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From bench to bedside:
targeting ferroptosis and
mitochondrial damage in
the treatment of diabetic
cardiomyopathy
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1Department of Cardiology, The Fifth Affiliated Hospital of Kunming Medical University, Gejiu People’s
Hospital, Gejiu, Yunnan, China, 2Department of Cardiology, Yan’an Hospital Affiliated to Kunming
Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min,
Yunnan, China, 3Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of
Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
Diabetic cardiomyopathy (DCM) is a common and fatal cardiac complication

caused by diabetes, with its pathogenesis involving various forms of cell death

and mitochondrial dysfunction, particularly ferroptosis and mitochondrial injury.

Recent studies have indicated that ferroptosis and mitochondrial damage play

crucial roles in the onset and progression of DCM, though their precise

regulatory mechanisms remain unclear. Of particular interest is the interaction

between ferroptosis and mitochondrial damage, as well as their synergistic

effects, which are not fully understood. This review summarizes the roles of

ferroptosis and mitochondrial injury in the progression of DCM and explores the

molecular mechanisms involved, with an emphasis on the interplay between

these two processes. Additionally, the article offers an overview of targeted drugs

shown to be effective in cellular experiments, animal models, and clinical trials,

analyzing their mechanisms of action and potential side effects. The goal is to

provide insights for future drug development and clinical applications. Moreover,

the review explores the challenges and prospects of multi-target combination

therapies and personalized medicine interventions in clinical practice to offer

strategic guidance for the comprehensive prevention and management of DCM.
KEYWORDS
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1 Introduction

Diabetic cardiomyopathy (DCM) is a unique form of

myocardial injury that occurs in patients with diabetes. It is not

only closely linked to the systemic complications of diabetes but

also involves specific pathological changes in myocardial

metabolism and oxidative stress (1). Key factors contributing to

DCM pathogenesis include disruptions in iron metabolism and

mitochondrial dysfunction. The characteristic pathological features

of DCM include lipid accumulation in myocardial cells, myocardial

hypertrophy, myocardial fibrosis, mitochondrial damage, and

myocardial ischemia (2). These alterations ultimately contribute

to heart failure, which is a leading cause of mortality among patients

with diabetes (Figure 1).

The increasing global prevalence of diabetes presents significant

challenges to the prevention and treatment of DCM. According to the

latest report by the International Diabetes Federation (IDF) (3, 4), the

global prevalence of diabetes among adults aged 20–79 years had

reached 14% by 2022, doubling the rate 30 years ago. The number of

individuals with diabetes now exceeds 800 million, and this figure is

projected to grow further in the coming decades. Early-stage cardiac

damage in diabetic patients often goes unnoticed due to a lack of clear

symptoms. Diagnosis typically occurs only when symptoms such as

fatigue, shortness of breath, or edema appear after excluding other

heart diseases (5). Due to its chronic and progressive nature, and the

absence of specific early symptoms, early detection and intervention

for DCM remain challenging. Research indicates that 20%–30% of

diabetic patients may eventually develop DCM, and the risk of heart

failure among these patients exceeds 70% (6, 7).

The pathogenesis of DCM is exceptionally complex, involving

dysregulation of glucose and lipid metabolism, insulin resistance,

oxidative stress, inflammatory responses, mitochondrial

dysfunction, and ferroptosis (1, 8, 9). Among these, ferroptosis

and mitochondrial damage have emerged as new areas of focus in

recent years and are considered potential new therapeutic targets

for DCM treatment. Ferroptosis is a form of programmed cell death

induced by iron-dependent lipid peroxidation (10). Its core

mechanisms include iron overload, lipid peroxidation, and

disruption of the antioxidant defense system (11). Meanwhile,

mitochondria, the cellular energy powerhouses, are directly

involved in myocardial energy supply, and their dysfunction

exacerbates myocardial impairment (12). The pathophysiological

mechanisms of DCM are highly complex, involving factors such as

metabolic disturbances in glucose and lipid homeostasis, insulin

resistance, oxidative stress, inflammatory responses, mitochondrial

dysfunction, and ferroptosis (1, 8, 9). Among these factors,

ferroptosis and mitochondrial injury have emerged as key areas of

focus and are considered potential therapeutic targets for DCM

treatment (13).

Ferroptosis is a form of programmed cell death induced by iron-

mediated lipid peroxidation (14). Its primary mechanisms involve

iron overload, lipid peroxidation, imbalance in the antioxidant

system, and the resulting cellular dysfunction (15). At the same

time, mitochondria, which serve as the energy powerhouse of

cells, are essential for maintaining cellular homeostasis.
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Mitochondrial dysfunction directly impairs myocardial energy

supply, thereby exacerbating myocardial dysfunction (16).

Ferroptosis has been observed in various organs, including the

heart, liver, kidneys, brain, and retina of patients with diabetes (17–

19). However, cardiac tissue is particularly vulnerable due to its high

energy demands, unique metabolic characteristics (such as high

mitochondrial density and continuous oxidative stress), and its

critical role in physiological functions (20). This heightened

vulnerability becomes more evident when there is damage to the

diabetic heart, ventricular remodeling, and heart failure, where

therapeutic strategies targeting ferroptosis could offer promising

benefits. However, current studies on ferroptosis in diabetic

cardiomyopathy are primarily restricted to limited clinical

observations and animal experiments (21), underscoring the need

for more comprehensive and systematic research.

This review will focus on exploring the role of ferroptosis and

mitochondrial injury in cardiac cells exposed to chronic diabetic

conditions, their impact on patients with diabetes, and the

associated pathophysiological mechanisms. The main focus is to

provide new strategies and recommendations for interventions

targeting these mechanisms, as well as for personalized treatment

approaches, combination therapies, and the development of

innovative drug therapies.
2 Ferroptosis and its link to DCM

Ferroptosis is a form of programmed cell death driven by the

excessive accumulation of iron ions within cells, triggering the

Fenton reaction, activating oxidative stress, and disrupting lipid

metabolism, ultimately leading to cellular demise (22, 23). The

primary mechanisms underlying ferroptosis involve imbalances in

iron metabolism and dysfunction of the antioxidant defense system.

Glutathione (GSH), present in the cytoplasm of normal cells, is one

of the most important low-molecular-weight antioxidants (24). It

directly participates in scavenging reactive oxygen species (ROS)

and reducing oxidative products, thus preventing oxidative stress-

induced cellular damage (25). During ferroptosis, GPX4 binds to

GSH to reduce lipid peroxides (such as PE-PUFA-OOH) to their

corresponding alcohols, preventing lipid peroxide accumulation

and protecting cellular membranes and structures from oxidative

damage (20, 26).

Acyl-CoA synthetase long-chain family member 4 (ACSL4) is a

key enzyme involved in the synthesis of polyunsaturated fatty acid

phosphatidylethanolamine (PUFA-PE) (27). It catalyzes the

acylation of polyunsaturated fatty acids (PUFAs) to form

polyunsaturated fatty acid-CoA (PUFA-CoA), which is

subsequently esterified by lysophosphatidylcholine acyltransferase

3 (LPCAT3) to form PUFA-CoA (28). The esterified PUFA-CoA

then reacts with phosphatidylethanolamine (PE) to form PUFA-

PEs. These PUFA-PEs play a fundamental role in maintaining cell

membrane integrity; however, their oxidation leads to excessive

lipid peroxide accumulation, ultimately triggering ferroptosis (29).

In the context of DCM, chronic hyperglycemia disrupts fatty acid

metabolism, leading to ACSL4 overexpression, increased PUFA-
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CoA production, and accelerated lipid peroxidation. This cascade

not only elevates lipid peroxide levels but also intensifies iron

accumulation in myocardial cells, exacerbating ferroptosis and

contributing to myocardial cell death and fibrosis (30).

In patients with DCM, the GSH-dependent antioxidant

mechanism is suppressed, whereas ACSL4 activation promotes

ferroptosis in myocardial cells (31). The combined effects of

oxidative stress and fatty acid metabolism disorder further exacerbate

myocardial cell damage and promote ferroptosis (1, 8, 9). Unlike

apoptosis, necrosis, or autophagy, ferroptosis exhibits distinct

pathological features, including cell membrane rupture,

mitochondrial dysfunction, and significant oxidative stress (32).

Ferroptosis is particularly prominent in metabolic diseases, with its

manifestation being more pronounced in DCM.

In the development of DCM, sustained hyperglycemia acts as a

key driver of ferroptosis. Hyperglycemia disrupts myocardial fatty

acid metabolism and reduces the capacity of myocardial cells to

tolerate iron overload (33). Excessive accumulation of iron ions

intensifies the production of reactive oxygen species (ROS) through

the Fenton reaction, which, in turn, exacerbates lipid peroxidation.

This process leads to a decrease in the activity of antioxidant

enzymes such as glutathione peroxidase 4 (GPX4), superoxide

dismutase 1 (SOD1), and NAD(P)H quinone oxidoreductase 1

(NQO1) (34). This decline in antioxidant enzyme activity further

exacerbates ferroptosis (23, 33, 35), leading to uncontrolled lipid

peroxidation, accelerating myocardial cell death, and triggering

myocardial fibrosis and heart dysfunction (36). Among these, the

inactivation of GPX4—a crucial inhibitor of ferroptosis—plays a

significant role in the pathogenesis of myocardial injury in DCM.
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Clinical and pathological studies have shown that patients with

DCM exhibit significantly increased iron content in myocardial

tissue, along with expansion of the cardiac chambers (37). In these

patients, oxidative stress markers such as ACSL4, malondialdehyde

(MDA), and NOX4 are generally elevated, whereas the expression

of antioxidant enzymes like GPX4 and GSH is significantly reduced

(36, 38). Furthermore, mitochondrial damage in myocardial cells of

patients with DCM manifests as mitochondrial swelling, cristae

disruption, and functional disturbances (32, 39). These pathological

changes closely overlap with the characteristics of ferroptosis. These

phenomena may be interrelated, further exacerbating myocardial

damage and promoting the onset and progression of DCM.
2.1 Impact of glycemic disorder on
ferroptosis in DCM and molecular
regulatory mechanisms

In recent years, the dysregulation of glucose metabolism has

emerged as a pivotal focus in research on DCM. Chronic fluctuations

in blood glucose not only trigger oxidative stress but also promote the

accumulation of advanced glycation end products (AGEs),

exacerbating iron overload and lipid peroxidation (40). In DCM

patients, impaired oxidative phosphorylation and the accumulation

of AGEs in myocardial cells result in reduced ATP production. This

energy deficiency makes cardiac cells more vulnerable to oxidative

damage, particularly in high-glucose environments where iron

overload is prevalent (41). Elevated blood glucose levels further

increase the production of ROS, activating intracellular oxidative
FIGURE 1

The connection between ferroptosis and mitochondrial damage in diabetic cardiomyopathy.
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stress responses and further facilitating iron accumulation (42).

Additionally, hyperglycemia promotes fatty acid synthesis

pathways, enhancing the production of lipid peroxides, which

accelerates ferroptosis in cardiac cells (33, 43).

Hyperglycemia promotes ferroptosis in myocardial cells through

several interrelated mechanisms, which collectively contribute to the

progression of DCM. These mechanisms include: (1) hyperglycemia

induces an imbalance in the redox state of iron ions, promoting free

radical generation and accelerating ferroptosis (44); (2) glucose

dysregulation triggers iron ion accumulation, activating lipid

peroxidation via the Fenton reaction, thereby promoting ferroptosis

(23, 45); (3) chronic inflammation in diabetes exacerbates iron

transport, storage, and utilization disorders, leading to the

accumulation of free iron and inducing ferroptosis and myocardial

fibrosis (46); (4) hyperglycemia disrupts mitochondrial energy

supply, increasing ROS generation, further aggravating iron

metabolic imbalance and eventually causing myocardial damage

and ventricular remodeling (42, 47); (5) glucose dysregulation

suppresses the expression of antioxidant genes via the Nrf2/ARE

pathway, weakening the antioxidant defense and DNA repair

capacity of the p53 pathway (48, 49); (6) insulin resistance, along

with hyperglycemia, inhibits GPX4 activity, promotes AGEs

formation, and disrupts fatty acid metabolism, ultimately

accelerating the onset of ferroptosis (40, 50, 51).
2.2 Impact of iron homeostasis imbalance
on ferroptosis in DCM and molecular
regulatory mechanisms

Iron homeostasis refers is the regulation of iron intake,

transport, storage, and excretion, which directly impacts cellular

energy metabolism, antioxidant defense, and immune responses

(46, 52). Hepcidin, a key hormone synthesized by the liver, regulates

iron absorption and storage (52). Under normal physiological

conditions, hepcidin reduces the expression of iron transport

proteins like ferroportin, thereby limiting iron release and

absorption to maintain iron homeostasis (53). Ferritin, a vital

intracellular storage protein, sequesters excess iron to prevent its

presence as free iron, thus reducing the risk of oxidative stress (54).

Ferroportin facilitates iron transport by transferring intracellular

iron into the bloodstream, thereby preventing iron accumulation in

cells (55). When iron levels are high, ferroportin function is

suppressed, leading to reduced iron release and its accumulation

in cells. Additionally, transferrin receptor 1 (TfR1) mediates iron

uptake by binding transferrin-bound iron and internalizing the

complex via receptor-mediated endocytosis (56).

In DCM, blood glucose dysregulation triggers excessive oxidative

stress and chronic inflammation, both of which are major contributors

to ferroptosis (23). Hyperglycemia and insulin resistance promote

oxidative stress and the release of inflammatory mediators, directly

influencing the expression of hepcidin (13, 57). The upregulation of

hepcidin inhibits the function of ferroportin, leading to intracellular

iron accumulation (58), an increase in intracellular free iron

levels, and subsequent lipid peroxidation and ferroptosis (59).
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Furthermore, chronic inflammation induces an increase in ferritin

expression as a protective mechanism to store excess iron and reduce

toxicity. However, excessive iron storage is insufficient to prevent iron

overload, ultimately exacerbating ferroptosis.

Iron regulatory proteins (IRPs) are critical for maintaining iron

homeostasis, as they control the expression of genes involved in

iron absorption, storage, and export by interacting with iron

response elements (IREs) (60). For instance, IRPs promote iron

uptake by regulating TfR1 expression and increase iron storage by

modulating ferritin synthesis (61). However, in diabetes, oxidative

stress and chronic inflammation alter IRP activity, leading to iron

metabolism dysregulation, iron overload, and increased ferroptosis

(52). Thus, IRPs play a dual role in DCM: while they help maintain

iron balance under normal conditions, their dysregulation in

diabetes may contribute to cardiomyocyte ferroptosis and

mitochondrial dysfunction (54, 55).
2.3 Role of oxidative stress in diabetic
cardiomyopathy

In DCM, the disruption of iron homeostasis and persistent

oxidative stress are key drivers of ferroptosis (52). These factors

collectively contribute to lipid peroxidation, mitochondrial

impairment, and ultimately, cardiomyocyte death (62). Several

studies have shown that oxidative stress exacerbates ferroptosis

through multiple signaling pathways, including System Xc-, Nrf2/

KEAP1 pathway, and NOX4 (63).

System Xc- is an essential amino acid antiporter composed of

two subunits: SLC7A11 (solute carrier family 7 member 11) and

SLC3A2 (solute carrier family 3 member 2) (64–66). This system

imports cysteine, a precursor for GSH. GSH, a crucial antioxidant,

effectively scavenges ROS to prevent lipid peroxidation and

ferroptosis (31). A dysfunction in System Xc- results in reduced

cysteine availability, which limits GSH synthesis, weakens

antioxidant defenses, and increases susceptibility to lipid

peroxidation, thereby accelerating ferroptosis (67). In DCM,

System Xc- dysfunction further promotes ferroptosis, making it a

critical molecular marker (68). The accumulation of advanced

glycation end-products (AGEs) and oxidative stress caused by

hyperglycemia further disrupts System Xc-, leading to iron

deposition and exacerbated oxidative stress. This cascade directly

promotes lipid peroxidation and ferroptosis (40, 67, 69) (Figure 2).

The nuclear factor erythroid-2-related factor 2 (Nrf2)/Kelch-

like epichlorohydrin (ECH)-associated protein 1 (KEAP1) pathway

plays a crucial role in DCM. Nrf2, a key transcription factor in

oxidative stress response, is typically degraded by KEAP1 under

normal conditions (71). However, under oxidative stress or

pathological conditions like AGEs (72), Nrf2 is activated and

translocated to the nucleus, initiating the expression of

antioxidant genes such as GPX4, which are essential for reducing

lipid peroxidation and delaying ferroptosis (73). Additionally,

emerging research suggests that ferroptosis plays a significant role

in diabetic retinopathy (DR) (74). Glucose dysregulation promotes

upregulates long non-coding RNA ZFAS1, which enhances the
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expression of miR-7-5p. This cascade subsequently activates

ACSL4, leading to increased lipid peroxidation and exacerbating

oxidative damage and ferroptosis in retinal endothelial cells (75).

NOX4, a member of the NADPH oxidase family, interacts with

Nrf2 and plays a significant role in oxidative stress (76). It catalyzes

the production of superoxide and hydrogen peroxide, which

increase lipid peroxidation, iron accumulation, and mitochondrial

damage, thus driving ferroptosis (77). Under hyperglycemic

conditions, NOX4 expression is significantly upregulated, further

exacerbating ferroptosis (78). ROS generated by NOX4 also damage

crucial components of the mitochondrial respiratory chain, further

promoting mitochondrial dysfunction, which is a characteristic

feature of DCM (79, 80).

2.3.1 Summary
Disruption in iron homeostasis, coupled with oxidative stress

and the involvement of critical signaling pathways such as

System Xc-, Nrf2/KEAP1, and NOX4, plays a significant role in

the induction of ferroptosis in DCM. Dysregulated iron

metabolism further exacerbates myocardial damage, while the
Frontiers in Endocrinology 05
ZFAS1/miR-7-5p/ACSL4 axis promotes lipid peroxidation in DR,

highlighting potential therapeutic targets.
3 Mitochondrial damage and its role in
DCM

Disturbances in myocardial energy metabolism are a crucial

factor in the development of DCM. Mitochondria, as the primary

energy producers in cells, are central to cardiac energy production

and function (47, 79). Mitochondrial dysfunction in DCM is often

characterized by a loss of membrane potential, which inhibits ATP

synthesis and triggers the release of cytochrome C and apoptosis-

related factors, thereby promoting cardiomyocyte apoptosis or

necrosis (81). Furthermore, insulin resistance (IR) and chronic

hyperglycemia (CH) associated with diabetes exacerbate

mitochondrial damage by increasing the production of reactive

oxygen species (ROS) within mitochondria. This oxidative stress

intensifies mitochondrial dysfunction, disrupts energy metabolism,

and further promotes oxidative damage (82).
FIGURE 2

Ferroptosis and mitochondrial damage in diabetic cardiomyopathy (DCM) are driven by dysregulated glucose metabolism and insulin resistance,
leading to iron overload and disturbed fatty acid metabolism in cardiomyocytes. This cascade results in excessive ROS generation and lipid
peroxidation, activating pathways such as ACSL4 and hepcidin while inhibiting antioxidant systems like System Xc-, GSH, and GPX4. Iron overload
and lipid peroxidation exacerbate mitochondrial dysfunction, impairing ATP synthesis and energy metabolism, ultimately contributing to cardiac
fibrosis, heart failure, and the progression of DCM. Targeting ferroptosis and mitochondrial damage offers potential therapeutic strategies for
managing DCM Courtesy of reference (70).
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In a hyperglycemic environment, non-enzymatic glycation

reactions are enhanced, leading to the formation of AGEs

(40, 51, 83). AGEs not only react with biomolecules such as

proteins and lipids but also exacerbate oxidative stress, impairing

the energy metabolism of cardiomyocytes and ultimately leading to

cardiac dysfunction (84). Oxidative stress can directly damage the

mitochondrial structure, particularly the mitochondrial respiratory

chain, severely limiting ATP synthesis (85, 86). This metabolic

dysregulation reduces mitochondrial energy production efficiency,

adversely affecting cardiac contraction and relaxation functions

(87). Furthermore, these processes accelerate cardiomyocyte

aging, compounding the risk of heart failure (50, 88). Coenzyme

Q10 (CoQ10) plays a crucial role in maintaining cellular energy

metabolism and ensuring normal electron transfer in the

mitochondrial respiratory chain (89, 90). As a potent antioxidant,

CoQ10 effectively scavenges excess ROS, thereby protecting cells

from oxidative stress-induced damage (91). Moreover, CoQ10

shows considerable promise in inhibiting ferroptosis and reducing

oxidative harm in cardiomyocytes. Ferroptosis Suppressor Protein 1

(FSP1) is a newly identified inhibitor of ferroptosis, functioning by

catalyzing the reduction of membrane phospholipids to prevent the

oxidation of PUFA-PE (92, 93). This action reduces lipid

peroxidation, thereby slowing the progression of ferroptosis. The

synergistic action between FSP1 and CoQ10 significantly suppresses

oxidative stress, further inhibiting ferroptosis (94).

Overall, the metabolic disturbances associated with diabetes not

only worsen mitochondrial dysfunction but also intensify oxidative

damage to cardiomyocytes through ferroptosis. The interplay

between these processes is a critical driver of DCM progression,

ultimately leading to cardiac dysfunction (10). CoQ10, FSP1, and

other mitochondrial protectants, with their antioxidant properties

and ability to reduce lipid peroxidation, offer a promising

therapeutic strategy to safeguard mitochondria, inhibit

ferroptosis, and mitigate oxidative damage (91–93). This

approach could provide new perspectives for the treatment

of DCM.
3.1 Interaction between ferroptosis and
mitochondrial damage in DCM

The interaction between ferroptosis and mitochondrial damage

in DCM is a complex pathological process involving iron overload,

mitochondrial energy metabolism disturbances, and oxidative

stress. Studies have suggested that these factors promote

myocardial cell damage and drive the pathological progression

of DCM.

Iron overload is a key trigger of ferroptosis. In the diabetic

environment, disruptions in glucose and lipid metabolism result in

abnormal iron uptake and storage, particularly within

cardiomyocytes, where iron accumulation is markedly increased

(45, 79, 95). The imbalance in iron transporters and export proteins

leads to intracellular iron buildup, with some of the excess iron

entering the mitochondria. Once inside, iron participates in Fenton

reactions, generating highly reactive free radicals, such as hydroxyl
Frontiers in Endocrinology 06
radicals. These radicals inflict severe cellular damage by disrupting

membranes, proteins, and DNA, ultimately causing myocardial cell

injury and death (96).

Iron accumulation not only directly damages cardiomyocytes

but also exacerbates mitochondrial damage through the promotion

of lipid peroxidation (13). Lipid peroxidation, part of the oxidative

stress response, disrupts the lipid bilayer of cell membranes,

impairing the integrity and function of mitochondrial membranes

(97). These damages, in turn, promote the generation of additional

free radicals, further exacerbating the oxidative damage to

cardiomyocytes, thus creating a vicious cycle. Moreover, oxidative

stress amplifies the ferroptosis process. Elevated levels of ROS

damage membrane structures and regulate iron metabolism-

related signaling pathways, including those involving hepcidin,

ferritin, and iron transporters. This regulation increases iron

release and facilitates further iron entry into cells (70). As ROS

levels increase, mitochondrial function progressively deteriorates,

leading to energy depletion and, ultimately, cardiomyocyte death.

In summary, the interaction between ferroptosis and

mitochondrial damage in DCM forms a vicious cycle: from iron

overload to oxidative damage and ultimately to cell death. This

process not only aggravates myocardial cell injury but also

accelerates the pathological progression of DCM (64). Therefore,

targeting iron metabolism and mitochondrial protection may

provide a novel strategy for the prevention and treatment of DCM.
3.2 Impact of ferroptosis and mitochondrial
damage on cardiac structure and function
in DCM

Ferroptosis and mitochondrial damage play a pivotal role in the

pathogenesis of DCM, and their interaction exacerbates the

metabolic crisis in the heart, significantly affecting cardiac

structure and function (98). Research has shown that iron

overload not only promotes the deposition of extracellular matrix

(ECM) components such as collagen (99) but also activates

signaling pathways like transforming growth factor-beta (TGF-b),
triggering cardiac remodeling (100). Additionally, iron overload can

activate inflammatory responses, initiating cell death pathways such

as apoptosis and autophagy (32, 101, 102), further accelerating

myocardial cell damage and death.

The oxidative stress induced by ferroptosis exacerbates

mitochondrial damage, particularly by disrupting mitochondrial

structure and function (85, 86, 103). This disruption severely

impairs ATP synthesis in cardiomyocytes, leading to energy

depletion. The subsequent energy metabolic disorder contributes

to cardiac dysfunction, which may ultimately result in heart failure.

Therefore, the interaction between ferroptosis and mitochondrial

damage provides a mechanistic basis for the deterioration of

cardiac function.

In patients with DCM, the interplay between ferroptosis and

mitochondrial dysfunction significantly disrupts myocardial energy

metabolism, exacerbates myocardial fibrosis, and accelerates the

progression of heart failure (104). Studies conducted on animal
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models have demonstrated that treatment with iron chelators or

antioxidants can effectively reduce iron buildup and ROS levels,

leading to an improvement in cardiac function (105). These results

highlight the importance of restoring iron balance and repairing

mitochondrial function as key therapeutic strategies for enhancing

cardiac health in DCM patients.

Given the critical roles of ferroptosis and mitochondrial

dysfunction in the pathogenesis of DCM, developing targeted

therapeutic strategies to restore iron balance and repair

mitochondrial function may offer a promising approach for

treating DCM. Such interventions could potentially improve

cardiac function and provide new avenues for effective clinical

management in the future.
4 Ferroptosis and mitochondrial injury
interventions in DCM

4.1 Current treatment strategies for DCM
and their limitations

Currently, treatment strategies for DCM primarily aim at

controlling blood glucose levels and alleviating heart failure

symptoms. Key therapeutic approaches include regulating blood

glucose, managing blood lipids, improving insulin resistance, and
Frontiers in Endocrinology 07
preventing or treating cardiovascular and cerebrovascular

complications induced by diabetes (106). Commonly used drugs

in DCM and their mechanisms of action, as along with potential

side effects are listed in Table 1. For example, metformin, a widely

used antidiabetic drug, not only exerts its classic hypoglycemic

effects but has also been shown to possess antioxidant and

ferroptosis-inhibiting properties in recent studies (124).

Metformin reduces the levels of lipid peroxidation products such

as MDA and 4-hydroxy-2-nonenal (HNE), decreases intracellular

ROS levels, and improves mitochondrial function, thereby

inhibiting ferroptosis and alleviating the progression of DCM

(125). Studies have demonstrated that metformin activates the

AMP-activated protein kinase (AMPK) signaling pathway,

improves iron homeostasis, enhances cellular antioxidant

capacity, and helps mitigate cardiac damage associated with DCM

(126, 127).

Sodium-glucose cotransporter 2 (SGLT-2) inhibitors, such as

dapagliflozin and empagliflozin (107–110), work by inhibiting

SGLT-2 in the kidneys, which decreases glucose reabsorption and

lowers blood glucose levels. These drugs also exert diuretic effects,

reduce cardiac inflammation, enhance myocardial energy

metabolism, and alleviate oxidative stress, offering cardiac

protection in DCM.

Glucagon-like peptide-1 receptor (GLP-1 receptor) agonists),

such as liraglutide and semaglutide (111), mimic the action of
TABLE 1 Drugs for improving heart failure in DCM and alleviating cardiovascular and cerebrovascular complications.

Drug Class Representative Drugs Mechanism of Action Adverse Effects References

SGLT2 Inhibitors
Dapagliflozin,
Empagliflozin, Canagliflozin

Inhibit sodium-glucose co-transporter 2
(SGLT2), improve insulin sensitivity, reduce
myocardial fibrosis; reduce oxidative stress and
enhance mitochondrial function, improving
cardiac function in diabetic cardiomyopathy.

Hypotension, urinary tract
infections, dehydration

(107–110)

GLP-1 Receptor Agonists Semaglutide, Liraglutide
Activate GLP-1 receptors and improve glucose
metabolism and cardiac function.

Nausea, vomiting,
headache, pancreatitis

(111–113)

ACE/ARB Inhibitors
Valsartan, Ramipril, Lisinopril
Valsartan
Irbesartan

Inhibit vasoconstriction caused by angiotensin,
reduce blood pressure, and reduce
myocardial hypertrophy

Hyperkalemia, cough,
dizziness, hypotension

(114)

Thiazolidinediones (TZDs) Rosiglitazone, Pioglitazone
Activate PPAR-g, improve insulin sensitivity,
and reduce cardiac inflammation.

Weight gain, edema, fractures (115, 116)

Biguanides Metformin

Enhance insulin sensitivity, inhibit hepatic
gluconeogenesis, and improve mitochondrial
energy metabolism via the AMP-activated
protein kinase (AMPK) pathway.

Gastrointestinal discomfort
(e.g., nausea, diarrhea); rare
cases of lactic acidosis and
vitamin B12 deficiency

(117)

Renin-Angiotensin
Inhibitors

Benazepril, Irbesartan
Inhibit the renin-angiotensin system, reduce
blood pressure, and prevent fibrosis.

Hyperkalemia, dizziness, fatigue (118, 119)

DPP-4 Inhibitors Sitagliptin, Linagliptin
Inhibit DPP-4, increase GLP-1 levels, and
reduce cardiac inflammation and fibrosis.

Upper respiratory tract
infection, headache, dizziness

(112, 120)

Omega-3 Fatty Acids
Fish Oil, Eicosapentaenoic
acid (EPA)

Reduce inflammation and improve cardiac
lipid metabolism.

Fishy aftertaste, gastrointestinal
discomfort, bleeding

(121)

Aspirin Aspirin
Inhibit cyclooxygenase 1 and 2 (COX-1 and
COX-2), reduce inflammation and thrombosis.

Gastrointestinal
discomfort, bleeding

(122)

b-Blockers Metoprolol, Bisoprolol
Block b-adrenergic receptors, reduce heart
rate, and improve myocardial function.

Fatigue,
bradycardia, hypotension

(123)
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endogenous GLP-1 to increase insulin secretion, suppress glucagon

secretion, delay gastric emptying, and promote weight loss. In

addition to improving blood glucose control, these drugs have

been shown to improve cardiac structure, reduce myocardial

hypertrophy, decrease cardiac fibrosis, and enhance heart

function (112). They also help reduce vascular inflammation and

oxidative stress.

Dipeptidyl peptidase-4 (DPP-4) inhibitors enhance insulin

secretion and reduce glucose production by inhibiting DPP-4

enzyme activity (128). They also improve endothelial function

and reduce cardiovascular burden (129). These medications

represent a range of therapeutic options for preventing and

treating DCM. However, current treatment strategies primarily

focus on alleviating symptoms, such as controlling blood glucose

and managing heart failure (130). A comprehensive treatment

approach that targets the core pathological mechanisms of DCM,

including myocardial energy metabolism dysregulation,

mitochondrial dysfunction, and ferroptosis inhibition, has yet to

be established.

While current treatments delay the progression of DCM to

some extent, their effectiveness and safety remain limited. Notably,

no specific medications have been identified that can significantly

improve cardiac energy metabolism or repair mitochondrial

function in DCM (131). Some studies suggest that certain drugs

may have positive effects on cardiac metabolism and reduce

myocardial injury, but their long-term efficacy and safety require

further investigation (132). For example, the GLP-1 receptor

agonist semaglutide has been shown to promote insulin secretion,

improve cardiac metabolism, and reduce myocardial injury, thus

delaying the progression of DCM (111). While preliminary results

are promising, clinical data on the long-term effects and potential

side effects of this drug remain insufficient, warranting further

research and validation.

Moreover, new glucose level-lowering medications such as

DPP-4 inhibitors (e.g., sitagliptin and vildagliptin) are widely

used in diabetes treatment. In vitro and animal studies suggest

that DPP-4 inhibitors can exert positive effects on DCM through

mechanisms such as reducing cardiac inflammation and

improving heart function (112, 120). However, the findings

from relevant studies have been inconsistent. Some clinical trials

report that DPP-4 inhibitors improve heart failure symptoms

(133), while other studies suggest that their cardiac protective

effects are limited (134). These discrepancies may be attributed to

variations in study design, sample size, and trial standards.

Therefore, future research should focus on prospective,

multicenter, randomized controlled trials to further verify the

efficacy and safety of DPP-4 inhibitors in DCM.

In conclusion, while current therapeutic approaches provide

some relief in managing DCM, interventions targeting the disease’s

core pathological mechanisms require further investigation. Future

treatment strategies should place greater emphasis on addressing

disorders in iron metabolism and mitochondrial damage to develop

targeted therapies that offer more effective treatment options for

patients with DCM.
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4.2 Current Status of Targeted Ferroptosis
and Mitochondrial Injury Treatment
Strategies in DCM

As research into the pathogenesis of DCM progresses,

ferroptosis and mitochondrial injury are increasingly recognized

as key pathological contributors to the disease. Current targeted

treatment strategies focus on iron chelators, antioxidants,

mitochondrial protectants, and nanoparticle-based therapies

(Table 2). These therapeutic approaches aim to reduce myocardial

damage and prevent or delay the progression of DCM by targeting

ferroptosis, repairing mitochondrial damage, and counteracting

oxidative stress (85, 88, 103, 140). Ferroptosis inhibitors,

particularly Ferrostatin-1, have been shown to effectively suppress

ferroptosis under various pathological conditions (152, 176).

Ferrostatin-1 exerts its action by inhibiting lipid peroxidation,

particularly through its action on membrane lipids, thereby

slowing the progression of ferroptosis (177). Additionally,

Ferrostatin-1 exerts anti-inflammatory and antioxidant effects,

further alleviating oxidative stress by inhibiting the Nrf2/ARE

pathway and other antioxidant signaling pathways (178).

Iron chelators are also essential in managing DCM.

Deferoxamine, a widely used iron chelator, has proven effective in

treating iron overload-related disorders but carries significant side

effects, particularly affecting renal function and the immune system

(179, 180). Deferiprone, another iron chelator, offers better oral

bioavailability but still poses risks, including kidney toxicity. On the

other hand, the novel oral iron chelator CN128 has shown superior

iron chelation and antioxidant properties in clinical trials (148). It

also has a longer half-life, fewer side effects, and is able to effectively

reduce body iron overload without causing kidney damage (181).

Additionally, other iron chelators, such as Ciclopirox (CPX) (149),

have demonstrated the potential to inhibit iron-dependent oxidative

stress, reduce lipid peroxidation, and improve myocardial cell health,

offering enhanced myocardial protection in DCM. Furthermore,

resveratrol nanoparticles have shown promising effects in

protecting the heart by mitigating mitochondrial damage and

inhibiting lipid peroxidation reactions (89).

Additionally, resveratrol nanoparticles have demonstrated

protective effects on the heart by alleviating mitochondrial

damage and inhibiting lipid peroxidation (182). These therapies

function through multiple mechanisms, including modulating

intracellular redox balance and improving mitochondrial

function, offering new possibilities for the treatment of DCM.

Although these therapeutic strategies have shown promising

results in laboratory settings, most studies are still limited to cell

experiments, animal models, and a few clinical case reports.

Comprehensive experimental data on drug mechanisms of action,

pharmacodynamics, toxicology, and pharmacokinetics remain

scarce (183). Furthermore, there is a lack of large-scale,

multicenter, prospective preclinical studies and randomized

clinical trials, meaning the effectiveness and safety of these

treatment strategies have not been fully validated in clinical

practice (151).
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TABLE 2 Representative drugs for the improvement of ferroptosis and mitochondrial injury.

Category Representative Drugs Mechanism of Action Drug Side Effects References

nausea, blurred vision; high doses may cause bleeding (94)

stinal discomfort, nausea, vomiting, skin flushing; long-
ay cause gastrointestinal discomfort or liver damage

(135)

stinal discomfort: nausea, vomiting, abdominal pain.
age (long-term or high doses)

(136)

high doses may lead to yellowing of the skin, increased
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(137)

use may lead to gastrointestinal discomfort,
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(138)

stinal symptoms like nausea and diarrhea; may interfere
agulant activity, increasing bleeding risk; long-term
may cause indigestion and liver dysfunction

(139)

ined, possibly gastrointestinal discomfort like nausea,
or diarrhea; long-term safety remains unclear

(140, 141)

s may cause headache and nausea (142)

ss, skin fibrosis, allergic reactions; long-term use may
ey damage

(122, 123, 143)
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Antioxidants and
Ferroptosis Regulators

Vitamin C, Vitamin E
Antioxidants, neutralize free radicals, reduce oxidative stress, and
protect the heart and mitochondrial membranes.

Headache

Nicotinamide
Modulates NAD+ levels, enhances cellular antioxidant capacity,
and inhibits lipid peroxidation.

Gastrointe
term use

N-Acetylcysteine (NAC)
Antioxidant, regulates iron metabolism to reduce free intracellular
iron, protects cell membranes, improves mitochondrial injury, and
reduces inflammation.

Gastrointe
Liver dam

Beta-Carotene
Scavenges free radicals, antioxidant; reduces lipid peroxidation,
protects cell membrane structure.

Long-term
risk of lun

Quercetin
Antioxidant, reduces oxidative stress; regulates iron metabolism,
inhibits lipid peroxidation triggered by iron overload.

Long-term
allergic re

Resveratrol

Activates SIRT1 pathway, reduces lipid peroxidation; regulates
intracellular iron metabolism, prevents iron accumulation;
modulates insulin sensitivity, reduces fat accumulation, and
improves metabolic function.

Gastrointe
with antic
high dose

Resveratrol Nanoparticles
Significantly improves mitochondrial function, antioxidant activity,
and miR-20b-5p signaling pathway to improve symptoms.

Undeterm
vomiting,
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Antioxidant, anti-inflammatory; improves iron metabolism and
reduces lipid peroxidation.

High dose

Iron Chelators

Deferoxamine (DFO) Chelates iron ions, reduces free iron, alleviates oxidative stress
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Deferasirox (DFX)
Chelates iron ions, reduces iron accumulation, and
alleviates ferroptosis
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Deferiprone (DFP)
Chelates iron ions, reduces iron accumulation, and alleviates
oxidative stress.

Leukopen

Hepcidin Mimetics
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accumulation, and inhibits oxidative stress.

Unknown

Dexrazoxane (DEX)
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inhibits lipid peroxidation, and alleviates heart damage caused
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Binds free iron to form stable complexes that are excreted,
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TABLE 2 Continued

Category Representative Drugs Mechanism of Action Drug Side Effects References

with normal cell metabolism and cause cell death,
immune system

(151–153)

ll metabolism and lipid disorders; excessive oxidative
mage cells and affect immune function

(154)

icity and immunosuppressive effects; excessive use
iver, kidney, and nervous system damage

(155)

acid metabolism, damages cell membrane structure,
chondrial function

(156)

ay cause liver toxicity, inhibit iron absorption,
n deficiency anemia

(157, 158)

ay cause gastrointestinal discomfort and
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(159, 160)

se may cause liver toxicity and neurotoxicity (161)

ll tolerated, but some individuals may experience
testinal discomfort or skin irritation
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overstimulation, causing other metabolic disorders (164)

cts including headache and dizziness; may interact
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(165)

nal discomfort, headache; high doses may cause liver
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(166)

nal discomfort (such as nausea, diarrhea), long-term
to cardiovascular side effects

(167)

potension and sedative effects (168, 169)
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may lead to hypotension or arrhythmias
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Ferrostatin-1 (Fer-1)
Inhibits lipid peroxidases (such as ACSL4) and antioxidant
protection to inhibit ferroptosis
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Liproxstatin-1 Inhibits lipid peroxidation and reduces ferroptosis
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Glutathione Peroxidase 4 Inhibitors
(GPX4 Inhibitors)

Antioxidant enzyme activity, reduces lipid peroxidation, and
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Therefore, while ferroptosis and mitochondrial injury-targeted

therapies show great promise in the treatment of DCM, further in-

depth exploration of the drugs’ mechanisms of action, efficacy, and

safety is crucial to advance the clinical translation of these

therapeutic approaches.
5 Prospects for basic research and
clinical applications of therapeutic
strategies for DCM

The pathogenesis of DCM is multifaceted, involving ferroptosis,

oxidative stress, mitochondrial injury, and other factors.

Advancements in understanding these pathological processes are

paving the way for innovative therapeutic strategies, particularly

those centered on multi-target combination therapies and

personalized medicine. Future therapeutic approaches may

combine ferroptosis-targeted agents with mitochondrial

protectants to achieve synergistic effects in alleviating myocardial

injury and improving cardiac function (Figure 3).
5.1 Potential of combination therapy

The intricate pathological mechanisms of DCM present

significant challenges for single-treatment approaches to address

all aspects of the disease comprehensively. The interaction

between ferroptosis and mitochondrial injury creates a

synergistic effect, which exacerbates cardiac dysfunction during

DCM progression (184). Consequently, combination therapies

that target both ferroptosis and mitochondrial dysfunction have

emerged as a promising direction for future clinical treatment. For

example, the combined use of iron chelators and antioxidants has

shown potential to effectively reduce iron overload while

inhibiting oxidative stress, thereby offering enhanced protection

for myocardial cells (136, 137, 143, 145). Similarly, combining

GPX4 agonists with sodium-calcium exchanger inhibitors could

suppress lipid peroxidation and safeguard mitochondrial

integrity, thereby delaying myocardial cell death (185, 186).

These combination strategies demonstrate strong synergistic

effects, laying a robust theoretical foundation for the

development of personalized treatment strategies. By tailoring

treatment regimens based on an individual’s pathological state,

these approaches could improve therapeutic efficacy while

minimizing side effects.

With advancements in precision medicine, identifying specific

pathological mechanisms in patients will be instrumental in guiding

the development of targeted therapies. This approach would ensure

that interventions are both effective and safe, addressing the

variability in drug responses among patients (187). Ultimately,

combination therapies grounded in multi-target and personalized

strategies are poised to play a transformative role in the clinical

management of DCM, offering hope for more effective and patient-

specific treatments in the future.
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5.2 Challenges and progress in clinical
research

Although novel therapies such as ferroptosis inhibitors and

mitochondrial protectants have shown promising efficacy in

preclinical studies (164, 166, 188), their clinical translation still

faces numerous challenges. Firstly, long-term drug efficacy

evaluation and drug resistance are major difficulties in clinical trial

design (189). The slow progression of DCM necessitates extended

trial durations, thereby escalating costs and adding complexity to the

research process (190). Furthermore, variability among patients,

including genetic factors and individual pathological conditions,

can profoundly influence drug responses, presenting a considerable

hurdle in developing personalized treatment strategies (191).

Moreover, the combination of iron chelators and mitochondrial

protectants has shown promising results in some studies (192), but

several challenges remain, including issues related to drug formulation,

safety, and potential interactions between medications. For instance,

iron chelators such as deferoxamine and deferasirox effectively reduce

iron overload and improve iron-related damage. However, prolonged

or high-dose usage can lead to adverse effects such as liver and kidney

toxicity or allergic reactions (122, 123, 179, 180). Therefore, the clinical

use of these agents requires careful management, with dosages and

treatment durations tailored to the patient’s specific condition.

Additionally, while drugs like SGLT2 inhibitors and GLP-1

receptor agonists have demonstrated benefits in improving cardiac
Frontiers in Endocrinology 12
function and glucose metabolism in patients with DCM (107, 108,

111, 113), their side effects present significant limitations in clinical

practice. For example, SGLT2 inhibitors may cause hypoglycemia

and urinary tract infections, whereas GLP-1 receptor agonists may

trigger nausea and pancreatitis (193). Thiazolidinediones (e.g.,

rosiglitazone and pioglitazone) enhance insulin sensitivity and

reduce cardiac inflammation but are linked to side effects such as

weight gain, edema, and bone fractures with long-term use (115,

116, 194). These issues are particularly concerning for elderly

patients and those with osteoporosis, who require careful

evaluation of the risks and benefits of such medications (195).

These concerns are particularly relevant for elderly patients and

those with osteoporosis, necessitating a thorough assessment of

risks and benefits.
5.3 Future research directions

As the pathogenesis of DCM continues to be explored, future

research is likely to focus on several key areas:

5.3.1 Development of precision-targeted drugs
Current pharmacological treatments for DCM and its

complications largely rely on non-specific approaches, focusing

on symptom management rather than addressing the underlying

pathological mechanisms. Moving forward, research will prioritize
FIGURE 3

Comprehensive prevention and treatment strategies for diabetic cardiomyopathy: A schematic diagram of drug regimens based on combined
pharmacological therapy, individualized treatment, and precision-targeted therapy targeting ferroptosis and mitochondrial damage.
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the development of drugs that specifically target key processes such

as ferroptosis and oxidative stress (14, 196). For example,

therapeutics that modulate iron metabolism by targeting proteins

like hepcidin or ferritin are anticipated to gain prominence in future

studies. Additionally, compounds aimed at restoring mitochondrial

function, particularly those capable of enhancing ATP synthesis or

mitigating the generation of ROS, represent promising clinical

advancements (197). These targeted therapeutic strategies have

the potential to not only improve treatment outcomes but also

pave the way for personalized therapeutic approaches tailored to the

unique pathological conditions of individual patients.

5.3.2 Development of novel drugs
Mitochondrial dysfunction is a central pathological feature of

DCM, and developing drugs that restore mitochondrial function

holds significant therapeutic potential (198). Agents that enhance

ATP synthesis or reduce the generation of ROS are among the

promising candidates for addressing this dysfunction (199). In

addition to mitochondrial protectants, anti-inflammatory drugs

may also offer new treatment avenues for DCM. Specifically,

drugs that target inflammation pathways unique to the heart,

such as those modulating inflammatory responses associated with

myocardial fibrosis or cardiomyocyte (200).
5.3.3 Drug combination strategies
Many monotherapeutic strategies have failed to yield the desired

outcomes when used alone, prompting increasing interest in

combination therapies. Current research indicates that combining

SGLT2 inhibitors with GLP-1 receptor agonists has shown synergistic

effects (67–69, 76). Future studies are likely to explore additional

combination therapies, particularly those involving drugs with

distinct mechanisms of action, such as pairing iron chelators with

antioxidants or mitochondrial protectants (64). These combinations

could improve therapeutic efficacy while minimizing side effects (201,

202). By targeting multiple pathological processes simultaneously,

drug combinations offer a more comprehensive approach to

treating DCM.
5.3.4 Gene and stem cell therapies
With the ongoing progress in gene editing and stem cell research,

gene therapy and cell-based treatments hold the potential to deliver

groundbreaking therapeutic options for DCM (203). Gene editing

technologies that repair mitochondrial function or stem cell therapies

aimed at repairing myocardial damage could offer innovative

solutions in the future. Gene therapy can address the molecular

root causes of DCM, while stem cell therapy shows promise in

promoting myocardial regeneration and functional recovery. These

approaches could provide new avenues for the treatment of DCM,

offering hope for improved outcomes for patients (204).

5.3.5 Personalized medicine and precision
healthcare

Future research should focus on personalized treatment

strategies based on genomics, metabolomics, and other
Frontiers in Endocrinology 13
technologies. The pathological mechanisms may vary from

patient to patient, and thus, precision medicine will play a key

role in developing individualized therapeutic approaches. This will

ensure that drug treatments are tailored to a patient’s specific

pathological state, thereby improving efficacy and reducing side

effects (205). Personalized medicine will not only enhance

treatment outcomes but also reduce unwanted side effects,

optimizing the overall treatment outcome for patients.
5.4 Clinical translation and challenges

Despite significant advancements in basic research for DCM

treatment, translating these findings into clinical applications remains

fraught with challenges. Firstly, although many drugs show

promising results in animal models, there is a lack of sufficient

large-scale clinical trial data to support their efficacy and safety

across diverse patient populations (206). Thus, future research will

require multi-center, large-scale randomized controlled trials to

validate the feasibility and effectiveness of these drugs in clinical

settings. Moreover, the combination of novel drugs with existing

treatment modalities (e.g., SGLT2 inhibitors with ferroptosis

inhibitors, antioxidants like selenocysteine with Ferrostatin-1 or

Liproxstatin-1, and GLP-1 receptor agonists with ferroptosis

inhibitors) (207–209) will be an important area of future research.

Investigating the potential synergistic effects and interactions between

these drugs will help optimize treatment regimens and improve

overall efficacy (205, 210). Combination therapies may not only

enhance therapeutic outcomes but also provide more treatment

options to meet individual patient needs.
6 Conclusion

In conclusion, treating diabetic cardiomyopathy remains a

complex challenge. While current medications can alleviate

symptoms and slow the progression of the disease, their efficacy

and safety still require further enhancement. Future research should

prioritize precision medicine, aiming to minimize drug side effects

while optimizing the effectiveness of multi-target combination

therapies. With technological advances, the development of drugs

targeting ferroptosis and mitochondrial dysfunction, personalized

treatment strategies, and the integration of stem cell and gene

therapies could pave the way for significant breakthroughs in the

clinical management of diabetic cardiomyopathy.
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DCM Diabetic cardiomyopathy
Frontiers in Endocrino
IDF International Diabetes Federation
ROS Reactive oxygen species
GSH Glutathione
GPX4 Glutathione peroxidase 4
AGEs Advanced glycation end products
Nrf2 Nuclear factor erythroid 2-related factor 2
ARE Antioxidant response element
Tf Transferrin
Ft Ferritin
Fpn Ferroportin
IRPs Iron regulatory proteins
DMT1 Divalent Metal Transporter 1
System Xc- Cystine/Glutamate Antiporter System Xc-
TGF-b Transforming growth factor-beta
IR Insulin resistance
CH Chronic hyperglycemia
ATP Adenosine triphosphate
ECM Extracellular matrix
SGLT-2 Sodium-glucose cotransporter 2
GLP-1 Glucagon-like peptide-1
DPP-4 Dipeptidyl peptidase-4
ACE Angiotensin-converting enzyme
ARB Angiotensin receptor blockers
TZDs Thiazolidinediones
AMPK Adenosine monophosphate-activated protein kinase
logy 19
RAS Renin-Angiotensin Inhibitors
EPA Eicosapentaenoic acid
COX-1 and COX-2 Cyclooxygenase 1 and 2
NAC N-Acetylcysteine
DFO Deferoxamine
DFX Deferasirox
DFP Deferiprone
DEX Dexrazoxane
Fer-1 Ferrostatin-1
GPX4 Inhibitors Glutathione Peroxidase 4 Inhibitors
DEX Dexmedetomidine
H₂S Hydrogen Sulfide
NaHS Sodium Hydrosulfide
NAD(P)H Nicotinamide Adenine Dinucleotide (Phosphate)
NQO1 Quinone Oxidoreductase 1
GPT Glutamate Pyruvate Transaminase
NOX4 NADPH Oxidase 4
REAP1 Receptor Interacting Protein 1
ACSL4 Acyl-CoA Synthetase Long Chain Family Member 4
SLC3A2 Solute Carrier Family 3 Member 2
SLC7A11 Solute Carrier Family 7 Member 11
PUFA Polyunsaturated Fatty Acids
PE-PUFA-OOH Phosphatidylethanolamine Polyunsaturated Fatty Acids
SOD1 Superoxide Dismutase 1
Nrf2 Nuclear factor erythroid-2-related factor 2
KEAP1 Kelch-like epichlorohydrin (ECH)-associated protein 1
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