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The prevalence of metabolic syndrome is increasing globally year by year, which
has prompted researchers to actively seek and develop natural biotherapeutics
to address this challenge. Lactoferrin (LF), as a multifunctional iron-binding
natural transferrin, has garnered significant attention due to its potential role in
regulating metabolism and the immune system. Recent studies show lactoferrin
may influence lipid metabolism and glucose-insulin balance, and its levels are
linked to body measurements. We systematically summarized the phenotypic
and genotypic changes of LF in patients with metabolic syndrome, and the effect
of exogenous LF on the treatment of metabolic syndrome. We also recapitulate
LF can alleviate insulin resistance by inhibiting the NF-kB inflammatory pathway,
activating the IRS/PI3K/Akt/Glut signaling pathway, and inhibiting the renin-
angiotensin system to reduce the blood pressure, therefore improving the
metabolic syndrome. This provides an important theoretical basis for the
clinical application of LF in metabolic syndrome.
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1 Introduction

Metabolic syndrome (MS) is a worldwide healthcare issue of increasing magnitude,
with the number of cases projected to reach approximately 2.568 billion by 2040 (1). MS is
defined by metabolic abnormalities, including insulin resistance, central obesity,
hyperlipidemia, hyperglycemia, and hypertension, and is also critically involved in the
pathogenesis of cardiovascular diseases, strokes, and tumors (2). MS is a condition marked
by insulin resistance that can lead to type 2 diabetes mellitus (T2DM). It has been well-
documented that insulin resistance results in elevated levels of inflammatory factor
markers, such as C-reactive protein (CRP) and cytokine interleukin 6 (IL-6) (3, 4), and
promotes adverse outcomes of atherothrombosis through an acceleration of the premature
atherosclerosis process (5, 6). Although it is commonly believed that obesity induces the
onset of insulin resistance, hepatic insulin resistance is an early step in peripheral insulin
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resistance, so insulin resistance actually precedes the onset of
obesity (7). The accumulation of visceral fat, a typical symptom
of obesity, leads to the production of adipokines such as leptin (8),
lipocalin (9), C1q tumor necrosis factor-related protein 9 (10),
chemerin (11), and retinol-binding protein 4 (12), which are
involved in a variety of metabolic processes such as glucose
uptake, insulin signaling, and fatty acid oxidation, and are highly
correlated with T2DM and cardiovascular and microvascular
complications are highly relevant (13, 14).

In addition to active intervention and improvement of the
patient’s lifestyle, the clinical treatment of MS focuses on
individual or combined drug therapy for specific pathologic
features to achieve reduction of insulin resistance, restoration of
normal blood glucose, improvement of lipid metabolism disorders,
and lowering of blood pressure. However, most of these drugs may
cause more side effects, such as rimonabant and sibutramine having
psychiatric or cardiovascular risks, respectively, and the pancreatic
lipase inhibitors orlistat and metformin can cause gastrointestinal
adverse effects (15). Although Chinese medicines with fewer side
effects represented by polyphenols, polysaccharides, saponins, and
alkaloids can also reduce MS symptoms better, there are still fewer
clinical studies, insufficient sample size, and difficulty in extracting
and identifying bioactive components (16). In view of these many
problems, it is urgent to seek and develop novel natural biological
drugs to prevent and treat MS.

In recent years, it has been found that LF is closely related to the
development of MS and has the potential to treat MS (17, 18). LF
was first found in cow’s milk, and human LF, consisting of 710
amino acids, has a molecular weight of about 80 kDa. It is
structurally similar to serum transferrin and can bind to ferric
ions, and therefore is categorized as a member of the transferrin
family. In addition to being present in most milk secretions, LF is
also distributed in mucosal secretions and granules of neutrophils.
It is now often used as a food additive and pharmaceutical adjuvant,
playing the roles of antioxidant, bacterial inhibition, enhancement
of drug efficacy and reduction of drug resistance. LF has been found
to have the potential to be used as an antioxidant, drug enhancer,
and drug mitigator in MS (18). Studies have reported that it is also
involved in the regulation of glucose and lipid uptake, improvement
of insulin production and signaling, inhibition of adipogenesis,
reduction of inflammation, and oxidative stress associated with
metabolic syndrome, among other processes.

2 Lactoferrin effective in improving
metabolic syndrome

Clinical studies have shown a practical correlation between
fluctuations in endogenous LF levels and metabolic disorders, and
LF may regulate glucose metabolism, insulin homeostasis and lipid
metabolism. Lactoferrin levels were significantly reduced in patients
with gestational diabetes, which was linked to hyperglycemic
indicators and iron homeostasis disorders, and may serve as a
biomarker for detecting different stages of gestational diabetes (19).
The concentration of LF in the saliva of healthy individuals was
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about 40% higher than that of patients with decompensated T2DM,
and the release of LF from neutrophils was correspondingly reduced
in insulin-resistant subjects (20). Lactoferrin could also enhance
insulin signaling and inhibit the activity of RB1 and AMPK,
promoting fat production in human adipocytes (21). The
expression level of the LF gene was significantly lower in obese
patients and negatively correlates with the expression level of
inflammatory markers, with fasting triglyceride (TG), body mass
index (BMI), and fasting glucose, and with plasma high-density
lipoprotein cholesterol (HDL-C) levels, and there was also a
significant correlation with the risk of hypertension (22). In
severely obese patients, LF concentrations were negatively
correlated with postprandial lipemia, oxidative stress parameters
(e.g., catalase and glutathione peroxidase), and CRP, suggesting that
endogenous LF was elevated and subjects had an improved response
to fat load (23).

LF and LF receptor gene variants are associated with the
prevalence of disorders of glucolipid metabolism. In subjects with
altered glucose tolerance, two LF gene polymorphisms (LF
rs1126477 and rs1126478) were associated with HDL-C and TG
levels (18). Whereas in metabolically healthy obese patients, there
was a significant difference in low-density lipoprotein cholesterol
(LDL-C) levels between LTF rs1126477 gene variants, and LDL-C
levels were significantly different (18), serum LF concentrations
were also negatively correlated with HDL-C levels (24).
Polymorphisms in the LF receptor gene (LRP1 rs4759277) have
also been associated with fasting insulin levels and homeostatic
modeling assessment of insulin resistance in patients with metabolic
syndrome (25).

Exogenous supplementation of LF could also improve energy
metabolism (26, 27). Three months of oral administration of camel
LF capsules to pediatric patients with T2DM resulted in a significant
increase in insulin expression and a decrease in serum glucose,
suggesting a potential hypoglycemic effect of camel LF (28). Subjects
supplemented with LF showed a significant reduction in total and
visceral fat accumulation, leading to a decrease in body weight and
BMI (29) as well as a decrease in intestinal absorption of TG (30).

3 Mechanisms of lactoferrin alleviating
the metabolic syndrome

3.1 Anti-inflammatory effects of lactoferrin
improve insulin resistance

Inflammation is an important cause of the development of
insulin resistance (31). LF may significantly affect insulin signaling
and related functions by reducing inflammation (26). Animal
experiments have shown that LF improves the behavioral
manifestation of pain in rats with chronic compression injury
models and inhibits inflammatory responses by down-regulating
the levels of inflammatory cytokines IL-6 and tumor necrosis
factor-or (TNF-o), thus exerting analgesic effects (Figure 1) (32).
Down-regulation of TNF-o. and IL-6 mRNA expression in the
pancreas of diabetic mice modulates pancreatic inflammatory state

frontiersin.org


https://doi.org/10.3389/fendo.2025.1562653
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Zong et al. 10.3389/fendo.2025.1562653
—~ = Scr
c [T e
5 o e (1] Tak1 Anti-microbial
g
© Hypertension <¢— ! . L T NI
= remission renin-angiotensin-aldosteronesystem
i ‘ Iron absorption
o e \_/
o L/
€ L NF-kB
o LRP-3
a Immunomodulatory
2 SIRT-1
a MCP-1
, TNF-a
© JInflammation Interleukin
g Antioxidant
g 4 Adiponectin
>
z AUCP1
§ Insulin rGLUTH
c resistance Anti-cancer
AGLUT4
FIGURE 1

The mechanisms of lactoferrin alleviating the metabolic syndrome (By Figdraw).

to improve pancreatic dysfunction (30). Diabetic LF knockout mice
are more susceptible to periodontal disease with increased secretion
of pro-inflammatory cytokines compared to diabetic wild-type mice
(33). LF inhibits the release of IL-1f in the liver (34), suppresses the
expression of monocytes chemochemin-1 (MCP-1) in the liver and
adipose tissue of epididymis in obese mice (35), decreases the levels
of intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell
adhesion molecule-1 (VCAM-1) in mice fed a high-fat diet (22),
and reduces the expression modulate the lipopolysaccharide (LPS)-
mediated inflammatory cascade (36), mainly by inhibiting LPS-
induced secretion of IL-6 by human monocyte cell lines (37), down-
regulating LPS-stimulated secretion of IL-10 by macrophages (38),
and inhibiting the expression of pro-inflammatory cytokines
including TNF-o, IL-1, IL-6 and IL-8 (39), and upregulates
lipocalin expression (18).

In T2DM mice, LF ameliorates pancreatic dysfunction by
reducing inflammatory responses through regulating the PI3K/
AKT signaling pathway. LF reduces serum glycated protein and
fasting insulin concentrations and improves hepatic insulin
sensitivity (30), and also reduces serum or hepatic levels of TNF-
o, IL-6, and IL-1P, reversing abnormal inflammatory responses in
diabetic mice (17). In addition, LF can maintain intestinal barrier
integrity and alleviate LPS-induced inflammatory responses by
attenuating the NF-kB/MAPK pathway (40), and regulate the
expression of cytokines, such as TNF-q, IL-6, and IL-1, to exert
the protective effect of the intestinal immune barrier (41), rebalance
the disorders of glucose-lipid metabolism, and restore inflammatory
parameters (42). The effect of lactoferricin bovine (LfcinB) in rats
with enteritis led to a decrease in the mRNA expression of pro-
inflammatory factors IL-6, IL-1B, and TNF-o in colonic tissues,
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which mainly inhibited the occurrence and development of
inflammation through the NF-kB/NLRP3 signaling pathway and
thus achieved the protection of the intestinal mucosal barrier
function. MT10, the main product produced after gastric
digestion, can prevent inflammatory damage of intestinal
organoids by TNF-o and maintain stable growth of intestinal
organoid cells (43).

The role of LF as an anti-inflammatory agent has also been
validated in in vitro cellular-level experiments. In studies on the
human hepatocellular carcinoma cell line HepG2 as well as the
undifferentiated and pre-differentiated fibroblastic mouse cell line
3T3-L1 under non-inflammatory and inflammatory conditions, it
was found that the hypoglycemic activity of LF may be related to the
improvement of insulin resistance by regulating the expression of
glycoprotein genes and thus exerting the anti-inflammatory
mechanism of its activity (44, 45). LF down-regulated the
expression of transforming growth factor-f-activated kinase 1
and IL-18, restored the level of AKT (Ser 473) phosphorylation in
3T3-L1 cells, and reduced the expression levels of IL-8, IL-6 and
MCP-1 genes in subcutaneous and visceral adipocytes (22).

LF exerts insulin-sensitizing and anti-inflammatory effects by
inhibiting the TLR-4/NF-kB/SIRT-1 signaling cascade and
correspondingly decreases the expression of serum pro-inflammatory
cytokines IL-1B, IL-6, lipocalin 2, and TNF-o, thereby reducing
diabetes-related inflammation (28). It directly promotes glucose
transport to small intestinal epithelial cells via sodium-dependent
glucose transporter 1 through down-regulation of Ca** and cAMP
signaling pathways (46) and leads to increased energy expenditure by
promoting uncoupling protein 1 gene expression in brown adipocytes
through the cAMP-PKA signaling pathway (47).
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3.2 Lactoferrin activates IRS-1/PI3K/AKT to
improve insulin resistance

Studies have shown that LF upregulates insulin receptor (IR), insulin
receptor substrate-1 (IRS-1), glucose transporter 4 (GLUT4), PI3K and
AKT in liver protein expression (30), increases peroxisome proliferator-
activated receptor y and regulatory protein SIRT-1 expression (28), and
is negatively correlated with chronic inflammation-induced metabolic
disorders of insulin resistance, hyperglycemia, and obesity, and positively
correlated with insulin sensitivity (48). Huang (49) observed that the
PI3K/AKT pathway was blocked in the T2DM state. Lactoferrin can
activate the IRS-1/PI3K/AKT pathway by facilitating insulin binding to
IR. AKT activation leads to phosphorylation of AS160, which
contributes to the translocation of GLUT4 from intracellular vesicles
to the cell membrane, thereby improving glucose uptake (30, 34). In
addition, the protective effects of LF can be realized through its ability to
bind glucose and its anti-inflammatory activity (50). During
differentiation of HepG2 and 3T3-L1 cells, lactoferrin increases
insulin-induced phosphorylation of AKT (Ser 473), leading to an
increase in AMPK (pThr 172) and a decrease in adipogenesis (51).
The LF effect of p-AKT has also been found in other diseases, with
Alzheimer’s disease patients having reduced levels of PI3K and p-AKT
in peripheral blood lymphocyte solution, and significant improvements
in all of these metrics with LF (52).

The bioactive peptides that were obtained through modification
and alteration were also more successful in mitigating the effect of
insulin resistance. The suggested peptide, which has the sequence RER-
EtBn, has the ability to stimulate the phosphorylation of its major
target, AKT serine, inhibit the phosphorylation of Gsk-3f3, and then
promote the translocation of the GLUT4 protein to the cell membrane’s
surface to promote glucose translocation, all of which have a positive
impact on the state of insulin-resistant glucose metabolism (53).

It is evident that LF ameliorates hepatic insulin resistance and
pancreatic dysfunction in T2DM mice by regulating the PI3K/AKT
signaling pathway. In addition, it has been shown that whey protein
can stimulate the translocation of GLUT4 to the plasma membrane of
muscle tissue independently of insulin secretion (54), while LF itself can
reverse the GLUT4 downregulation triggered by a high-fat diet (30).
This may be another potential hypoglycemic mode of action of LF, and
its specific mechanism needs to be further investigated.

3.3 Lactoferrin inhibits the renin-
angiotensin system to regulate blood
pressure

Hypertension, as a chronic disease, is the causative agent of a
wide range of clinical disorders and often requires long-term
medication. The regulatory effects of LF on blood pressure have
also received attention, and its antihypertensive effects may be
exerted by affecting nitric oxide (NO) synthesis and endothelium-
dependent vasodilation. LF treatment significantly down-regulated
the high-salt and high-fat-induced renal NLRP3 inflammatory
vesicles and protein expression levels of inflammatory factors and
regulated the expression levels of mRNAs related to the renin-
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angiotensin-aldosterone system pathway, which can prevent 8%
NaCl diet-induced hypertension and renal injury in mice (55). LF
reduces systolic blood pressure, serum adhesion molecules (ICAM-
1 and VCAM-1) and aortic reactive oxygen species levels, and
improves the endothelium-dependent diastolic function in mice fed
a high-fat diet. In addition, LF down-regulated the Takl/IL-18/
eNOS pathway between perivascular adipose tissue and the aorta
and promoted NO production in high-fat diet mice, which in turn
ameliorated hypertension (22). Dexamethasone-induced systolic
blood pressure elevation was lessened by LF administration (56),
which also boosted NO generation in bovine aortic endothelial cells
(57) and phosphorylated more eNOS in human aortic endothelial
cells via a Scr/Akt/eNOS-dependent pathway (22).

Hypotensive peptides derived from lactoferrin have also been
identified, and the angiotensin-converting enzyme-inhibiting
tripeptide low-density lipoprotein receptor related protein (LRP)
derived from bovine lactoferrin, has antihypertensive effects (58).
RPYL, identified from the lactoferrin B-derived peptide LfcinB20-25
(RRWQWR), has antihypertensive activity comparable to valsartan
(59). The antihypertensive effects of the heptapeptides found in
lactoferrin pepsin LF hydrolysate and yeast protein hydrolysate
(DPYKLRP) were observed in spontaneously hypertensive rats. The
antihypertensive effects were comparable in magnitude and duration
to those of the antihypertensive medication captopril (60). Long-term
oral treatment of spontaneously hypertensive rats resulted in a
considerable reduction in systolic blood pressure as well as a
decrease in serum levels of aldosterone, angiotensin II, and the
enzyme angiotensin converting enzyme; however, it had no
antihypertensive impact on normotensive rats (61). In addition,
data suggests that LfcinB20-25, LfcinB17-31, and LfcinB17-22 have
a 10-fold in vitro antihypertensive effect. RPYL and LIWKL have
similar inhibitory effects on angiotensin converting enzyme (ACE)-
dependent vasoconstriction. LF hydrolysates, The antihypertensive
effects of LfcinB20-25, RPYL and LIWKL may be due to ACE
inhibition and induced reduction of vascular tone in vivo. The
above ex vivo experiments showed that LF-derived peptides have
higher ACE inhibitory capacity in ex vivo (62). It has been shown that
LF-derived peptides’ mechanisms of hypotensive action involve not
only the inhibition of ACE but also interactions with the renin-
angiotensin system, the endothelin system, and regulation of gene
expression encoding proteins involved in the NO pathway and
prostaglandin synthesis (61).

4 Conclusions

In summary, the mechanism of LF in human metabolism
involves multiple processes, including regulation of glucose and
lipid uptake, improvement of insulin production and signal
transduction, inhibition of adipogenesis, elevation of HDL
cholesterol and reduction of oxidized LDL cholesterol forms, and
reduction of inflammation and oxidative stress associated with the
metabolic syndrome. Therefore, LF may be an effective therapeutic
target for metabolic disorders and is significant for the study of the
occurrence and development of various diseases. Simultaneously,
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LF is a nutritional additive that has received approval from
regulatory agencies, with no significant potential side effects
identified. Its safety has been corroborated through studies for the
treatment of other conditions, including iron-deficiency anemia
(63-65). However, LF is in reality degraded in the gastrointestinal
tract, so its biological effects may derive mainly from its digestion
products rather than from the intact LF molecule. It has been shown
that exogenous LF is hydrolyzed by proteases and mainly exists in
the form of peptides, which have small molecular masses, are well
digested and absorbed, and even exhibit higher biological activities
(66). Therefore, further investigation is needed to find out whether
LF autocrine is consistent with the effect of exogenously added LF.
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