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Fei Hua1,2,3* and Yu Fu1,2,3*

1The Third Affiliated Hospital of Soochow University, Changzhou, China, 2Department of Clinical
Nutrition, The First People's Hospital of Changzhou, Changzhou, China, 3Department of
Endocrinology and Metabolism, The First People's Hospital of Changzhou, Changzhou, China,
4Department of Geriatrics, the First Affiliated Hospital of Soochow University, Suzhou, China
Background: Diabetic peripheral neuropathy (DPN), a common chronic

complication of type 2 diabetes mellitus (T2DM), lacks simple biomarkers for

early monitoring. This study aimed to explore the association between the ratio

of extracellular water to total body water (ECW/TBW) and DPN.

Methods: A total of 707 T2DM patients recruited from the Third Affiliated Hospital

of Soochow University were included in this cross-sectional study. Multivariate

logistic regression analyses were performed to assess the association between

the ECW/TBW ratio and DPN after adjusting. Receiver operating characteristic

(ROC) curves were used to evaluate the predictive value of the ECW/TBW ratio

for DPN.

Results: The risk of DPN is related significantly with ECW/TBW ratio by

multivariate logistic regression analyses, especially the ECW/TBW ratio of arms,

trunk, and legs. And the ECW/TBW ratio can not be a indicator to predict the DPN

rick of whose BMI is above 28kg/m². Besides, adding the ECW/TBW ratio to the

baseline model gained a positive change in the integrated discrimination

improvement and continuous net reclassification improvement. The area

under the curve (AUC) of ECW/TBW (AUC:0.678) was higher than that of

Neutrophil-to-Lymphocyte Ratio (NLR, AUC:0.620) and Platelet-to-

Lymphocyte Ratio (PLR, AUC:0.568).

Conclusions: The ratio of ECW/TBW exhibits a potential predictive capacity for

DPN and better than NLR and PLR in T2DM patients with BMI <28 kg/m².
KEYWORDS

extracellular water/total body water ratio, type 2 diabetes mellitus, diabetic peripheral
neuropathy, early predictive indicator, fluid balance, BIA
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1 Introduction

Diabetes is primarily a chronic metabolic disorder related to

lifestyle, affecting millions worldwide. Diabetic peripheral

neuropathy (DPN) is one of its most common chronic

complications (1), with a prevalence as high as 53% in China

according to a multicenter study (2). DPN exerts a profound

influence on the development of diabetic foot and non-traumatic

diabetic amputation and will increases the risk of diabetic foot

amputation without timely awareness and proper treatment (3, 4).

Traditionally, DPN diagnosis relies on electromyography and

clinical symptoms. However, by the time a DPN diagnosis is

made, nerve damage has often progressed to an irreversible state

(5, 6). Therefore, the investigation of indicators that can provide

early warning signs and possess diagnostic value for DPN, especially

those that are non-invasive and easily measurable, is of

utmost importance.

Bioelectrical Impedance Analysis (BIA) is a simple, non-

invasive tool for objectively assessing body composition, including

fat, protein, minerals, and body water. In healthy individuals, total

body water (TBW) accounts for approximately 60%-70% of body

weight, further divided into intracellular water (ICW) and

extracellular water (ECW) (7). The extracellular water-to-total

body water ratio (ECW/TBW), a key parameter for evaluating

cellular fluid balance, is closely associated with patients’ body

composition statuses such as malnutrition, inflammation, and

fluid retention conditions (e.g., ascites, pleural effusion, and

peripheral edema). The normal ECW/TBW range is 0.360-0.390,

with values exceeding 0.390 indicating edema. Measurable via BIA,

the ECW/TBW ratio exceeding 0.400 indicates fluid overload in

clinical practice (7, 8).

Fluid imbalance refers to disruptions in the body’s normal

distribution, volume, or osmotic pressure of intracellular and

extracellular fluid. It has been linked to poor clinical outcomes in

patients with viral liver diseases, cancer, sarcopenia, and

hemodialysis-dependent conditions (9–12). Fluid overload engages

in complex crosstalk with inflammation, oxidative stress, and

mitochondrial dysfunction which are three key pathological

changes in DPN. Specifically, fluid overload triggers hypoxia,

nutrient deficiency, and energy insufficiency, which in turn induce

cascading reactions involving inflammation, oxidative stress, and

mitochondrial dysfunction (13, 14). Early studies proposed that

elevated sorbitol levels in Schwann cells induce osmotic

overhydration and endoneurial edema in peripheral nerves of

experimental diabetic models (15, 16). Jakobsen et al. (12)

demonstrated significantly higher nerve water content in diabetic

rats compared with controls, while Eaton’s cohort study established

endoneurial edema as an early structural abnormality which are

predating electrophysiological derangements, neurological deficits,

and overt clinical neuropathy. A Singaporean cross-sectional

analysis by Low et al. (17, 18) demonstrated that higher ECW/

TBW ratios correlate with cognitive impairment in T2DM patients.

Their subsequent prospective cohort study further revealed that

excess extracellular volume independently predicts the progression

of chronic kidney disease (CKD) in this population.
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Growing evidences have established a robust association

between fluid imbalance and diabetes mellitus (19). As a key

indicator of fluid homeostasis, the ECW/TBW ratio has been

applied in clinical assessments for diseases including colorectal

cancer, hepatocellular carcinoma, cognitive impairment in type 2

diabetes, and diabetic kidney disease. However, whether ECW/

TBW can serve as a novel biomarker for predicting DPN remains

unclear. This study aims to investigate the relationship between

ECW/TBW and DPN, specifically exploring its potential as an early

predictor for DPN development.
2 Materials and methods

2.1 Study population

Between August 1, 2016, and June 12, 2023, 707 patients with

type 2 diabetes mellitus (T2DM) were recruited from the Third

Affiliated Hospital of Soochow University for this cross-sectional

study (Figure 1). The diagnosis of T2DM and DPN was based on

the Guideline for the Prevention and Treatment of Type 2 Diabetes

Mellitus in China (2020 Edition) (20). Patients were excluded if they

had type 1 diabetes mellitus, severe hepatic or renal dysfunction,

severe infection, or malignant tumor; had missing data on

electromyography, BIA, or blood routine tests; or had an ECW/

TBW ratio ≥ 0.39. All eligible patients were categorized into a non-

DPN group (n=395) and a DPN group (n=312). The diagnosis of

DPN was based on a history of diabetes mellitus, presence of DPN-

related symptoms or signs, and electromyographic evidence of

reduced nerve conduction velocity. The workflow for participant

selection is shown in Figure 1.
2.2 Data collection

Baseline characteristics of patients were obtained from electronic

health records. Basic information included sex, age, duration of

diabetes, smoking or alcohol history, systolic blood pressure (SBP),

and diastolic blood pressure (DBP). Laboratory indicators included

white blood cells (WBC), platelets, neutrophils, lymphocytes,

monocytes, platelet-to-lymphocyte ratio (PLR), monocyte-to-

lymphocyte ratio (MLR), neutrophil-to-lymphocyte ratio (NLR),

alanine transaminase (ALT), aspartate aminotransferase (AST),

total protein, albumin, fasting plasma glucose (FPG), fasting C-

peptide (FCP), glycated hemoglobin A1c (HbA1c), total cholesterol

(TC), triacylglycerol (TG), high-density lipoprotein (HDL), low-

density lipoprotein (LDL), uric acid (UA), estimated glomerular

filtration rate (eGFR), thyroid stimulating hormone (TSH), free

triiodothyronine (FT3), and free thyroxine (FT4).

Homeostasis model assessment for insulin resistance (HOMA-

IR) and homeostasis model assessment for islet beta-cell function

(HOMA-islet) were calculated using the following formulas: The

modified HOMA-IR was calculated as 1.5 + [FPG (mmol/L) × FCP

(pmol/L)]/2800; the modified HOMA-islet was calculated as 0.27 ×

FCP (pmol/L)/[FPG (mmol/L) - 3.5] (21).
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Body composition parameters were measured using BIA

equipment (Inbody 770, Biospace, Seoul, Korea) by the same

nutritionist (22). Prior to measurement, participants were

instructed to remove personal metal items that might interfere

with the procedure. They then stood on the equipment, held the

electrodes in both hands, and awaited the results, which were

obtained within a few minutes. Measurement outcomes included

body mass index (BMI), total body water (TBW), intracellular water

(ICW), and extracellular water (ECW).
2.3 Statistical analysis

All statistical analyses were performed using SPSS 26 and

GraphPad Prism 9. Missing continuous variables were imputed via

mean replacement, and categorical variables via mode replacement.

Normally distributed variables were presented as mean ±

standard deviation, with group comparisons using Student’s t-

test. Non-normally distributed variables were expressed as

median and interquartile range, compared via the Mann-Whitney

U test. Categorical variables were presented as frequencies

(percentages), with group comparisons using the chi-square test.

Univariate and multivariate logistic regression were used to

examine associations between ECW/TBW ratios (at different

measurement sites) and DPN. Three models were constructed:

Model 1 (no covariate adjustment), Model 2 (adjusted for sex and

age), and Model 3 (adjusted for all covariates with statistically

significant differences in univariate analysis). Subgroup analyses
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stratified by sex, age, and BMI were conducted to examine whether

the association persisted.Receiver operating characteristic (ROC)

curves were used to assess the ECW/TBW ratio’s predictive ability

for DPN in T2DM patients. Net reclassification improvement (NRI)

and integrated discrimination improvement (IDI) were calculated

to evaluate its additional predictive value. Statistical significance was

set at two-tailed P < 0.05.
3 Results

3.1 Baseline characteristics

A total of 707 T2DM patients were included in the final analysis.

Of these, 312 were diagnosed with DPN and divided into the DPN

group, based on the presence of definite DPN-related symptoms or

signs plus electromyographic evidence. The remaining 395 patients,

in contrast, were assigned to the non-DPN group.

Compared with non-DPN patients, those with DPN exhibited

older age, higher levels of neutrophils, platelet-to-lymphocyte ratio

(PLR), monocyte-to-lymphocyte ratio (MLR), neutrophil-to-

lymphocyte ratio (NLR), fasting plasma glucose (FPG), total body

water (TBW), intracellular water (ICW), extracellular water (ECW),

and ECW/TBW ratio. In contrast, DPN patients had lower levels of

lymphocytes, alanine transaminase (ALT), aspartate transaminase

(AST), albumin, fasting C-peptide (FCP), HOMA-islet, estimated

glomerular filtration rate (eGFR), and thyroid-stimulating

hormone (TSH).
FIGURE 1

Flowchart of participant selection. T2DM, type 2 diabetes mellitus; DPN, diabetic peripheral europathy; BIA, bioelectric impedance analysis; ECW,
extracellular water; TBW, total body water.
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However, no statistically significant differences were observed

between the two groups with respect to alcohol history, systolic

blood pressure (SBP), diastolic blood pressure (DBP), white blood

cell (WBC) counts, platelet counts, monocyte counts, total protein,

glycated hemoglobin (HbA1c), HOMA-IR (insulin resistance

index), total cholesterol (TC), triglycerides (TG), high-density

lipoprotein (HDL), low-density lipoprotein (LDL), uric acid (UA),

free triiodothyronine (FT3), free thyroxine (FT4), or body mass

index (BMI) (Table 1).
Frontiers in Endocrinology 04
3.2 Correlation between ECW/TBW ratio
and other indicators

According to spearman correlation analysis, the ratio of ECW/

TBW was positively correlated with age, diabetes duration, SBP, PLR,

MLR, NLR, and HDL. In contrast, it was inversely associated with sex,

smoking status, alcohol consumption, DBP, WBC, ALT, AST, total

protein, albumin, FPG, FCP, HOMA-IR, TC, TG, LDL, UA, eGFR,

FT3, FT4,BMI,TBW, ICW, and ECW (Supplementary Table S1).
TABLE 1 Comparison of baseline characteristics between the NDPN Group and the DPN Group.

Variable NDPN Group (n=395) DPN Group (n=312) P value

Sex, male (%) 216.0 (54.7 %) 232.0 (74.4%) <0.001***

Age (years) 55.0 (47.0, 63.0) 61.0 (52.3, 69.8) <0.001***

Diabetes duration (months) 60.0 (6.0, 120.0) 108.0 (36.0, 180.0) <0.001***

Smoking, n (%) 81.0 (20.5%) 105.0 (33.7%) <0.001***

Drinking, n (%) 68.0 (17.2%) 70.0 (22.4%) 0.082

SBP (mmHg) 136.0 (123.0, 149.0) 137.0 (125.0, 149.0) 0.402

DBP (mmHg) 83.46 ± 11.34 83.21 ± 10.89 0.771

WBC (×109/L) 6.20 (5.27, 7.27) 6.11 (5.25, 7.16) 0.757

Platelet
(×109/L)

207.00 (175.00, 239.00) 197.0 (171.00, 238.75) 0.182

Neutrophil
(×109/L)

3.44 (2.82, 4.33) 3.74 (2.99, 4.45) 0.035*

Lymphocyte
(×109/L)

2.00 (1.63, 2.44) 1.79 (1.46, 2.23) <0.001***

Monocyte
(×109/L)

0.35 (0.29, 0.44) 0.37 (0.30, 0.44) 0.057

PLR 102.67 (81.72, 124.70 ) 110.72 (88.67, 138.55) 0.002**

MLR 0.18 (0.14, 0.22) 0.21 (0.16, 0.26) <0.001***

NLR 1.67 (1.32, 2.19) 2.01 (1.54, 2.69) <0.001***

ALT (U/L) 19.30 (14.00, 32.00) 17.15 (12.00, 24.95) <0.001***

AST (U/L) 18.80 (15.90, 25.90) 18.00 (14.73, 23.48) 0.017*

Total protein (g/L) 65.30 (62.60, 69.20) 64.75 (61.50, 69.20) 0.089

Albumin (g/L) 40.20 (38.50, 42.40) 39.40 (37.20, 41.80) <0.001***

FPG (mmol/L) 8.20 (6.45, 10.83) 9.04 (7.02, 11.34) 0.015*

FCP (pmol/L) 613.80 (440.20, 800.00) 530.25 (374.43, 745.83) 0.001**

HbA1c (%) 9.10 (7.60, 10.90) 9.55 (7.90, 11.20) 0.100

HOMA-IR 3.33 (2.72, 4.12) 3.20 (2.56, 3.99) 0.101

HOMA-islet 34.53 (18.90, 59.01) 27.81 (14.47, 46.18) <0.001***

TC (mmol/L) 4.45 (3.90, 5.20) 4.59 (3.86, 5.27) 0.890

TG (mmol/L) 1.74 (1.15, 2.53) 1.62 (1.12, 2.45) 0.536

HDL (mmol/L) 1.03 (0.89, 1.20) 1.03 (0.88, 1.22) 0.768

LDL (mmol/L) 2.58 (2.11, 3.17) 2.64 (2.12, 3.14) 0.984

(Continued)
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3.3 Binary logistic regression analysis to
determine the relationship between ECW/
TBW ratio and DPN

Binary univariate and multivariate logistic regression analyses

were conducted to determine the predictors for DPN in the overall

study population (Table 2). The result of univariate analysis

indicated that sex, age, diabetes duration, smoking, lymphocyte,

PLR, MLR, NLR, ALT, AST, total protein, albumin, FPG, FCP,

eGFR, BMI, TBW, ICW, and ECW were associated with DPN. We

excluded TBW and ECW from multivariate analysis owing to high
Frontiers in Endocrinology 05
collinearity with the ECW/TBW ratio. The result of multivariate

analysis suggested the independent risk factors for DPN were sex,

diabetes duration, FPG, and ICW. Additionally, univariate and

multivariate analyses were performed to determine the correlation

of ECW/TBW ratio at body different measured sites with DPN

(Table 3). The association between ECW/TBW ratio and DPN was

significant in all three regression models: Model 1 no variables for

adjustment (OR = 2.580, 95% confidence interval: 2.041- 3.263,

P<0.001); Model 2 adjusted for sex and age (OR = 3.301, 95%

confidence interval:2.403 - 4.535, P<0.001); Model 3 adjusted for

sex, age, diabetes duration, smoking, lymphocyte, PLR, MLR, NLR,
TABLE 1 Continued

Variable NDPN Group (n=395) DPN Group (n=312) P value

UA (mmol/L) 309.60 (253.80, 376.50) 319.90 (259.68, 385.83) 0.200

eGFR
(mL/min/1.73 min2)

103.38 (91.73, 115.49) 97.78 (84.19, 110.61) <0.001***

TSH (uIU/mL) 1.98 (1.40, 2.82) 1.83 (1.26, 2.54) 0.020*

FT3 (pmol/L) 4.47 (4.05, 4.87) 4.47 (4.04, 4.83) 0.348

FT4 (pmol/L) 17.23 (15.39, 18.69) 17.19 (15.53, 18.22) 0.802

BMI (kg/m2) 24.20 (22.30, 26.70) 24.00 (22.00, 26.10) 0.183

TBW (kg) 34.70 (28.80, 40.40) 36.75 (32.33, 40.95) 0.002**

ICW (kg) 21.60 (17.70, 25.00) 22.50 (19.73, 25.18) 0.013*

ECW (kg) 13.30 (11.10, 15.40) 14.20 (12.60, 15.78) <0.001***

ECW/TBW (%) 38.23 ± 0.68 38.69 ± 0.72 <0.001***

ECW/TBW (arms, %) 76.00 ± 0.92 76.39 ± 0.94 <0.001***

ECW/TBW (trunk, %) 38.23 ± 0.69 38.70 ± 0.74 <0.001***

ECW/TBW (legs, %) 76.57 ± 1.60 77.69 ± 1.69 <0.001***
*P <0.05, **P <0.01, ***P <0.001.
DPN, diabetic peripheral neuropathy; SBP, systolic blood pressure; DBP, diastolic blood pressure; WBC, white blood cells; PLR, platelet-to-lymphocyte ratio; MLR, monocyte-to-lymphocyte
ratio; NLR, neutrophil-to lymphocyte ratio; ALT, alanine transaminase; AST, aspartate aminotransferase; FPG, fasting plasma glucose; FCP, fasting C-peptide; HbA1c, glycated hemoglobin A1c;
HOMA-IR, homeostasis model assessment for insulin resistance; HOMA-islet, homeostasis model assessment for islet beta-cell function; TC, total cholesterol; TG, triglyceride; HDL, high-
density lipoprotein; LDL, low-density lipoprotein; UA, uric acid; eGFR, estimated glomerular filtration rate; TSH, thyroid stimulating hormone; FT3, free triiodothyronine; FT4, free thyroxine;
BMI, body mass index; TBW, total body water; ICW, intracellular water; ECW, extracellular water.
TABLE 2 Univariate and multivariate logistic regression between candidate covariates and DPN.

Variables
Univariate logistic regression Multivariate logistic regression

OR (95% CI) P value OR (95% CI) P value

Sex 2.403 (1.741, 3.317) <0.001*** 2.582 (1.299, 5.132) 0.007**

Age 1.044 (1.031, 1.058) <0.001*** 1.017 (0.994, 1.040) 0.146

Diabetes duration 1.005 (1.004, 1.007) <0.001*** 1.003 (1.000, 1.005) 0.017*

Smoking 1.966 (1.401, 2.759) <0.001*** 1.363 (0.883, 2.105) 0.162

Drinking 1.391 (0.958, 2.019) 0.083

SBP 1.004 (0.995, 1.012) 0.380

DBP 0.998 (0.985, 1.011) 0.770

WBC 0.985 (0.891, 1.087) 0.759

Platelet 0.998 (0.995, 1.001) 0.159

(Continued)
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ALT, AST, total protein, albumin, FPG, FCP, eGFR, BMI and ICW

(OR = 3.122, 95% confidence interval: 2.202- 4.424, P<0.001). After

adjusting for other covariates, it was found that T2DM patients

were 2.122 times more likely to develop DPN for every unit increase

in the ECW/TBW ratio (P < 0.001). ECW/TBW ratios of the arms,

trunk, and legs was significantly correlated with the risk of DPN in

three adjusted models (P < 0.05).
Frontiers in Endocrinology 06
3.4 Subgroup analysis of the ECW/TBW
ratio and DPN relationship

Subgroup analyses revealed that the ECW/TBW ratio was not

associated with the risk of diabetic peripheral neuropathy (DPN) in

patients with a BMI ≥ 28 kg/m², following adjustment for covariates

as specified in Model 3 (Figure 2).
TABLE 2 Continued

Variables
Univariate logistic regression Multivariate logistic regression

OR (95% CI) P value OR (95% CI) P value

Neutrophil 1.104 (0.974, 1.252) 0.121

Lymphocyte 0.558 (0.431, 0.723) <0.001*** 0.918 (0.611, 1.379) 0.681

Monocyte 2.289 (0.730, 7.175) 0.155

PLR 1.006 (1.002, 1.010) 0.001** 1.002 (0.996, 1.009) 0.440

MLR 252.075 (29.686, 2140.457) <0.001***
2.414

(0.325, 17.908)
0.389

NLR 1.418 (1.203, 1.672) <0.001*** 1.041 (0.798, 1.359) 0.767

ALT 0.978 (0.969, 0.988) <0.001*** 0.991 (0.969, 1.014) 0.447

AST 0.977 (0.963, 0.992) 0.002** 1.014 (0.983, 1.047) 0.376

Total protein 0.973 (0.949, 0.998) 0.033* 1.025 (0.993, 1.058) 0.123

Albumin 0.924 (0.885, 0.964) <0.001*** 0.981 (0.931, 1.033) 0.458

FPG 1.043 (1.004, 1.084) 0.029* 1.081 (1.031, 1.133) 0.001**

FCP 0.999 (0.999, 1.000) 0.004** 1.000 (0.999, 1.000) 0.279

HbA1c 0.996 (0.983, 1.009) 0.547

HOMA-IR 0.950 (0.854, 1.057) 0.349

HOMA-islet 1.000 (0.999, 1.001) 0.832

TC 0.993 (0.879, 1.121) 0.908

TG 0.975 (0.927, 1.026) 0.330

HDL 1.020 (0.662, 1.572) 0.928

LDL 0.993 (0.838, 1.176) 0.934

UA 1.001 (0.999, 1.002) 0.279

eGFR 0.982 (0.975, 0.990) <0.001*** 0.989 (0.978, 1.000) 0.055

TSH 0.912 (0.811, 1.025) 0.124

FT3 0.861 (0.690, 1.074) 0.185

FT4 1.001 (0.972, 1.031) 0.951

BMI 0.956 (0.917, 0.997) 0.036* 0.950 (0.883, 1.023) 0.177

TBW 1.034 (1.011, 1.057) 0.004**

ICW 1.042 (1.006, 1.079) 0.022* 1.144 (1.046, 1.252) 0.003**

ECW 1.128 (1.062, 1.199) <0.001***
TBW and ECW were excluded from multivariate analysis owing to high collinearity with the ECW/TBW ratio. *P <0.05, **P <0.01, ***P <0.001.
DPN, diabetic peripheral neuropathy; SBP, systolic blood pressure; DBP, diastolic blood pressure; WBC, white blood cells; PLR, platelet-to-lymphocyte ratio; MLR, monocyte-to-lymphocyte
ratio; NLR, neutrophil-to lymphocyte ratio; ALT, alanine transaminase; AST, aspartate aminotransferase; FPG, fasting plasma glucose; FCP, fasting C-peptide; HbA1c, glycated hemoglobin A1c;
HOMA-IR, homeostasis model assessment for insulin resistance; HOMA-islet, homeostasis model assessment for islet beta-cell function; TC, total cholesterol; TG, triglyceride; HDL, high-
density lipoprotein; LDL, low-density lipoprotein; UA, uric acid; eGFR, estimated glomerular filtration rate; TSH, thyroid stimulating hormone; FT3, free triiodothyronine; FT4, free thyroxine;
BMI, body mass index; TBW, total body water; ICW, intracellular water; ECW, extracellular water.
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3.5 Diagnostic performance of the ECW/
TBW ratio for DPN

The ROC curve analysis was applied to assess the diagnostic

performance of the ECW/TBW ratio for DPN (Figure 3). The area

under the curve (AUC) of the ECW/TBW ratio for predicting DPN

was 0.678 (95% CI: 0.638-0.717) in Model 1 (unadjusted) and 0.762

(95% CI: 0.727-0.797) in Model 2 (adjusted for variables). After

adding the ECW/TBW ratio to Model 2, the AUC increased to

0.796 (95% CI: 0.764-0.829). To assess the impact of the ECW/TBW

ratio on the predictive ability of DPN occurrence, reclassification

analyses were conducted. The results showed that the inclusion of

the ECW/TBW ratio in the baseline model significantly increased

the categorical NRI (0.138, P<0.001) and continuous NRI (0.427,
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P<0.001), as well as the IDI (0.054, P<0.001) (Supplementary Table

S2). These findings indicated that the ECW/TBW ratio improved

the ability to predict the presence of DPN.
3.6 Predictive ability of the ECW/TBW ratio,
NLR, and PLR for DPN

To further evaluate the ability of the ECW/TBW ratio, NLR,

and PLR to predict diabetic peripheral neuropathy (DPN) in

patients with diabetes, receiver operating characteristic (ROC)

curves were used. The area under the curve (AUC) for the ECW/

TBW ratio was 0.678 (sensitivity = 46.8%, specificity = 77.5%),

which was higher than those for NLR (AUC = 0.620) and PLR
TABLE 3 Correlation between ECW/TBW ratio at body different measured sites and DPN.

Variable
Model 1 Model 2 Model 3

OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value

ECW/TBW (%) 2.580 (2.041, 3.263) <0.001*** 3.301 (2.403, 4.535) <0.001*** 3.122 (2.202, 4.424) <0.001***

ECW/TBW (arms, %) 1.586 (1.341, 1.875) <0.001*** 1.510 (1.248, 1.828) <0.001*** 1.447 (1.171, 1.788) 0.001**

ECW/TBW (trunk, %) 2.479 (1.974, 3.114) <0.001*** 3.393 (2.468, 4.665) <0.001*** 3.227 (2.275, 4.577) <0.001***

ECW/TBW (legs, %) 1.518 (1.373, 1.678) <0.001*** 1.632 (1.430, 1.862) <0.001*** 1.611 (1.393, 1.863) <0.001***
Model 1: unadjusted. Model 2: adjusted for sex and age. Model 3: adjusted for sex, age, diabetes duration, smoking, lymphocyte, PLR, MLR, NLR, ALT, AST, total protein, albumin, FPG, FCP,
eGFR, BMI and ICW. **P <0.01, ***P <0.001.
ECW, extracellular water; TBW, total body water; DPN, diabetic peripheral neuropathy; PLR, platelet-to-lymphocyte ratio; MLR, monocyte-to-lymphocyte ratio; NLR, neutrophil-to lymphocyte
ratio; ALT, alanine transaminase; AST, aspartate aminotransferase; FPG, fasting plasma glucose; FCP, fasting C-peptide; eGFR, estimated glomerular filtration rate; BMI, body mass index; ICW,
intracellular water.
FIGURE 2

Stratification subgroup analysis on the association between ECW/TBW ratio and the risk of DPN. Adjusted for variables in Model 3. ECW, extracellular
water; TBW, total body water; DPN, diabetic peripheral neuropathy; BMI, body mass index.
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(AUC = 0.568) (Table 4, Figure 4). Additionally, we calculated the

maximum Youden index and derived the optimal cutoff value of

0.388 for the ECW/TBW ratio to predict DPN.
4 Discussion

This cross-sectional study demonstrated that higher ECW/TBW

ratios were significantly associated with an increased risk of DPN.

Notably, we found that ECW/TBW ratios in the arms, trunk, and legs

each exhibited independent correlations with DPN risk. Results from

the ROC curve analysis further validated the ECW/TBW ratio as a

robust predictor for DPN occurrence in individuals with T2DM. A

retrospective case-control study by Yang et al. demonstrated that

patients with type 1 diabetes mellitus (T1DM) and DPN exhibited a

significantly higher ECW/TBW ratio (0.3969 ± 0.0097) compared to

those without DPN (0.3886 ± 0.0086; p < 0.001) (23). While our

research and Yang et al.’s study have reached similar conclusions, the

key distinction lies in the patient populations we focused on.

Specifically, our work focuses primarily on patients with type 2

diabetes mellitus (T2DM), whereas Yang et al.’s study was

conducted in patients with type 1 diabetes mellitus (T1DM). Based
Frontiers in Endocrinology 08
on our study results and Yang’s, the ECW/TBW ratio emerges as a

promising biomarker for early DPN detection and prevention, with

demonstrated potential for clinical application in risk stratification

and intervention planning. In addition, we confirmed that BIA is

highly feasible for routine clinical care—particularly in T2DM

management—owing to its non-invasiveness, speed, low cost, and

indicative role in assessing DPN.

The underlying etiology of DPN remains incompletely elucidated,

but it is widely accepted to involve a pathophysiological cascade of

metabolic abnormalities, oxidative stress, and inflammation (24).

Among these pathophysiological alterations, hyperglycemia,

inflammatory responses, and oxidative stress are widely recognized

as cardinal drivers of DPN development and progression.

Hyperglycemia has been shown to initiate inflammatory

cascades and compromise Na+/K+ ATPase channel activity by

activating key biochemical pathways, including the polyol,

advanced glycation end products (AGEs), and protein kinase C

(PKC) pathways. These pathways collectively culminate in neuronal

and Schwann cell (SCs) damage (5). Additionally, hyperglycemia-

induced PKC overactivation impairs Na+/K+ ATPase function and

neurovascular perfusion by promoting vasoconstriction, further

exacerbating neuroischemia (25). Our study establishes a

significant association between elevated ECW/TBW ratios and

increased DPN risk; however, the precise mechanistic

underpinnings remain incompletely understood. Buscemi et al.

postulate that diabetic hyperglycemia induces a mild osmotic

gradient, driving water efflux from the intracellular to

extracellular compartment and elevating the ECW/ICW ratio

(26). This osmotic stress triggers a cascade of cellular

derangements, including intracellular dehydration, cytoskeletal

remodeling, and impaired enzymatic activity within the nucleus,

mitochondria, and cytosol (27, 28). Prolonged osmotic imbalance

culminates in cumulative damage, activating apoptotic pathways

and inducing cell death (27). These findings implicate

hyperglycemic osmolarity stress as a potential mediator linking

elevated ECW/TBW ratios to DPN pathogenesis. Given these

insights, future risk assessment models and preventive strategies

for DPN should explicitly account for hyperglycemia-induced

osmotic perturbations.

Inflammation and oxidative stress remain pivotal

pathophysiological mechanisms in the pathogenesis of DPN (28,

29). Emerging evidence has firmly established that serum markers of

inflammatory and oxidative stress responses are intimately associated

with DPN progression (30, 31). Specifically, hyperglycemia,

dyslipidemia, and insulin resistance synergistically activate the

protein kinase C (PKC), polyol, hexosamine, advanced glycation

end products (AGEs)/receptor for AGEs (RAGE) signaling cascades,

which collectively induce inflammation, oxidative stress,
TABLE 4 ROC analysis of ECW/TBW, NLR and PLR for predicting DPN.

Variables AUC 95% Cl Youden’s index Sensibility Specificity P value

ECW/TBW (%) 0.678 0.638-0.717 38.75 46.8% 77.5% <0.0001

NLR 0.620 0.579-0.661 0.196 65.7% 53.9% <0.0001

PLR 0.568 0.526-0.611 0.122 32.7% 79.5% 0.0019
FIGURE 3

The ROC curves of the ECW/TBW ratio adjusted for different
variables to predict DPN. The AUC of Model 1 is 0.678 (95% CI:
0.638-0.717) with no adjustment for covariates; the AUC of Model 2
is 0.762 (95% CI: 0.727-0.797) adjusted for baseline model; the AUC
of the Model 3 is 0.796 (95% CI: 0.764-0.829) adjusted for ECW/
TBW ratio in addition to the variables in baseline model. Baseline
model includes sex, age, diabetes duration, smoking, lymphocyte,
PLR, MLR, NLR, ALT, AST, total protein, albumin, FPG, FCP, eGFR,
BMI and ICW.
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mitochondrial dysfunction, and culminate in neuronal apoptosis

(30, 32).

A seminal study by Park et al. demonstrated that extracellular

fluid excess (ECF) potently exacerbates the risk of coronary artery

calcification in chronic kidney disease (CKD) patients (33). The

investigators proposed dual mechanistic pathways: First, ECF elicits

endothelial release of angiotensin II, which activates angiotensin II

type 1 receptor, thereby augmenting superoxide anion production

and diminishing nitric oxide bioavailability (34). Second, ECF

induces phenotypic transdifferentiation of vascular endothelial

and smooth muscle cells, promoting oxidative stress-mediated

vascular calcification (35, 36). Concomitantly, excess ECF has

been linked to robust upregulation of inflammatory biomarkers,

including tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), C-
reactive protein (CRP), and macrophage infiltration (37–40). Moh

et al. further demonstrated that elevated neutrophil-to-lymphocyte

ratio (NLR) correlates with progressive renal function decline in

type 2 diabetes mellitus (T2DM) patients, a phenomenon partially

attributed to dysregulated fluid homeostasis (19).

From a mechanistic perspective, inflammatory states compromise

endothelial barrier integrity, promoting interstitial fluid extravasation

into the extracellular space and elevating the extracellular water to total

body water ratio (ECW/TBW). Mitsides et al. proposed that in

hemodialysis-dependent CKD, extracellular fluid imbalance exhibits

a positive correlation with endothelial dysfunction markers (e.g.,

vascular cell adhesion molecule 1 [VCAM-1] and matrix

metalloproteinase-1 [MMP-1]), underscoring a bidirectional link

between overhydration and endothelial injury (38). Platelet-to-

lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR), and

NLR serve as validated surrogates of vascular inflammation (41, 42).

Our Spearman analysis revealed significant positive correlations

between ECW/TBW and PLR, MLR, NLR, suggesting that ECW/
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TBW may potentiate DPN risk via inflammatory or oxidative stress-

mediated pathways. However, large-cohort prospective studies are

essential to validate this mechanistic association.

Our findings unequivocally identified sex, diabetes duration,

and fasting plasma glucose (FPG) as independent risk determinants

for diabetic peripheral neuropathy (DPN). Prolonged diabetes

duration correlates with cumulative exposure to pathogenic

factors, thereby escalating the incidence of complications. The

male gender association with DPN aligns with prior

epidemiological evidence (43, 44). Notably, this study unveiled

intracellular water (ICW) as a novel independent risk marker for

DPN—an observation of particular significance, as both

intracellular fluid overload and depletion exert deleterious effects

on somatic cells, including neuronal populations.

Supporting the “cell swelling theory,” emerging evidence

demonstrates that cell volume acts as a dynamic metabolic sensor

modulating cellular homeostasis (45, 46). In vivomodels reveal that

cellular swelling promotes anabolic pathways (e.g., glycogen

synthesis), suppresses proteolytic activity, whereas cell shrinkage

exacerbates catabolic processes and protein degradation (46, 47).

These mechanistic insights underscore the critical need for

maintaining fluid homeostasis in type 2 diabetic patients.

Total body fluid volume is known to be modulated by age,

gender, and body habitus (48). Accordingly, we conducted

subgroup analyses stratified by sex, age, and body mass index

(BMI). Results demonstrated that the extracellular water to total

body water ratio (ECW/TBW) was significantly associated with

DPN risk across all subgroups, except for the BMI ≥28 kg/m²

stratum. The absence of this association in the obese subgroup may

be attributed to the limited sample size of type 2 diabetic patients.

Larger-cohort studies are warranted to validate these findings.

Accumulating evidence indicates that neutrophil-to-lymphocyte

ratio (NLR) and platelet-to-lymphocyte ratio (PLR) are associated

with diabetic peripheral neuropathy (DPN), demonstrating

predictive utility for DPN risk. As a pivotal marker of fluid

homeostasis, the ECW/TBW has been applied in clinical

assessments for various conditions, including colorectal cancer,

hepatocellular carcinoma, cognitive impairment in type 2 diabetes,

and diabetic kidney disease. Notably, our study revealed that the

ECW/TBW ratio exhibited robust predictive capacity for DPN risk,

as evidenced by a receiver operating characteristic (ROC) curve with

an area under the curve (AUC) of 0.678—significantly higher than

that of NLR (AUC: 0.620) and PLR (AUC: 0.568). Our findings Our

results were highly consistent with Bo Lou’s (49)and Siying Liu’s (50).

NLR emerged as noteworthy risk indicators associated with the

manifestation of DPN in patients with type 2 diabetes and AUC of

NLR was 0.661 according to Bo Lou’s data. And in Siying Liu’s study

(50),AUC of NLR was 0.619 for diagnosing DPN in patients

with T2DM.

This investigation entailed several critical limitations. First, the

cross-sectional design inherently precluded causal inference between

ECW/TBW ratio and DPN, as temporal sequence could not be

established. Second, selection biases—including admission rate bias

and prevalence-incidence bias—inevitably compromised the external

validity of results, representing a fundamental constraint. Third, we
FIGURE 4

ROC curves of ECW/TBW, NLR and PLR for predicting DPN. The
AUC of ECW/TBW for predicting DPN was 0.678 (95% CI: 0.638-
0.717); The AUC of NLR for predicting DPN was 0.620 (95% CI:
0.579-0.661); The AUC of PLR for predicting DPN was 0.568 (95%
CI: 0.526 0.611);.
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failed to account for dynamic fluctuations in hydration status (e.g.,

diuretic use, dietary sodium intake, fluid retention disorders), which

are known to substantially confound ECW/TBW measurements.

Fourth, the small sample size inherently limited statistical power,

necessitating interpretation of findings as preliminary.Specifically, we

aim to acquire large-sample, multicenter datasets to validate the

prognostic value of the ECW/TBW ratio in predicting DPN and to

explore potential mechanisms underlying this association through

prospective cohort studies in future.

Consequently, large-scale prospective cohort studies with

longitudinal monitoring of hydration parameters are essential to

validate these associations and establish causal mechanisms.
5 Conclusion

The ECW/TBW ratio proves to be a higher predictive capacity

of DPN than NLR and PLR, highlighting its potential as a novel

diagnostic indicator and be a potential indicator to predict the risk

of DPN in T2DM patients whose BMI<28kg/m².
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