
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Prem Prakash Kushwaha,
Case Western Reserve University,
United States

REVIEWED BY

Ankit Kushwaha,
Stanford University, United States
Saurabh Mishra,
Cleveland Clinic, United States

*CORRESPONDENCE

Penghua Fang

hlcollegesci@sina.cn

Yi Zhang

fsyy02043@njucm.edu.cn

RECEIVED 17 January 2025

ACCEPTED 31 March 2025
PUBLISHED 17 April 2025

CITATION

Zong X, Wang Y, Chen Y, Fang P and Zhang Y
(2025) Role of lactoferrin and its derived
peptides in metabolic syndrome treatment.
Front. Endocrinol. 16:1562653.
doi: 10.3389/fendo.2025.1562653

COPYRIGHT

© 2025 Zong, Wang, Chen, Fang and Zhang.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Mini Review

PUBLISHED 17 April 2025

DOI 10.3389/fendo.2025.1562653
Role of lactoferrin and its derived
peptides in metabolic syndrome
treatment
Xicui Zong1, Yajing Wang2, Yuqing Chen3, Penghua Fang4*

and Yi Zhang3*

1Laboratory Training Center, Nanjing University of Chinese Medicine Hanlin College, Taizhou,
Jiangsu, China, 2Department of Endocrinology, Clinical Medical College, Yangzhou University,
Yangzhou, China, 3School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China,
4The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing,
Jiangsu, China
The prevalence of metabolic syndrome is increasing globally year by year, which

has prompted researchers to actively seek and develop natural biotherapeutics

to address this challenge. Lactoferrin (LF), as a multifunctional iron-binding

natural transferrin, has garnered significant attention due to its potential role in

regulating metabolism and the immune system. Recent studies show lactoferrin

may influence lipid metabolism and glucose-insulin balance, and its levels are

linked to body measurements. We systematically summarized the phenotypic

and genotypic changes of LF in patients with metabolic syndrome, and the effect

of exogenous LF on the treatment of metabolic syndrome. We also recapitulate

LF can alleviate insulin resistance by inhibiting the NF-kB inflammatory pathway,

activating the IRS/PI3K/Akt/Glut signaling pathway, and inhibiting the renin-

angiotensin system to reduce the blood pressure, therefore improving the

metabolic syndrome. This provides an important theoretical basis for the

clinical application of LF in metabolic syndrome.
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1 Introduction

Metabolic syndrome (MS) is a worldwide healthcare issue of increasing magnitude,

with the number of cases projected to reach approximately 2.568 billion by 2040 (1). MS is

defined by metabolic abnormalities, including insulin resistance, central obesity,

hyperlipidemia, hyperglycemia, and hypertension, and is also critically involved in the

pathogenesis of cardiovascular diseases, strokes, and tumors (2). MS is a condition marked

by insulin resistance that can lead to type 2 diabetes mellitus (T2DM). It has been well-

documented that insulin resistance results in elevated levels of inflammatory factor

markers, such as C-reactive protein (CRP) and cytokine interleukin 6 (IL-6) (3, 4), and

promotes adverse outcomes of atherothrombosis through an acceleration of the premature

atherosclerosis process (5, 6). Although it is commonly believed that obesity induces the

onset of insulin resistance, hepatic insulin resistance is an early step in peripheral insulin
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resistance, so insulin resistance actually precedes the onset of

obesity (7). The accumulation of visceral fat, a typical symptom

of obesity, leads to the production of adipokines such as leptin (8),

lipocalin (9), C1q tumor necrosis factor-related protein 9 (10),

chemerin (11), and retinol-binding protein 4 (12), which are

involved in a variety of metabolic processes such as glucose

uptake, insulin signaling, and fatty acid oxidation, and are highly

correlated with T2DM and cardiovascular and microvascular

complications are highly relevant (13, 14).

In addition to active intervention and improvement of the

patient’s lifestyle, the clinical treatment of MS focuses on

individual or combined drug therapy for specific pathologic

features to achieve reduction of insulin resistance, restoration of

normal blood glucose, improvement of lipid metabolism disorders,

and lowering of blood pressure. However, most of these drugs may

cause more side effects, such as rimonabant and sibutramine having

psychiatric or cardiovascular risks, respectively, and the pancreatic

lipase inhibitors orlistat and metformin can cause gastrointestinal

adverse effects (15). Although Chinese medicines with fewer side

effects represented by polyphenols, polysaccharides, saponins, and

alkaloids can also reduce MS symptoms better, there are still fewer

clinical studies, insufficient sample size, and difficulty in extracting

and identifying bioactive components (16). In view of these many

problems, it is urgent to seek and develop novel natural biological

drugs to prevent and treat MS.

In recent years, it has been found that LF is closely related to the

development of MS and has the potential to treat MS (17, 18). LF

was first found in cow’s milk, and human LF, consisting of 710

amino acids, has a molecular weight of about 80 kDa. It is

structurally similar to serum transferrin and can bind to ferric

ions, and therefore is categorized as a member of the transferrin

family. In addition to being present in most milk secretions, LF is

also distributed in mucosal secretions and granules of neutrophils.

It is now often used as a food additive and pharmaceutical adjuvant,

playing the roles of antioxidant, bacterial inhibition, enhancement

of drug efficacy and reduction of drug resistance. LF has been found

to have the potential to be used as an antioxidant, drug enhancer,

and drug mitigator in MS (18). Studies have reported that it is also

involved in the regulation of glucose and lipid uptake, improvement

of insulin production and signaling, inhibition of adipogenesis,

reduction of inflammation, and oxidative stress associated with

metabolic syndrome, among other processes.
2 Lactoferrin effective in improving
metabolic syndrome

Clinical studies have shown a practical correlation between

fluctuations in endogenous LF levels and metabolic disorders, and

LF may regulate glucose metabolism, insulin homeostasis and lipid

metabolism. Lactoferrin levels were significantly reduced in patients

with gestational diabetes, which was linked to hyperglycemic

indicators and iron homeostasis disorders, and may serve as a

biomarker for detecting different stages of gestational diabetes (19).

The concentration of LF in the saliva of healthy individuals was
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about 40% higher than that of patients with decompensated T2DM,

and the release of LF from neutrophils was correspondingly reduced

in insulin-resistant subjects (20). Lactoferrin could also enhance

insulin signaling and inhibit the activity of RB1 and AMPK,

promoting fat production in human adipocytes (21). The

expression level of the LF gene was significantly lower in obese

patients and negatively correlates with the expression level of

inflammatory markers, with fasting triglyceride (TG), body mass

index (BMI), and fasting glucose, and with plasma high-density

lipoprotein cholesterol (HDL-C) levels, and there was also a

significant correlation with the risk of hypertension (22). In

severely obese patients, LF concentrations were negatively

correlated with postprandial lipemia, oxidative stress parameters

(e.g., catalase and glutathione peroxidase), and CRP, suggesting that

endogenous LF was elevated and subjects had an improved response

to fat load (23).

LF and LF receptor gene variants are associated with the

prevalence of disorders of glucolipid metabolism. In subjects with

altered glucose tolerance, two LF gene polymorphisms (LF

rs1126477 and rs1126478) were associated with HDL-C and TG

levels (18). Whereas in metabolically healthy obese patients, there

was a significant difference in low-density lipoprotein cholesterol

(LDL-C) levels between LTF rs1126477 gene variants, and LDL-C

levels were significantly different (18), serum LF concentrations

were also negatively correlated with HDL-C levels (24).

Polymorphisms in the LF receptor gene (LRP1 rs4759277) have

also been associated with fasting insulin levels and homeostatic

modeling assessment of insulin resistance in patients with metabolic

syndrome (25).

Exogenous supplementation of LF could also improve energy

metabolism (26, 27). Three months of oral administration of camel

LF capsules to pediatric patients with T2DM resulted in a significant

increase in insulin expression and a decrease in serum glucose,

suggesting a potential hypoglycemic effect of camel LF (28). Subjects

supplemented with LF showed a significant reduction in total and

visceral fat accumulation, leading to a decrease in body weight and

BMI (29) as well as a decrease in intestinal absorption of TG (30).
3 Mechanisms of lactoferrin alleviating
the metabolic syndrome

3.1 Anti-inflammatory effects of lactoferrin
improve insulin resistance

Inflammation is an important cause of the development of

insulin resistance (31). LF may significantly affect insulin signaling

and related functions by reducing inflammation (26). Animal

experiments have shown that LF improves the behavioral

manifestation of pain in rats with chronic compression injury

models and inhibits inflammatory responses by down-regulating

the levels of inflammatory cytokines IL-6 and tumor necrosis

factor-a (TNF-a), thus exerting analgesic effects (Figure 1) (32).

Down-regulation of TNF-a and IL-6 mRNA expression in the

pancreas of diabetic mice modulates pancreatic inflammatory state
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to improve pancreatic dysfunction (30). Diabetic LF knockout mice

are more susceptible to periodontal disease with increased secretion

of pro-inflammatory cytokines compared to diabetic wild-type mice

(33). LF inhibits the release of IL-1b in the liver (34), suppresses the

expression of monocytes chemochemin-1 (MCP-1) in the liver and

adipose tissue of epididymis in obese mice (35), decreases the levels

of intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell

adhesion molecule-1 (VCAM-1) in mice fed a high-fat diet (22),

and reduces the expression modulate the lipopolysaccharide (LPS)-

mediated inflammatory cascade (36), mainly by inhibiting LPS-

induced secretion of IL-6 by human monocyte cell lines (37), down-

regulating LPS-stimulated secretion of IL-10 by macrophages (38),

and inhibiting the expression of pro-inflammatory cytokines

including TNF-a, IL-1, IL-6 and IL-8 (39), and upregulates

lipocalin expression (18).

In T2DM mice, LF ameliorates pancreatic dysfunction by

reducing inflammatory responses through regulating the PI3K/

AKT signaling pathway. LF reduces serum glycated protein and

fasting insulin concentrations and improves hepatic insulin

sensitivity (30), and also reduces serum or hepatic levels of TNF-

a, IL-6, and IL-1b, reversing abnormal inflammatory responses in

diabetic mice (17). In addition, LF can maintain intestinal barrier

integrity and alleviate LPS-induced inflammatory responses by

attenuating the NF-kB/MAPK pathway (40), and regulate the

expression of cytokines, such as TNF-a, IL-6, and IL-1, to exert

the protective effect of the intestinal immune barrier (41), rebalance

the disorders of glucose-lipid metabolism, and restore inflammatory

parameters (42). The effect of lactoferricin bovine (LfcinB) in rats

with enteritis led to a decrease in the mRNA expression of pro-

inflammatory factors IL-6, IL-1b, and TNF-a in colonic tissues,
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which mainly inhibited the occurrence and development of

inflammation through the NF-kB/NLRP3 signaling pathway and

thus achieved the protection of the intestinal mucosal barrier

function. MT10, the main product produced after gastric

digestion, can prevent inflammatory damage of intestinal

organoids by TNF-a and maintain stable growth of intestinal

organoid cells (43).

The role of LF as an anti-inflammatory agent has also been

validated in in vitro cellular-level experiments. In studies on the

human hepatocellular carcinoma cell line HepG2 as well as the

undifferentiated and pre-differentiated fibroblastic mouse cell line

3T3-L1 under non-inflammatory and inflammatory conditions, it

was found that the hypoglycemic activity of LF may be related to the

improvement of insulin resistance by regulating the expression of

glycoprotein genes and thus exerting the anti-inflammatory

mechanism of its activity (44, 45). LF down-regulated the

expression of transforming growth factor-b-activated kinase 1

and IL-18, restored the level of AKT (Ser 473) phosphorylation in

3T3-L1 cells, and reduced the expression levels of IL-8, IL-6 and

MCP-1 genes in subcutaneous and visceral adipocytes (22).

LF exerts insulin-sensitizing and anti-inflammatory effects by

inhibiting the TLR-4/NF-kB/SIRT-1 signaling cascade and

correspondingly decreases the expression of serum pro-inflammatory

cytokines IL-1b, IL-6, lipocalin 2, and TNF-a, thereby reducing

diabetes-related inflammation (28). It directly promotes glucose

transport to small intestinal epithelial cells via sodium-dependent

glucose transporter 1 through down-regulation of Ca2+ and cAMP

signaling pathways (46) and leads to increased energy expenditure by

promoting uncoupling protein 1 gene expression in brown adipocytes

through the cAMP-PKA signaling pathway (47).
FIGURE 1

The mechanisms of lactoferrin alleviating the metabolic syndrome (By Figdraw).
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3.2 Lactoferrin activates IRS-1/PI3K/AKT to
improve insulin resistance

Studies have shown that LF upregulates insulin receptor (IR), insulin

receptor substrate-1 (IRS-1), glucose transporter 4 (GLUT4), PI3K and

AKT in liver protein expression (30), increases peroxisome proliferator-

activated receptor g and regulatory protein SIRT-1 expression (28), and

is negatively correlated with chronic inflammation-induced metabolic

disorders of insulin resistance, hyperglycemia, and obesity, and positively

correlated with insulin sensitivity (48). Huang (49) observed that the

PI3K/AKT pathway was blocked in the T2DM state. Lactoferrin can

activate the IRS-1/PI3K/AKT pathway by facilitating insulin binding to

IR. AKT activation leads to phosphorylation of AS160, which

contributes to the translocation of GLUT4 from intracellular vesicles

to the cell membrane, thereby improving glucose uptake (30, 34). In

addition, the protective effects of LF can be realized through its ability to

bind glucose and its anti-inflammatory activity (50). During

differentiation of HepG2 and 3T3-L1 cells, lactoferrin increases

insulin-induced phosphorylation of AKT (Ser 473), leading to an

increase in AMPK (pThr 172) and a decrease in adipogenesis (51).

The LF effect of p-AKT has also been found in other diseases, with

Alzheimer’s disease patients having reduced levels of PI3K and p-AKT

in peripheral blood lymphocyte solution, and significant improvements

in all of these metrics with LF (52).

The bioactive peptides that were obtained through modification

and alteration were also more successful in mitigating the effect of

insulin resistance. The suggested peptide, which has the sequence RER-

EtBn, has the ability to stimulate the phosphorylation of its major

target, AKT serine, inhibit the phosphorylation of Gsk-3b, and then

promote the translocation of the GLUT4 protein to the cell membrane’s

surface to promote glucose translocation, all of which have a positive

impact on the state of insulin-resistant glucose metabolism (53).

It is evident that LF ameliorates hepatic insulin resistance and

pancreatic dysfunction in T2DM mice by regulating the PI3K/AKT

signaling pathway. In addition, it has been shown that whey protein

can stimulate the translocation of GLUT4 to the plasma membrane of

muscle tissue independently of insulin secretion (54), while LF itself can

reverse the GLUT4 downregulation triggered by a high-fat diet (30).

This may be another potential hypoglycemic mode of action of LF, and

its specific mechanism needs to be further investigated.
3.3 Lactoferrin inhibits the renin-
angiotensin system to regulate blood
pressure

Hypertension, as a chronic disease, is the causative agent of a

wide range of clinical disorders and often requires long-term

medication. The regulatory effects of LF on blood pressure have

also received attention, and its antihypertensive effects may be

exerted by affecting nitric oxide (NO) synthesis and endothelium-

dependent vasodilation. LF treatment significantly down-regulated

the high-salt and high-fat-induced renal NLRP3 inflammatory

vesicles and protein expression levels of inflammatory factors and

regulated the expression levels of mRNAs related to the renin-
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angiotensin-aldosterone system pathway, which can prevent 8%

NaCl diet-induced hypertension and renal injury in mice (55). LF

reduces systolic blood pressure, serum adhesion molecules (ICAM-

1 and VCAM-1) and aortic reactive oxygen species levels, and

improves the endothelium-dependent diastolic function in mice fed

a high-fat diet. In addition, LF down-regulated the Tak1/IL-18/

eNOS pathway between perivascular adipose tissue and the aorta

and promoted NO production in high-fat diet mice, which in turn

ameliorated hypertension (22). Dexamethasone-induced systolic

blood pressure elevation was lessened by LF administration (56),

which also boosted NO generation in bovine aortic endothelial cells

(57) and phosphorylated more eNOS in human aortic endothelial

cells via a Scr/Akt/eNOS-dependent pathway (22).

Hypotensive peptides derived from lactoferrin have also been

identified, and the angiotensin-converting enzyme-inhibiting

tripeptide low-density lipoprotein receptor related protein (LRP)

derived from bovine lactoferrin, has antihypertensive effects (58).

RPYL, identified from the lactoferrin B-derived peptide LfcinB20-25

(RRWQWR), has antihypertensive activity comparable to valsartan

(59). The antihypertensive effects of the heptapeptides found in

lactoferrin pepsin LF hydrolysate and yeast protein hydrolysate

(DPYKLRP) were observed in spontaneously hypertensive rats. The

antihypertensive effects were comparable in magnitude and duration

to those of the antihypertensive medication captopril (60). Long-term

oral treatment of spontaneously hypertensive rats resulted in a

considerable reduction in systolic blood pressure as well as a

decrease in serum levels of aldosterone, angiotensin II, and the

enzyme angiotensin converting enzyme; however, it had no

antihypertensive impact on normotensive rats (61). In addition,

data suggests that LfcinB20-25, LfcinB17-31, and LfcinB17-22 have

a 10-fold in vitro antihypertensive effect. RPYL and LIWKL have

similar inhibitory effects on angiotensin converting enzyme (ACE)-

dependent vasoconstriction. LF hydrolysates, The antihypertensive

effects of LfcinB20-25, RPYL and LIWKL may be due to ACE

inhibition and induced reduction of vascular tone in vivo. The

above ex vivo experiments showed that LF-derived peptides have

higher ACE inhibitory capacity in ex vivo (62). It has been shown that

LF-derived peptides’ mechanisms of hypotensive action involve not

only the inhibition of ACE but also interactions with the renin-

angiotensin system, the endothelin system, and regulation of gene

expression encoding proteins involved in the NO pathway and

prostaglandin synthesis (61).
4 Conclusions

In summary, the mechanism of LF in human metabolism

involves multiple processes, including regulation of glucose and

lipid uptake, improvement of insulin production and signal

transduction, inhibition of adipogenesis, elevation of HDL

cholesterol and reduction of oxidized LDL cholesterol forms, and

reduction of inflammation and oxidative stress associated with the

metabolic syndrome. Therefore, LF may be an effective therapeutic

target for metabolic disorders and is significant for the study of the

occurrence and development of various diseases. Simultaneously,
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LF is a nutritional additive that has received approval from

regulatory agencies, with no significant potential side effects

identified. Its safety has been corroborated through studies for the

treatment of other conditions, including iron-deficiency anemia

(63–65). However, LF is in reality degraded in the gastrointestinal

tract, so its biological effects may derive mainly from its digestion

products rather than from the intact LF molecule. It has been shown

that exogenous LF is hydrolyzed by proteases and mainly exists in

the form of peptides, which have small molecular masses, are well

digested and absorbed, and even exhibit higher biological activities

(66). Therefore, further investigation is needed to find out whether

LF autocrine is consistent with the effect of exogenously added LF.
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