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Introduction: Vertebral fractures (VFs) significantly increase risk of subsequent

fractures. Areal bone mineral density (BMD) assessed by DXA and volumetric

BMD by QCT, are strong predictors of VF. Nevertheless, risk prediction should be

further improved. This study used data from the Age, Gene/Environment

Susceptibility Reykjavik (AGES-Reykjavik) cohort to evaluate whether trabecular

texture and paraspinal muscle assessments improve the prediction of the first

incident VF.

Methods: CT scans of the L1 and L2 vertebrae of 843 elderly subjects; including

167 subjects with incident, VFs occurring within a 5-year period and 676 controls

without fractures. Image analysis included measurement of BMD, cortical

thickness and of parameters characterizing trabecular architecture and the

autochthonous muscles. Fifty variables were used as predictors, including a

BMD, a trabecular texture and a muscle subset. Each included age, BMI and

corresponding parameters of the QCT analysis. The number of variables in each

subset was reduced using stepwise logistic regression to create multivariable

fracture prediction models. Model accuracy was assessed using the likelihood

ratio test (LRT) and the area under the curve (AUC) criteria. Bootstrap analyses

were performed to assess the stability of the model selection process.

Results: 96 women and 78 men with prior VF were excluded. Of 50 initial

predictors, 17 were significant for women and 11 for men. Bone and texture

models showed significantly better fracture prediction in women (p<0.001) and

men (p<0.01) than the combination of age and BMI. The muscle model showed

better fracture prediction in men only (p<0.03). Compared to the BMD model

alone, LRT showed a significantly improved VF prediction of the combinations of

BMD with texture (women and men) (p<0.05) or with muscle models (men only)

(p=0.03) but no significant increases in AUC values (AUCwomen: Age&BMI: 0.57,

BMD: 0.69, combined model: 0.69; AUC men: Age&BMI: 0.63, BMD: 0.71,

combined models 0.73-0.77)
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Discussion: Trabecular texture and muscle parameters significantly improved

prediction of first VF over age and BMI, but improvements were small compared

to BMD, which remained the primary predictor for both sexes. Although muscle

measures showed some predictive power, particularly in men, their clinical

significance was marginal. Integral BMD should remain the focus for fracture

risk assessment in clinical practice.
KEYWORDS

fracture prediction, vertebral fracture, computed tomography, BMD, muscle,
trabecular texture
1 Introduction

Vertebral fractures (VF) are the most common type of

osteoporotic fracture (1–3) and significantly increase the risk of

subsequent vertebral and other osteoporotic fractures (4, 5).

Therefore, risk prediction and prevention of VF is an important

goal in osteoporosis (3, 6). Areal bone mineral density (BMD)

assessed by Dual X-ray Energy Absorptiometry (DXA) and

volumetric BMD assessed by Quantitative Computed Tomography

(QCT) are strong predictors of VF. Standardized risk ratios of

approximately 2-3 have been determined (7–9), but risk prediction

still should be improved and several QCT-based strategies have been

developed toward this aim. One successful approach is the

determination of vertebral strength by finite element analysis (FEA)

(10, 11). Another is the measurement of additional parameters from

the QCT scans, such as cortical thickness, trabecular texture and

paraspinal muscle characteristics (12).

This study addresses two key questions: (1) Can fracture risk

prediction be improved beyond standard BMD measurement? (2)

Are additional parameters that would improve fracture risk

prediction are easy to measure and applicable across different CT

scanners and can they be measured with precision errors of 1-2%

(13). From a clinical perspective the first question is most important

but from a pathophysiological perspective it may be more

interesting to determine whether muscle density, muscle volume

and parameters characterizing the muscle fat infiltration predict

fractures independently of BMD. Of further interest are the separate

contributions of trabecular and cortical bone and of the trabecular

architecture to the prediction of the first incident VF.

As shown by a recent meta-analysis there is an increasing

number of studies evaluating the ability of QCT to discriminate

prevalent VF (14). However, prospective studies using QCT to

predict incident VF are rare. A number of different analyses using

FEA and lumbar and thoracic BMD parameters have been reported

for the AGES-Reykjavik study (7, 15). Thoracic trabecular BMD

also predicted incident VF in a large multiethnic MESA study of

6800 subjects with atherosclerosis (16). However, a multivariable

approach has not been reported so far.
02
The relevance of paraspinal, thigh and pelvic muscles and also

of soft tissue characteristics for hip (17–21), vertebral (22–24) or

multiple (25) fractures has been addressed in several recent CT

studies. However, most of these studies focused on the hip and most

of them were cross-sectional in design with limited sample size,

making the interpretation of multivariable results difficult. As

summarized in a recent review (26), other studies have used

magnetic resonance imaging to investigate the associations

between paraspinal muscle characteristics and osteoporotic

fracture, but these studies did not obtain BMD data and MR

studies are too time consuming and expensive for wide spread use.

In this study we used a subset of the prospective Age, Gene/

Environment Susceptibility Reykjavik (AGES-Reykjavik) study, a

large epidemiologic study from Iceland (27) to compare the

prognostic power of various CT assessments, including BMD,

trabecular texture and paraspinal muscle characteristics in

univariate and multivariable models, hypothesizing that

prediction of the first incident VF occurrence based on vertebral

BMD by QCT may be improved by these additional assessments.

The same subset of the AGES-Reykjavik study has been analyzed

previously (8), allowing to put our results in perspective with

vertebral strength measurement by FEA.
2 Materials and methods

2.1 Subjects

This study utilizes a retrospective analysis of CT scans of the

lumbar vertebrae L1 and L2 from a subset of subjects of the study

AGES‐Reykjavik (27) of over 5,000 elderly subjects from Iceland. In

summary, in a previous study (8) a case-control design was

employed to select a subset of 843 subjects (497 women and 346

men). 167 subjects had sustained an incident spine fracture within a

5-year period. Spine fractures were confirmed on CT scout scans

covering T6-L4, which were obtained at 5 years after baseline, using

the Genant SQ scoring system (28). CT scout scans from the

baseline CT scans were used to identify prior vertebral fractures,
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i.e., those that were already present at the time of the baseline scan.

By excluding those, incident vertebral fractures were identified. The

676 subjects of the control group were randomly selected from the

AGES cohort without fractures.
2.2 CT scanning and analysis

All CT scans were performed using the same CT scanner

(Sensation 4, Siemens, Erlangen, Germany) with the same CT

acquisition and reconstruction protocol (120 kV, tube current

modulation with 150 effective mAs, 50 cm FOV, 1 mm slice

thickness, 1 mm reconstruction increment, B30s reconstruction

kernel). An Image Analysis type 4 phantom (Image Analysis, Inc.,

Columbia, KY) was utilized for the purpose of simultaneous

calibration of CT to BMD values. In the majority of subjects, the

CT scan encompassed L1 and L2 vertebrae. However, in cases of

fracture or other conditions that resulted in the exclusion of one of

these vertebrae from the analysis, T12 and L1 or L2 and L3

vertebrae were scanned instead. The QCT analysis was performed

using MIAF-Spine version 6.0.7 (Figure 1, Supplementary Figure

S1). All QCT parameters that were analyzed were averaged over the

two vertebrae that were covered by the CT scan. It should be noted

that DXA scans were not obtained.

A comprehensive investigation was conducted, encompassing

the measurement of three distinct QCT subsets (S1–S3). The first

subset, designated as S1 - BMD set, involved a conventional analysis

of integral, cortical, and trabecular BMD, BMC, and volume,

complemented by an assessment of cortical thickness (13). The

second set (S2 - texture set) involved parameters that characterized

the trabecular architecture of the vertebral body. The third set (S3 -

muscle set) involved parameters that characterized the

autochthonous muscles at the vertebral levels present in the CT

scan (Figure 1). A detailed description of the parameters used in this

study is given in the Supplement. These muscles were not further
Frontiers in Endocrinology 03
subdivided. The psoas was not assessed because in comparison to

the autochthonous muscles the percentage of intermuscular adipose

tissue of the psoas is much lower and the distribution of the muscle

tissue is more homogeneous. To enhance the reproducibility of the

autochthonous muscle parameters, the outer edges of the muscles

were excluded from the segmentation process (29). The distribution

of muscle fat infiltration was subsequently measured once more via

texture parameters. Further details can be found in the Supplement

(Figure S2).
2.3 Statistics

The initial data set comprised age, BMI, and 50 variables that

were analyzed by MIAF-Spine. These variables served as predictors

for the assessment of the first incident VF. Specifically, S1

comprised 18 predictors, S2 contained 7 predictors and S3

comprised 25 predictors. Detailed descriptions can be found in

the Supplement. The z-transformation was employed to standardize

all predictors. Subsequent analyses were conducted in two distinct

groups: men and women. Sex-specific standard deviations of the

control group were utilized for standardization purposes.

Standardized age- and BMI-adjusted univariate odds ratios (OR)

were calculated for each parameter.

For each subset S1-S3, stepwise logistic regression was used to

obtain multivariable fracture prediction models. The initial number

of predictors was reduced by minimizing the Akaike information

criterion (30). The bidirectional stepwise selection was initiated

with a model comprising only age and BMI, and it iteratively

evaluated the inclusion or exclusion of predictors. Irrespective of

their statistical significance, age and BMI were retained in all

models. Other non-significant predictors (p > 0.05) were

excluded. The variance inflation factor (VIF) was employed to

assess multicollinearity. Predictors with VIF values greater than 5

were systematically eliminated, beginning with the predictor that
FIGURE 1

CT of the lumbar spine covering L1 and L2. The images show cropped axial and sagittal views. The green cylinders show the volumes of interest
(VOIs) used to analyze the 4 different density compartments of the Image Analysis type 4 phantom. The red and blue contours delineate the integral
and trabecular VOIs resulting from the 3D segmentation of L1 and L2. The yellow contours delineate the autochthonous muscle VOIs for L1 and L2.
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exhibited the highest VIF. Subsequent to each elimination, a re-

evaluation of the model ensued, resulting in the exclusion of further

nonsignificant predictors. This iterative process was repeated until

all VIF values were below 5, thereby ensuring minimal collinearity

among the final predictors of each subset’s model.

The BMD model S1 was selected as the reference model.

Significant predictors from another subset model, e.g. the muscle

model, were added to S1 to create combined models. The fracture

prediction of the combined models was compared with that of S1

using nested logistic regression following the approach suggested by

Harrell (30). To ascertain whether the combined model significantly

improved fracture prediction compared to S1, the likelihood ratio test

(LRT) was used. The LRT adheres to a chi-squared (c2) distribution
and provides p-values for the comparison of nested models. Receiver

operator characteristic (ROC) curves and their area under the curve

(AUC) values, also used as performance metric, were compared using

bootstrap confidence intervals (CI) and tests (31).

The same procedure was applied to compare fracture prediction

of individual subsets S1-S3 with that of age and BMI. To assess the

stability of the stepwise model selection process, a bootstrap analysis

was performed with 1,000 resampled data sets. For each bootstrap

sample, the stepwise procedure was repeated, and the frequency of

predictor inclusion in the resulting models was recorded.

Furthermore, the AUC values were calculated for each bootstrap

iteration to assess the variability of model performance.

Finally, the combined models were also calculated in women

with fracture SQ grades of 2 and 3, thereby excluding the mild SQ 1

fractures. All statistics were performed using R (R Core Team,

version 4.3.2, functions ‘stepAIC’ [package: MASS] and ‘roc.test’

[package: pROC]).
3 Results

A total of 826 CT data sets (486 women and 340 men) of the

original subsample of 843 subjects were analyzed. The analysis of

CT scans from 17 subjects was not possible, for the majority of cases
Frontiers in Endocrinology 04
due to the presence of excessive osteophyte formation and

substantial bone sclerosis in the vicinity of the endplates. At

baseline, 96 of the 486 women and 78 of the 340 men had prior

VF (Figure 2). These subjects were excluded from the analysis of the

current study with the objective of determining the risk prediction

of the first incident VF.

Patient characteristics and significant univariate predictors for

fracture occurrence in women are shown in Table 1 and in men in

Table 2. All univariate ORs were adjusted for age and BMI, which

are also included in the aforementioned tables. In women, 17 of the

initial 50 predictors were found to be significant predictors of future

fractures, while in men, 11 of the initial 50 predictors were found to

be significant. The non-significant predictors (p < 0.05) are not

displayed in the tables.

In both sexes, a trabecular texture predictor demonstrated the

numerically highest OR for the first incident VF. However, the

confidence intervals of ORs for all significant predictors largely

overlapped. It is noteworthy that among women, no muscle

parameters exhibited statistically significant ORs for the first

incident VF, while among men, only one muscle parameter

demonstrated a statistically significant OR for the first incident

VF. However, the means of this predictor did not differ significantly

between male control and fracture cases (p = 0.42).

Table 3; Supplementary Tables S2, S3 present the results of the

subset-specific stepwise logistic regressions. The AUC results are

presented in Table 3. The predictors that remained in the S1, S2 and

S3 models are listed in Supplementary Tables S2, S3. In addition to

age and BMI, in the final models only one or two predictors

remained of each subset, indicating a high correlation among the

parameters analyzed of a given subset. For the sake of comparison,

Table 3 also shows results of the model of age and BMI. From LRT

results, the models based on S1 and S2 exhibited significantly (p ≤

0.01) higher fracture prediction than the combination of age and

BMI alone (Table 4). This was also the case for S3 in men (p = 0.03)

but not in women. Combinations of S2 and S3 models with S1

showed a significant improvement in VF prediction compared to S1

alone (p < 0.05), except for S3 in women.
FIGURE 2

Sankey plots illustrating the populations of female and male subjects with prevalent, incident, and no vertebral fractures (VF). QCT images
corresponding to the central blue and orange bars were available, while fracture status information for the right blue and pink bars was also
included. Black numbers indicate the number of patients in each bar, while white numbers denote the contributions from other bars. It is important
to note that subjects with prevalent fractures (orange) were excluded from the analysis in this study; thus, only patients represented in the central
blue bar (controls and those with first incident VF) were included for analysis.
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ROC curve plots are summarized in Figure 3. For women, AUC

values of S1 (0.69) and of the S1-S2 combination (0.69) were

significantly (p < 0.05) higher than for the combination of age

and BMI (0.57) but AUC values of the S1-S2 combination were not

significantly higher than for the S1 model. For men, only the S1-S3

combination (0.77) was significantly (p < 0.05) higher than the

combination of age and BMI (0.63), no other significant differences

were detected.

Integral BMD of the vertebral body remained a significant

predictor for both men and women in S1, the reference model

utilized in this study. In women, the cortical thickness of the lower

endplate also persisted as a significant predictor in S1. The

bootstrap procedure demonstrated that, including age and BMI,

on average 5.4 (CI 3-9) predictors remained significant in women,

with a mean AUC of 0.72 (CI 0.65 – 0.79). In men, an average of 5.7

(CI 3-11) predictors remained significant, with a mean AUC of 0.8

(CI 0.71 – 0.92). The frequency of predictors that remained

significant in each of the 1,000 resampled datasets is documented

in Supplementary Table S4.
Frontiers in Endocrinology 05
For the sake of comparison, the AUC values were also

calculated for a manually selected model based on clinical

expertise. This model, in addition to age and BMI, consisted of

integral BMD of the total vertebral body (BMD_Int_tVB) and

cortical thickness measured at the midsection of the vertebral

body (Thick_Cort_mVB). However, the latter variable did not

emerge as a significant predictor in the previous analysis for both

men and women. The AUC results were found to be 0.67 (CI 0.60 –

0.74) for women and 0.72 (CI 0.61 – 0.83) for men.

In women, 34 first incident VFs were diagnosed with SQ 1,

while an additional 30 were diagnosed with SQ 2 or SQ 3. Excluding

SQ 1 fractures, the AUC values increased to 0.72 for S1, 0.7 for S2,

and 0.73 for S3 compared to the values in Table 3. The LRT of S3

exhibited a borderline significant increase (p = 0.05) in comparison

to that of age and BMI. The performance of the combined models is

shown in Supplementary Table S5. In contrast to the subset

encompassing SQ1 to SQ3 fractures, the combination of S2 and

S1 no longer was statistically superior in comparison to S1.

However, the incorporation of a muscle predictor enhanced the
TABLE 1 Significant univariate predictors of the first incident vertebral fracture in women.

Controls Incident VF

n 326 64

Mean ± SD AUC CI OR/SD CI p

Age [y] 73.9 ± 5.1 75.2 ± 5.6 0.57 (0.49; 0.64) 0.79 (0.6; 1.0) 0.07

BMI [kg/m2] 27.6 ± 4.5 27.5 ± 5.2 0.51 (0.43; 0.60) 1.03 (0.8; 1.3) 0.83

Subset Predictor Mean ± SD AUC CI OR/SD CI p

S2-Texture Trab_gInhomo 73.9 ± 5.1 75.2 ± 5.6 0.66 (0.59; 0.73) 2.07 (1.4; 3.1) < 0.001

S1-BMD BMD_Int_tVB [mg/cm3] 175.7 ± 37.5 156 ± 33.9 0.67 (0.60; 0.74) 1.86 (1.3; 2.6) < 0.001

S1-BMD BMD_Trab_mCy [mg/cm3] 83.7 ± 33.3 67.6 ± 27.6 0.66 (0.59; 0.73) 1.84 (1.2; 2.7) < 0.01

S1-BMD BMC_Int_tVB [g] 5.6 ± 1.25 4.95 ± 1.08 0.67 (0.59; 0.74) 1.84 (1.3; 2.6) < 0.001

S2-Texture Trab_Vario_slope 6.1 ± 1 5.8 ± 0.8 0.62 (0.55; 0.70) 1.83 (1.2; 2.8) < 0.01

S1-BMD BMD_Trab_tVB [mg/cm3] 90.8 ± 30.5 75.8 ± 28.6 0.66 (0.59; 0.73) 1.79 (1.2; 2.5) < 0.01

S1-BMD BMD_Trab_cCy [mg/cm3] 77.9 ± 29.5 64.2 ± 25.5 0.65 (0.58; 0.72) 1.78 (1.2; 2.6) < 0.01

S1-BMD BMC_Trab_tVB [g] 1.72 ± 0.56 1.45 ± 0.5 0.65 (0.58; 0.72) 1.74 (1.2; 2.4) < 0.01

S1-BMD Thick_Cort_LE [mm] 1.06 ± 0.13 1.02 ± 0.07 0.62 (0.55; 0.69) 1.70 (1.1; 2.5) < 0.01

S1-BMD BMC_Cort_tVB [g] 2.79 ± 0.7 2.48 ± 0.61 0.65 (0.58; 0.72) 1.70 (1.2; 2.4) < 0.01

S1-BMD BMD_Cort_tVB [mg/cm3] 367.1 ± 52.9 342.4 ± 51.2 0.65 (0.57; 0.73) 1.64 (1.2; 2.2) < 0.01

S1-BMD BMC_Cort_mVB [g] 0.62 ± 0.2 0.54 ± 0.17 0.64 (0.56; 0.71) 1.62 (1.1; 2.3) < 0.01

S1-BMD Thick_Cort_tVB [mm] 1.31 ± 0.18 1.25 ± 0.14 0.62 (0.55; 0.70) 1.58 (1.1; 2.2) < 0.01

S1-BMD BMD_Cort_mVB [mg/cm3] 403.1 ± 63 377 ± 60.6 0.64 (0.56; 0.72) 1.53 (1.1; 2.1) 0.010

S1-BMD Thick_Cort_mVB [mm] 1 ± 0.28 0.89 ± 0.24 0.63 (0.55; 0.71) 1.50 (1.1; 2.1) 0.013

S1-BMD Vol_Cort_mVB [cm3] 1.5 ± 0.29 1.39 ± 0.26 0.62 (0.55; 0.70) 1.48 (1.1; 2.1) 0.012

S1-BMD Vol_Cort_tVB [cm3] 7.53 ± 1.2 7.16 ± 1.02 0.61 (0.53; 0.68) 1.43 (1.1; 1.9) 0.025
fr
Mean ± SD of univariate predictors with area under curve (AUC) values and their confidence intervals (CI), all values are sorted by Odds ratios (OR). OR are calculated per one standard
deviation decrease. AUC and OR values are adjusted for age and BMI, n.s. predictors are not listed here. CI gives the confidence interval of OR and p the significance level. A detailed description
of the parameters is given in the Supplement.
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prediction of VF, surpassing the performance of S1. The AUC

values remained significantly different for the comparison against

age and BMI. For men there were too few cases to perform such

an analysis.
4 Discussion

In this study, the performance of 50 parameters obtained from

QCT scans of the spine was assessed to predict the first incident VF

univariately or in combination. Volumetric BMD based models

significantly predicted the first incident VF with AUCs at about the

same level as those reported for FEA in previously published studies

on a sample very similar to ours (8). The analysis revealed that

independent of BMD, parameters of trabecular texture and with
Frontiers in Endocrinology 06
limitations also of autochthonous muscle significantly improved the

prediction of vertebral fractures (VF), compared to age and BMI

alone. However, when compared to BMD, the enhancement was

minimal and likely to be of negligible clinical significance. Thus age

and BMI adjusted volumetric BMD, that can easily be measured

with QCT and with excellent precision is the parameter of choice

for prediction of incident fractures in clinical routine.

QCT of the spine is typically used to measure average trabecular

and integral BMD of L1 and L2 (32). Therefore, the reference model

(S1) extracted from 18 different BMD and cortical thickness

measures was used as ‘QCT gold standard’ for prediction of the

first incident VF. After the reduction of variables in the stepwise

logistic regression, only integral BMD of the vertebral body

remained for both sexes and in addition, cortical thickness of the

lower endplate for women. As age and BMI alone are important

predictors of incident VF and in order to be consistent with most

publications on fracture prediction that typically report age and

BMI adjusted risk ratios or AUC values, age and BMI were retained

in all models, even if these two parameters were not significant in

the regression step.

The term ‘gold standard’ implies that there is an optimum set of

variables that should be used for fracture prediction. However, the

bootstrap analysis demonstrated that S1 models with different

predictor combinations exhibited average AUCs that were

analogous to the reference S1 model utilized in this study. It is

noteworthy that parameters of cortical thickness were more

frequently incorporated into the models resulting from the

bootstrap process than BMD. However, with the exception of
TABLE 2 Significant univariate predictors of the first incident vertebral fracture in men.

Controls Incident VF

n 239 23

Mean ± SD AUC CI OR/SD CI p

Age [y] 74.4 ± 5.1 76.3 ± 4.8 0.62 (0.51; 0.73) 0.71 (0.5; 1.1) 0.10

BMI [kg/m2] 26.8 ± 3.6 26.0 ± 3.4 0.58 (0.45; 0.71) 1.27 (0.8; 2.0) 0.31

Subset Predictor Mean ± SD AUC CI OR/SD CI p

S1-BMD BMD_Int_tVB [mg/cm3] 195.5 ± 38.9 169.1 ± 34.7 0.71 (0.61; 0.82) 2.05 (1.2; 3.5) < 0.01

S1-BMD BMD_Trab_tVB [mg/cm3] 104.8 ± 29.7 84.6 ± 27.2 0.70 (0.59; 0.82) 2.02 (1.2; 3.4) < 0.01

S1-BMD BMC_Trab_tVB [g] 2.79 ± 0.83 2.24 ± 0.74 0.71 (0.59; 0.82) 2.01 (1.1; 3.5) 0.012

S1-BMD BMD_Cort_tVB [mg/cm3] 411.7 ± 59.4 372.7 ± 48.6 0.71 (0.61; 0.82) 1.98 (1.2; 3.3) < 0.01

S1-BMD BMC_Int_tVB [g] 8.45 ± 2 7.27 ± 1.56 0.69 (0.58; 0.80) 1.96 (1.1; 3.5) 0.017

S1-BMD BMD_Cort_mVB [mg/cm3] 457.5 ± 69.9 413.9 ± 57.4 0.70 (0.60; 0.80) 1.92 (1.1; 3.2) 0.011

S1-BMD BMD_Trab_cCy [mg/cm3] 87.5 ± 28.8 69.2 ± 26.6 0.70 (0.58; 0.81) 1.83 (1.1; 3.1) 0.020

S1-BMD BMD_Trab_mCy [mg/cm3] 93 ± 34.1 73.8 ± 30.6 0.69 (0.58; 0.80) 1.72 (1.0; 2.9) 0.042

S3-Muscle M_gAniso_Bin6 57.3 ± 0.2 57.4 ± 0.2 0.69 (0.60; 0.78) 0.61 (0.4; 1.0) 0.031

S2-Texture Diff_Box_C 2.65 ± 0.04 2.66 ± 0.04 0.68 (0.58; 0.79) 0.48 (0.3; 0.9) 0.022

S2-Texture Trab_lAniso 69.3 ± 1.9 69.7 ± 1.8 0.69 (0.59; 0.80) 0.46 (0.2; 0.8) 0.013
fr
Mean ± SD of univariate predictors with area under curve (AUC) values and their confidence intervals (CI), all values are sorted by Odds ratios (OR). OR are calculated per one standard
deviation decrease. AUC and OR values are adjusted for age and BMI, n.s. predictors are not listed here. CI gives the confidence interval of OR and p the significance level. A detailed description
of the parameters is given in the Supplement.
TABLE 3 AUC values for a combination of age and BMI and for the
subset specific models (that are also adjusted for age and BMI).

Women Men

AUC CI AUC CI

Age & BMI 0.57 (0.49; 0.65) 0.63 (0.51; 0.74)

S1 BMD 0.69 (0.62; 0.76) 0.71 (0.60; 0.82)

S2 Texture 0.67 (0.59; 0.75) 0.72 (0.62; 0.83)

S3 Muscle * 0.69 (0.60; 0.79)
*No predictors of S3-Muscle remained in the final model.
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cortical thickness of the lower endplate, none of the 18 input

predictors occurred in more than 30% of the 1,000 models. While

it is unlikely that the S1 reference model of this study overestimated

fracture risks due to overfitting, a common problem in

multivariable analyses, there is no unique best set of S1 QCT

variables to be used for fracture prediction. Conducting a separate

analysis of a distinct subset of the AGES population, or even a

different study, is likely to yield a different S1 reference model. This

phenomenon is also evident in the univariate results, where the

adjusted ORs for many variables were found to be highly

comparable, despite adjustments for age and BMI.

From a clinical perspective, this is favorable news because a

combination of rather esoteric predictor combinations will most

likely not predict the first incident VF risk better than a standard set

of predictors. Integral BMD, a variable that can easily be measured

with high precision (13), is an adequate predictor of incident VF.

Cortical thickness of the lower endplate may more reflect

sclerotization of the trabecular bone due to vertebral disk

impairments than actual cortical thickness of the endplate.
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Segmentation in this case is challenging and disk impairments

were frequent in the AGES population. Nevertheless, the

observation that degenerative features of the vertebrae may also

be predictive of the first incident VF should be further pursued.

Therefore for the handpicked S1 model cortical thickness of the

mid vertebral body was selected, which is less affected by

degenerative changes (33–35). AUC values of the handpicked

model were well in the range of the bootstrapping results. The

addition of mid cortical thickness did only marginally improve VF

prediction compared to integral BMD alone.

A notable finding is the observation that the S2 texture model

predicted VF independently of the S1 BMD model. In scenarios

where a BMD assessment is not feasible, for example in MRI scans,

VF prediction is still possible using parameters of trabecular texture,

at least in principle. Recent studies have shown that an MRI based

texture analysis can be used to discriminate subjects with and

without prevalent vertebral fractures (36, 37). However, it is

important to remember that texture assessments depend on noise

and spatial resolution (38). Thus, MRI texture results will vary
FIGURE 3

Receiver operator curves for women - for age/BMI, S1 and combinations of S1 with S2. Receiver operator curves for men - for age/BMI, S1 and
combinations of S1 with S2 and S1 with S3. Asterisk marks significant difference (p < 0.05) in the AUC values against the model only including age
and BMI.
TABLE 4 Performance of combinations of nested models tested by LRT: Model 1, which is the base model, and Model 2, which represents the
combined model.

Comparison of Nested Models Women Men

Model 1 Model 2 DoF c2 p DoF c2 p

Age & BMI S1 BMD 385 18.5 <0.001 259 6.4 0.01

Age & BMI S2 Texture 386 15.0 <0.001 258 6.9 0.01

Age & BMI S3 Muscle * 258 4.8 0.03

S1 BMD S2 Texture 385 5.9 0.02 258 4.5 0.05

S1 BMD S3 Muscle * 258 4.8 0.03
*No predictors of S3-Muscle remained in the final model.
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significantly among MRI sequences. It should also be noted that all

scans analyzed in this study were obtained from the same CT

scanner using the same CT protocol. Texture measurements from

different scanners may not be directly comparable.

Several other studies have demonstrated the ability of

histomorphometry or texture parameters to improve the

discrimination of vertebral fractures when compared with BMD

(39–43), but none have investigated the ability to predict incident

osteoporotic vertebral fractures. Therefore, it is an important

finding of this study that texture parameters can be used to

predict incident vertebral fractures. Of course, there are many

different texture parameters and a radiomics approach may more

systematically exploit the potential of texture parameters than the

heuristic approach chosen in this study.

A substantial body of research has demonstrated a correlation

between muscle metrics and spinal fractures (26, 44, 45). However,

the majority of these studies were cross-sectional in design,

investigating the associations of muscle metrics with prevalent

conditions rather than the prediction of incident VF. In this study

the predictive value of paraspinal muscle characteristics was weak,

questioning their utility in clinical practice. Muscle parameters

significantly predicted VF in women only after excluding the SQ 1

mild fractures and even then, the improvement of fracture prediction

compared to age and BMI was only borderline significant. This

finding is particularly noteworthy given the comprehensive array of

parameters that were examined, encompassing muscle density, fat

fraction, and a multitude of texture parameters that characterized the

distribution of muscle tissue and intermuscular adipose tissue. In

men, a modest effect was observed for muscle tissue anisotropy.

However, the clinical interpretation of this finding is challenging, as

the anisotropy did not differ significantly between men with and

those without incident VF.

In the event of confirmation, the implications are substantial.

The role of paraspinal muscle exercise in preventing vertebral

fractures remains uncertain. Actually, a recent 12-month study in

men demonstrated that exercise had no effect on paraspinal

muscles, despite significant training effects on spinal BMD and

thigh muscle parameters (46). Further research is needed to

determine whether muscle deterioration is a cause or a

consequence of fractures.

The multivariable analysis is a big advantage of this study.

Instead of just presenting univariate odds or hazard ratios after

adjustment for age and BMI (7, 8) the advanced statistical approach

of comparing nested combinations of predictors provided the

possibility to compare the performance of fracture prediction of

different models. The use of the log-likelihood ratio as performance

criterion guarantees statistical rigor in identifying the set of

predictors that best fit the pattern of incident fractures (30, 47)

but beyond the result whether fracture prediction differs, the clinical

interpretation of the magnitude of improvement of fracture

prediction is difficult. Therefore, we also calculated AUC values as

established performance characteristic, which, however, offers less

statistical power to test which model is better than others.
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As shown in Table 4 and Supplementary Table S5 compared to

S1 the inclusion of S2 predictors, which characterize trabecular

architecture significantly improved prediction of VF in men and

women. However, in women this was no longer the case once mild

fractures were excluded. Compared to S1 the inclusion of S3

predictors, which characterize muscle significantly improved

prediction of VF in men and after exclusion of SQ 1 fractures

also in women. However, the ROC graphs show that AUC values of

the combined models did not significantly increase AUC values.

Thus, the clinical benefit is rather limited and may not be worth the

effort of an advanced QCT analysis. It is a limitation of the study

that the number of incident vertebral fractures with grade 2 or 3 was

too small in men to perform a separate analysis.

It is another limitation of this study that FEA was not

performed and therefore it was not possible to test whether a

strength determination would have increased fracture prediction

beyond that of BMD. Such an analysis was also not performed in the

earlier study that analyzed the same cohort (8). While in that study

strength showed the highest OR for fracture prediction, integral

BMD was not measured and CI of the OR largely overlapped. OR

calculation may be strongly affected by the distribution of the data

but no test of normal distribution has been reported in the earlier

study. Judging the performance based on ROC analysis showed our

QCT results at the same level as the FEA data reported earlier

Whether from clinical perspective the advanced method of FEA is

worth the additional effort compared to a standard QCT analysis

still has to be determined.

While our results do not provide a definitive solution for

predicting the first incident VF, they offer valuable insights that

may guide future advancements in addressing this inherently

complex and unresolved challenge. Surprisingly even with our

comprehensive analysis of texture, muscle and bone parameters,

none of the parameters or a combination of parameters gave an

outstanding improvement over established predictors, namely age

and BMI adjusted volumetric BMD. Even muscle parameters that

are known to perform well in cross-sectional studies did not

perform extraordinary for the prediction of incident VF. The

analyzed dataset is exceptionally rare and one of the few that

enable such an in-depth analysis. Unfortunately, less than a

handful of datasets exist for the prospective analysis of VF using

QCT. Nevertheless, it would be highly valuable to validate these

findings in future studies.
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