2013) 228:306–15.
doi: 10.1016/j.atherosclerosis.2013.02.028

42. MacDonald DM, Kunisaki KM, Wilt TJ, Baldomero AK. Serum bilirubin and
chronic obstructive pulmonary disease (COPD): a systematic review. BMC pulmonary
Med. (2021) 21:33. doi: 10.1186/s12890-021-01395-9

43. Fratta Pasini AM, Stranieri C, Ferrari M, Garbin U, Cazzoletti L, Mozzini C, et al.
Oxidative stress and Nrf2 expression in peripheral blood mononuclear cells derived
from COPD patients: an observational longitudinal study. Respir Res. (2020) 21:37.
doi: 10.1186/s12931-020-1292-7

44. Yagishita Y, Fukutomi T, Sugawara A, Kawamura H, Takahashi T, Pi J, et al.
Nrf2 protects pancreatic b-cells from oxidative and nitrosative stress in diabetic model
mice. Diabetes. (2014) 63:605–18. doi: 10.2337/db13-0909

45. Sedlak TW, Saleh M, Higginson DS, Paul BD, Juluri KR, Snyder SH.
Bilirubin and glutathione have complementary antioxidant and cytoprotective
roles. Proc Natl Acad Sci United States America. (2009) 106:5171–6. doi: 10.1073/
pnas.0813132106

46. Mannino DM, Buist AS. Global burden of COPD: risk factors, prevalence, and
future trends. Lancet (London England). (2007) 370:765–73. doi: 10.1016/s0140-6736
(07)61380-4

47. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol.
(2016) 16:626–38. doi: 10.1038/nri.2016.90
frontiersin.org

https://doi.org/10.1016/j.jdiacomp.2016.10.029
https://doi.org/10.1016/j.jdiacomp.2016.10.029
https://doi.org/10.1007/s12020-018-1554-z
https://doi.org/10.1016/j.jaci.2017.04.022
https://doi.org/10.4046/trd.2017.0085
https://doi.org/10.1038/nm.2885
https://doi.org/10.3390/jcm12103366
https://doi.org/10.2337/diabetes.50.12.2792
https://doi.org/10.1073/pnas.242407999
https://doi.org/10.1016/j.ejps.2013.05.001
https://doi.org/10.1016/j.rmed.2010.11.001
https://doi.org/10.1016/j.jbc.2022.102358
https://doi.org/10.3969/j.issn.1673-4254.2017.10.05
https://doi.org/10.1038/s41598-019-56759-3
https://doi.org/10.1007/s40266-023-01038-0
https://doi.org/10.1016/j.freeradbiomed.2011.09.031
https://doi.org/10.1016/j.atherosclerosis.2013.02.028
https://doi.org/10.1186/s12890-021-01395-9
https://doi.org/10.1186/s12931-020-1292-7
https://doi.org/10.2337/db13-0909
https://doi.org/10.1073/pnas.0813132106
https://doi.org/10.1073/pnas.0813132106
https://doi.org/10.1016/s0140-6736(07)61380-4
https://doi.org/10.1016/s0140-6736(07)61380-4
https://doi.org/10.1038/nri.2016.90
https://doi.org/10.3389/fendo.2025.1560631
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Construction and validation of a prediction model for developing type 2 diabetes mellitus in patients with chronic obstructive pulmonary disease
	1 Introduction
	2 Methods
	2.1 Study population
	2.2 Inclusion and exclusion criteria
	2.3 Clinical data collection
	2.4 Statistical analysis

	3 Results
	3.1 Clinical characteristics of the study population
	3.2 Selection of study variables
	3.3 Construction of the nomogram
	3.4 Validation of the nomogram

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


