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Sex differences in diet-induced
MASLD – are female mice
naturally protected?
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Madlen Matz-Soja4, Susanne Gaul1,5, Anja Barnikol-Oettler1,
Wieland Kiess1, Diana Le Duc6,7, Melanie Penke1

and Antje Garten1*

1Center for Pediatric Research, University Hospital for Children and Adolescents, Leipzig University,
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University, Nottingham, United Kingdom, 3Helmholtz Institute for Metabolic, Obesity and Vascular
Research (HI-MAG) belonging to Helmholtz Center Munich at the University and University Hospital,
Leipzig, Germany, 4Division of Hepatology, Clinic and Polyclinic for Oncology, Gastroenterology,
Hepatology, and Pneumology, University Hospital Leipzig, Leipzig, Germany, 5Klinik und Poliklinik für
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Males suffer more often from profibrotic changes in liver than females. The

underlyingmechanism for this sex difference in the prevalence andmanifestation

of Metabolic dysfunction-associated Steatotic Liver Disease (MASLD) is not yet

completely known. We studied male and female mice that were induced to

develop MASLD by consuming a “fast food” diet (FFD) and assessed metabolic

phenotype as well as liver histology and compared them with mice fed with a

matched control diet (CD). Our aim was to check for sex-specific differences in

MASLD development in a mouse model of diet-induced profibrotic changes in

the liver. Our results demonstrate a clear difference in body weight, fat

distribution and changes in liver tissue for male and female mice fed with FFD.

We found that female mice stored lipids mainly in subcutaneous and visceral

adipose tissue while males increased ectopic lipid accumulation in the liver which

resulted in hepatomegaly and increased transforming growth factor b 1 (Tgfb1)

and collagen I (Col1a1) expression concomitant to fibrosis development. This was

absent in female mice. Analysis of estrogen receptor -a (Esr1) and -b (Esr2)

expression revealed an upregulation of Esr2 in livers of male FFD-fed mice

whereas in female liver tissue a higher expression in Esr1 could be observed. This

study supports Esr1 and Esr2 as potential targets to reverse negative effects of

diet-induced profibrotic changes in the liver.
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1 Introduction

Metabolic dysfunction-associated Fatty Liver Disease (MAFLD)

(1) or Metabolic dysfunction-associated Steatotic Liver Disease

(MASLD) (2), previously named non-alcoholic fatty liver disease

(NAFLD), is the major chronic liver disease worldwide (3).

MASLD denominates a spectrum of liver diseases ranging from

simple accumulation of triglycerides in liver (steatosis) to

inflammation (steatohepatitis, MASH) and fibrosis (4, 5). The

disease is strongly correlated with obesity and insulin resistance (6).

Hepatic fibrosis is characterized by an excessive deposition of

extracellular matrix (ECM) that could evolve to cirrhosis or

hepatocellular carcinoma (7). Previously thought to be irreversible

(8), a number of studies have shown a potential reversal of all stages

of fibrosis (9, 10). For this reason, understanding the process of

fibrogenesis allows the identification of markers of disease

progression and offers a potential target for therapeutic intervention.

One possible target could be transforming growth factor beta

(Tgf b), which is involved in all stages of MASLD progression. Tgf b
plays a pivotal role in fibrosis development through inducing ECM

protein production and activating hepatic stellate cells (HSC) (11).

These liver injury activated HSCs have a key function in liver

regeneration too, and are the key producers of collagen, the

deposition of which is involved in the development of fibrosis and

which is the most abundant component of ECM (6, 12, 13).

The incidence of MASLD is highest in obese children and adult

men; however incidences also increase in menopausal and

postmenopausal women (14–16). A groundbreaking study was

published in 2000, supporting the notion that sexually dimorphic

risk factors are associated with MASLD (17). Many studies suggest

that estradiol (E2) can be responsible for these sex differences and

variable incidence ratios. The estrogen receptors (Er) a and b are

the mediators of estrogen action and expressed in adipose tissue.

The precise role of Er a and b in MASLD development is not

clarified. Previous studies demonstrated that hepatic steatosis

occurred in Esr1 knockout mice (18) but not in Esr2 deficient

male mice (19). In addition, estrogen deficiency promotes MASH

progression in high-fat and high-cholesterol fed mice (20).

Moreover, it has been shown that high fat diet-fed rats develop

fatty liver and hepatic insulin resistance after three days of feeding

(21). Fast food diet-fed mice show also higher levels of aspartate

aminotransferase (ASAT) as indicator of hepatocyte damage

compared to control diet fed mice (22).

Using this mouse model of diet-induced fibrosis MASH (22) we

aimed to identify sex-specific differences in MASLD development

and ascertain factors involved, which could be targeted to prevent

fibrotic changes in metabolic liver disease.
2 Materials and methods

2.1 Chemicals and Reagents

Unless otherwise stated, chemicals were bought from Sigma-

Aldrich (St Louis, USA).
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2.2 Animal experiments

Mouse experiments were performed in accordance with the

guidelines approved by the local authorities of the State of Saxony,

Germany, as recommended by the responsible local animal ethics

review board (Landesdirektion Saxony, Leipzig, TVV43/14).

C57BL/6NCrl mice (28 male, 28 female), 6 weeks old, were

purchased from the Medical Experimental Center, Leipzig

University and randomized according to fat mass into 4 groups

per sex (n=7 each). Mice were housed in groups of 3‐4 at 22 ± 2°C

on a 12 h light/dark cycle with free access to feed and water, checked

daily for signs of illness and weighed once a week.

Starting from an age of 8 weeks, mice of both sexes were fed

either a control diet (CD88137, 5.1% crude fat, 23.2% sugar, no

cholesterol) or the “fast food” diet, a modified Western diet

(TD88137, Ssniff, Soest, Germany) containing 21.2% crude fat,

33.2% sugar and 2% cholesterol, providing 40% of energy as fat

(milk fat, 12% saturated) for 16 or 24 weeks. This resulted in a total

of 8 experimental groups, four per time point. Drinking water for

both control and fast food diet groups was supplemented with 42 g/l

sugar solution (55% fructose and 45% glucose). This dietary

regimen has been described previously to recapitulate features of

the metabolic syndrome and NASH with progressive fibrosis (22).

Lean and fat mass were assessed by EchoMRI™ in week 8, 15 and

23. Intraperitoneal glucose tolerance tests (GTTs) were performed

at the age of 16 and 24 weeks after an overnight fast of 12 h by

injecting 2 g glucose per kg body weight. Blood samples for glucose

measurements were taken from the tail vein after 0, 15, 30, 60, and

120 min and measured by using an automated glucose monitor

(GlucoMen; Menarini Diagnostics, Wokingham, U.K.) as described

previously (23). Mice were sacrificed by CO2 asphyxiation, followed

by cardiac puncture for blood collection and by organ collection.

Blood was incubated at room temperature for 1h and centrifuged at

10 min, 2500 x g for serum collection to measure liver enzymes and

glycated haemoglobin (HbA1c). Organs (liver, subcutaneous fat

(SAT), epididymal [visceral] fat (VAT)) were harvested, weighed

and processed for histological and biochemical analyses or snap

frozen in liquid nitrogen.
2.3 Laboratory analyses

HbA1c and activities of alanine aminotransferase (ALAT) and

aspartate aminotransferase (ASAT) in serum were measured

spectrophotometrically as indicators of hepatocellular

disintegration and necrosis using a Cobas C111 analyzer (Roche

Diagnostics ; Rotkreuz, Switzerland) according to the

manufacturer’s instructions.
2.4 Histological analyses

Adipose tissue histology, measurements of lipid droplet size and

number and adipocyte size distributions analyses were performed as

previously described (24). A liver lobe (lobus hepatis sinister) was
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fixed in 4% paraformaldehyde for 3 days, paraffin-embedded and

stained with hematoxylin and eosin for histological evaluation of

the percentage of liver fat. Hepatic steatosis was quantified using

ImageJ (25)from 100x magnified TIFF micrographs (n = 5-7 images

per experimental group) and represented as the percentage of

vacuoles as a proxy for lipid accumulation present in each

section. Picrosirius red staining was used for fibrillar collagen

detection and quantified using ImageJ analysis of 200x magnified

TIFF micrographs (26) (n=6-7 images per experimental group).

Another lobe (lobus medialis dexter) was cryo-embedded in Tissue-

Tek and cryo-sectioned (6 µm), fixed in 4% formalin and stained

with Oil-Red O for lipid droplet quantification with ImageJ (n=4-6

images per experimental group) as described previously (27). For

visualization, an EVOS FL Auto 2 microscope (Thermo Scientific)

was used.
2.5 Gene expression analysis

Total RNA of liver tissue was extracted using TRIzol® Reagent

(Life Technologies) according to manufacturer’s protocol. 1 µg of

total RNA was transcribed into cDNA by M-MLV Reverse

Transcriptase (#28025013, Invitrogen). Quantitative PCR analyses

were performed using the Absolute qPCR SYBR Green Low ROX

Mix (Thermo Scientific) or qPCR Master Mix Plus ROX

(Eurogentec) and the Applied Biosystems QuantStudio 3 System

(Thermo Scientific). Gene expression values are shown as fold

changes respective to male CD fed mice. Cyclophilin b

alternatively designated as peptidylprolyl isomerase b (Ppib) or

hypoxanthin-phosphoribosyltransferase (Hprt) were used as

housekeeping genes for normalization. The specific primer

sequences are listed in Supplementary Table S1.
2.6 Statistical analysis

All statistical analyses were performed using GraphPad Prism

version 10.2.3 for Windows, GraphPad Software, Boston,

Massachusetts USA, www.graphpad.com. Analyses comparing

male and female mice on CD or FFD (sex and diet as

independent variables) were performed using two-way analyses of

variance (ANOVA) with subsequent Tukey´s multiple comparisons

post hoc test. Differences in gene expression fold changes were tested

with one sample t-test. All data were presented as means ± SD.

Statistical significance was defined as p < 0.05.
3 Results

3.1 Female FFD-fed mice stored more fat
in adipose tissue depots than males

To determine the sex-specific impact of FFD, we measured body

weight, fat and lean mass, the weight of adipose tissue depots and

mean adipocyte size after 16 and 24 weeks on the respective diets.
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As expected, body weight of all mice, regardless of sex and diet,

increased over the course of time (Figure 1A). Male FFD-fed mice

gained weight faster and had a higher mean weight at the end of the

24-week period (47.0g ± 2.0g, n=7) than FFD females (38.7g, ± 1.9g,

n=7) and CD male mice (35.8g ± 5.5g, n=7). Female mice on CD

had the lowest body weight (31.0g ± 3.2, n=7, Figure 1B).

We compared fat mass, subcutaneous adipose tissue (SAT) and

visceral adipose tissue (VAT) normalized to body weight at 16 weeks

with 24 weeks. Fat mass was higher in both male and female FFD-fed

mice compared to CD-fed mice at both 16 and 24 weeks, while there

were no differences in fat mass between males and females on FFD at

either time point (Figures 1C, D). Interestingly, at 16 weeks, fat mass

of CD-fed mice was higher in males (10.9g ± 2.0g, n=6) compared to

females (3.6g ± 1.0g, n=7; p<0.0001, Figure 1C), which was not the

case anymore at 24 weeks (males 15.7 ± 3.1g, females 14.1 ± 2.8g,

Figure 1D). Lean mass was not different between diets at any time

point, but higher in males than in females on their respective diet at

24 weeks (Supplementary Figures S1A, B).

To examine sex-specific differences in fat deposition, we took a

closer look at SAT and VAT weight. At 16 weeks, female mice on

FFD had significantly more SAT relative to their body weight (3.4 ±

0.3, n=7) than FFD-fed males (2.4 ± 0.6, n=6, p=0.00332, Figure 1E)

and CD females (1.4 ± 0.5, n=7, p<0.0001; Figure 1E). At 24 weeks,

the difference between CD and FFD-fed mice was significant only

for males (1.8 ± 1.0 vs. 2.8 ± 0.5, n=7, p=0.0296), while CD-fed

females had accumulated more SAT/body weight than CD-fed

males (2.8 ± 0.7 vs. 1.8 ± 1.0, n=7, p=0.0474). There was no more

difference in SAT/body weight between CD and FFD-fed females at

24 weeks (Figure 1F).

For VAT/body weight, there was neither a difference between

FFD-fed males and females or between FFD and CD-fed males at 16

weeks (Figure 1G), while CD-fed females had significantly less

VAT/body weight than FFD-fed females (1.3 ± 0.4 vs. 4.2 ± 0.9, n=7,

p<0.0001, Figure 1G) or CD-fed males (1.3 ± 0.4 vs. 3.6 ± 1.2, n=7,

p=0.0003, Figure 1G). At 24 weeks, FFD-fed females has increased

VAT/body weight, so that it was significantly more compared to

FFD-fed males (5.8 ± 0.6 vs. 3.3 ± 0.6, n=7, p<0.0001, Figure 1H).

Absolute SAT (Supplementary Figures S1C, D) and VAT

(Supplementary Figures S1E, F) masses were similar to the

normalized masses. No significant differences in adipocyte size

could be measured after 16 (data not shown) or 24 weeks for

both adipose tissue depots (Supplementary Figures S1G, H).

Glucose tolerance at 16 weeks was similar in FFD-fed mice and

CD-fed males, with CD-fed females having a smaller area under the

curve (AUC, Supplementary Figures S2A, C; p=0.0008 comparing

CD fed male mice and p<0.0001 comparing female FFD mice, n=6-

7) than the other experimental groups. This difference vanished at

24 weeks with AUCs being similar in all groups (Supplementary

Figures S2B, D). Fasting blood glucose was higher in FFD-fed

compared to CD-fed mice of the respective sex (Supplementary

Figures S2E, F). HbA1c was higher in male compared to female

mice, but not different between CD and FFD-fed mice

(Supplementary Figures S2G, H).

Collectively, we found sex-specific differences of body weight

and fat distribution between male and female mice. Female FFD-fed
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FIGURE 1

Fast food diet (FFD) fed mice showed sex-dependent differences in body weight, fat mass, and subcutaneous (SAT) or visceral (VAT) adipose tissue
compared to control diet (CD) fed mice. (A) Body weight increase over the time course of the study (24 weeks). Male FFD mice in dark blue, male
CD mice in light blue (both groups n = 13 until week 16, n = 7 until week 24), female FFD mice in dark red, female CD mice in light red (n = 14 until
week 16, n = 7 until week 24). (B) At 24 weeks, male mice fed with FFD had a higher body weight compared to FFD-fed female (1.2fold, p=0.0008)
and CD-fed male mice (1.3fold, p<0.0001). (C) At 16 weeks, fat mass of both FFD-fed groups was higher compared to CD-fed mice. CD-fed males
had higher fat mass than CD-fed females (3fold, p<0.0001). (D) At 24 weeks, fat mass was increased in FFD-fed vs. CD-fed mice for both, males
(1.7fold, p=0.0189) and females (1.6fold, p=0.0116). (E) At 16 weeks, SAT per body weight was higher in FFD female mice than in CD female mice
(2.4fold, n=7 per group, p<0.0001) and FFD male mice (1.4fold, p=0.0032). (F) At 24 weeks, SAT per body weight was higher in FFD-fed compared
to CD-fed male mice (1.6fold, p=0.0296). (G) At 16 weeks, VAT per body weight was higher in FFD-fed compared to CD-fed female mice (3.2fold,
p<0.0001). Male CD-fed mice had higher VAT per body weight than female CD-fed mice (2.8fold, p=0.0003). (H) At 24 weeks, FFD-fed females had
a higher VAT per body weight than both, CD-fed females (1.5fold, p=0.0013) and FFD-fed males (1.8fold, p<0.0001). Data are presented as mean ±
SD, with points indicating 6-7 mice per group. Differences <0.05 were considered significant as determined by two-way analyses of variance
(ANOVA) with subsequent Tukey´s multiple comparisons post hoc test.
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mice had more SAT then CD-fed females already at 16 weeks and

increased their VAT depot at 24 weeks, whereas male mice on FFD

had similar amounts of SAT than CD males and showed increased

SAT at 24 weeks. This points to a sex-dependent difference in the

preferred fat storage depot in this animal model.
3.2 Fast food diet causes lipid
accumulation mainly in livers of male mice

We next checked for sex-specific differences regarding fat storage

in the liver. Liver per body weight of 16 week old mice was

significantly higher in FFD-fed compared to CD-fed males (1.6fold,

n=6, p<0.0001) and compared to female FFD-fed mice (1.3fold, n=6

males, 7 females, p=0.0055, Figure 2A). Similar differences in liver/

body weight were seen at 24 weeks in males (CD male 4.1± 0.8, n=7,

FFD male 7.1 ± 1.3, n=7, p<0.0001). In 24 week old females, the liver

weight difference between FFD and CD-fed mice became significant

(CD female 4.4 ± 0.8, n=7, FFD female 6.0 ± 1.1, n=7, p=0.0247;

Supplementary Figure S3A). The macroscopic differences between

livers of male FFD and CD mice were also obvious, with livers from

FFD mice being considerably bigger and paler than from CD mice

(Supplementary Figure S3B). Similarly, absolute liver weights were

also higher in FFD males (2.9g ± 0.7g, n=6) compared to CD males

(1.5g ± 0.3, n=6, p<0.0001) and to FFD females (1.8g ± 0.3, n=7,

p=0.0004) after 16 weeks (Supplementary Figure S3C) and after 24

weeks (Supplementary Figure S3D). This suggests that the amount of

liver fat in females increased between 16 and 24 weeks. Moreover,

livers from male FFD-fed mice were heavier than the FFD-fed

female ones.

Liver lipid accumulation was visible as vacuoles in both male

and female mouse livers from FFD-fed mice after 16 (Figure 2B)

and 24 (Supplementary Figure S4A) weeks, but was more

pronounced in livers from male FFD-fed mice. Quantification

showed a significantly higher percentage of steatosis in FFD-fed

compared to CD-fed mice at 16 weeks (males: 3fold, n=,6,

p=0.0157; females 4.8fold, n=5,6, p=0.0958, Figure 2C). At 24

weeks, there was no significant difference between male and

female mice on either diet (Supplementary Figure S3E).

Hepatocellular ballooning as a sign for hepatocyte damage

could be observed in some livers from FFD-fed mice, both at 16

and 24 weeks (Supplementary Figure S4B). In contrast, we did not

observe any signs of immune cell infiltration, based on images from

H&E stained tissue (Supplementary Figures S4A, B).

In order to examine markers for liver damage, we measured

serum liver enzymes alanine aminotransferase (ALAT) and

aspartate aminotransferase (ASAT). After 16 weeks, ALAT was

significantly higher in male FFD-fed compared to CD-fed mice

(p=0.0262; Figure 2D), implying more damage to hepatocytes in

FFD males. This difference persisted at 24 weeks (Supplementary

Figure S3F). ASAT measurements did not show significant

differences (data not shown).

To assess histological changes, more specifically the

incorporation of lipids into hepatocytes, we measured lipid droplet

content by Oil Red O (ORO) staining (Figure 2E). We found that
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livers from male mice after FFD feeding presented more and bigger

lipid droplets than the female ones, especially at 24 weeks. Already at

16 weeks, males on FFD showed a 4.1fold higher number of hepatic

lipid droplets compared to CD males (n=4, p=0.026, Figure 2F).

Although there were more hepatic lipid droplets also in female mice

on FFD compared to CD, the difference was not significant

(Figure 2F). After 24 weeks, males on FFD showed an 8.5fold

higher hepatic lipid droplet number than CD males (n=5,

p=0.025), while in females, hepatic lipid droplet number was

similar between CD and FFD-fed mice (Supplementary Figure S3G).

The size of hepatic lipid droplets was not significantly different

between CD-fed and FFD-fed mice after 16 weeks (Figure 2G). After

24 weeks, FFD-fed mice of both sexes showed larger hepatic lipid

droplets (males 5.4 ± 0.5 µm compared to 3.1 ± 0.5 µm, n=5; p=0.0004,

females 4.9 ± 1.0 µm compared to 3.2 ± 0.5 µm, n=6, p=0.0023)

compared to the respective CD-fed mice (Supplementary Figure S3H).
3.3 FFD feeding promotes signs of fibrosis
only in male mouse livers

Given the increased amount of hepatic lipids and significantly

higher ALAT serum levels in male FFD-fed mice, we next examined

the extent of collagen deposition as a measure for profibrotic changes

at 16 and 24 weeks.We did not see picrosirius red (PSR) staining after

16 weeks (data not shown), but found more PSR positive areas in

livers of male FFD-fed mice compared to CD-fed mice after 24 weeks.

Quantification of staining suggested a higher amount of collagen

deposition in livers of FFD-fed male mice compared to either FFD-

fed females or CD-fed mice, however with a large phenotypic

variation (FFD males: 2.1 ± 0.7, n=6, vs. FFD females: 0.2 ± 0.1,

p<0.0001, Figure 3A). There were no obvious PSR positive areas in

livers from female mice on either diet or CD fed mice (Figure 3B).

This finding was supported by significantly increased hepatic collagen

I (Col1a1) expression in male FFD-fed mice, which was detected

already after 16 weeks compared to CD-fed males (5.2fold, n=6,

p=0.0108, Figure 3C) and FFD-fed females (3.2fold, n=5, p=0.0438;

Figure 3C). The same was seen at 24 weeks with livers of FFD-fed

males showing a 7-fold higher Col1a1 expression compared to CD-

fed males (n=5-6, p=0.0050, Supplementary Figure S5A) and 2.9fold

higher compared to FFD-fed females (n=5 - 6, p=0.0365,

Supplementary Figure S5A).

We then asked what factors could contribute to increased

collagen synthesis and measured the mRNA expression of

transforming growth factor beta 1 (Tgfb1), which we hypothesized

to be higher in livers of FFD-fed mice. In fact, at 16 weeks FFD

feeding was associated with an increase in Tgfb1 expression in male

mouse livers compared to male CD-fed mice (2.4fold, n=5-6,

p=0.0095) and to female FFD-fed mice (2fold, n=5-6, p=0.0187,

Figure 3D). At 24 weeks, livers of male FFD-fed mice showed the

highest Tgfb1 expression (4fold higher in comparison to male CD,

n=6, p=0.0315, Supplementary Figure S4B), but no significant

difference to FFD-fed females (Supplementary Figure S4B). It is

interesting to note that hepatic Tgfb1 expression in female mice

hardly changed, regardless of diet or time point. Gene expression of
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FIGURE 2

Fast food diet (FFD) was associated with progressive accumulation of lipids compared to control diet (CD) in male mouse livers. (A) At 16 weeks,
weight of liver per body weight was higher for males on FFD compared to CD males (1.6fold, p<0.0001) and FFD females (1.3fold, p=0.0055).
(B) Representative micrographs of male (upper) and female (lower) paraffin-embedded, hematoxylin/eosin stained mouse liver sections (100x
magnification, scale bar 500 µm) at 16 weeks on CD (left) or FFD (right). (C) At 16 weeks, percentage of hepatic steatosis was higher in FFD males
compared to CD males (3fold, p=0.0157) and showed a trend towards higher values in female livers (4.8fold, p=0.0958). (D) At 16 weeks, alanine
aminotransferase (ALAT) was higher in male FFD compared to CD mice (4.7fold, p=0.0262). (E) Lipid droplet content in male and female mouse
livers detected by Oil Red O staining at 16 and 24 weeks of CD or FFD feeding. Representative images for each time point, sex and diet are shown
(magnification 100x, scale bar 500µm). Quantification of (F) lipid droplet number and (G) lipid droplet size after 16 weeks. Lipid droplet number was
higher in livers from male FFD compared to CD mice (4.1fold, p=0.026). Data are presented as mean ± SD, points represent 3-7 mice per group,
differences <0.05 were considered significant as determined by two-way analyses of variance (ANOVA) with subsequent Tukey´s multiple
comparisons post hoc test.
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FIGURE 3

Livers from male fast food diet (FFD)-fed mice showed profibrotic changes and gene expression differences compared to FFD females and control
diet (CD)-fed males. (A) Densitometric quantification of picrosirius red (PSR)-positive areas at 24 weeks showed more PSR-positive stained liver
tissue in FFD males compared to CD males (8.1fold, p<0.0001) or to FFD females (13fold, p<0.0001). (B) Representative images of PSR- stained liver
sections from male (upper) and female (lower) mice on CD (left) or FFD (right) for 24 weeks (magnification 200x, scale bar 200 µm). Hepatic gene
expression was analyzed at 16 weeks on CD or FFD of (C) collagen I (Col1a1) and (D) transforming growth factor beta 1 (Tgfb1). Col1A1 and Tgfb1
were increased in FFD males compared to CD males (Col1A1: 5.2fold, p=0.0108; Tgfb1:2.4fold, p=0.0095) and to FFD females (Col1A1: 3.2fold,
p=0.0438; Tgfb1:2fold, p=0.0187). Gene expression of estrogen receptor a (Esr1) after (E) 16 and (F) 24 weeks. At 16 weeks, Esr1 expression was
6fold higher in female mouse livers regardless of diet. At 24 weeks, Esr1 expression in livers from female CD mice was 4.7fold (p=0.0003) and from
female FFD mice 4.6fold (p=0.0108) increased compared to livers from male mice on the respective diet. Gene expression of estrogen receptor b
(Esr2) after (G) 16 and (H) 24 weeks. Hepatic expression of Esr2 was similar in all groups after 16 weeks. At 24 weeks, Esr2 expression was higher in
male FFD-fed compared to CD-fed mice (2.4fold, p=0.0134). Data are shown as mean fold changes ± SD related to expression values in CD male
mice, with points indicating 4-7 mice per group. Cyclophilin b (Ppib) or hypoxanthine phosphoribosyltransferase (Hprt) were used as housekeeping
genes. Statistical significance was defined as p<0.05 and tested by one sample t-test.
Frontiers in Endocrinology frontiersin.org07

https://doi.org/10.3389/fendo.2025.1567573
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Meyer et al. 10.3389/fendo.2025.1567573
the gluconeogenic enzyme phosphoenolpyruvate carboxykinase

(Pepck, Supplementary Figure S5C) and glucose-6-phosphate

dehydrogenase (G6pdh, Supplementary Figure S5D), involved in

the pentose phosphate pathway, was higher in livers of male FFD-

fed compared to CD-fed male mice after 16 weeks, with a significant

difference for Pepck expression (1.8fold, n=6, p=0.0128) and a trend

towards significantly different Pepck expression compared to female

FFD mice (Supplementary Figure S5C).

Because estradiol levels are obviously different between male

and female mice and estradiol is known as a factor protecting from

metabolic liver disease, we analyze estrogen receptors alpha (Esr1)

and beta (Esr2) gene expression. Esr1 and Esr2 had different

expression patterns (Figures 3E-H). At 16 weeks, female livers

presented 4fold higher Esr1 expression compared to male livers

after CD (n=5-6, p=0.0003, Figure 3E) or FFD-feeding (n=5,

p=0.0021, Figure 3E). At 24 weeks, hepatic Esr1 expression in

female mice was 4.7fold higher compared to males (CD, n=4-6,

p=0.0003; FFD, n=5-6, p=0.0108; Figure 3F), but we saw a trend

towards higher hepatic Esr1 expression in female CD-fed mice

compared to FFD-fed females (1.6fold higher in CD vs. FFD, n=4,5,

p=0.0893). Hepatic Esr2 expression was similar in all conditions at

16 weeks (Figure 3G). After 24 weeks, livers from male FFD mice

demonstrated a higher Esr2 expression compared to CD males

(2.4fold, n=5, p=0.0134, Figure 3H).
4 Discussion

Both the prevalence and incidence of MASLD are increasing

dramatically worldwide, reaching epidemic proportions with its

onset occurring at younger ages in recent years (28–31). MASLD is

now the second leading indication for liver transplantation (32) and

accounts for an increasing proportion of hepatocellular carcinoma

(33). The need to understand underlying pathomechanisms is

therefore very considerable and medically significant.

According to the World Health Organization, the main reason

for this dramatic trend in MASLD and Metabolic Dysfunction-

associated Steatohepatitis (MASH) is the rising prevalence of

obesity worldwide (34), which is partly due to increased food

intake and a sedentary lifestyle (35). However, it should be noted

that there are sex-specific differences. MASLD mainly and

increasingly affects adult men (17, 36). Generally, women of

fertile age have a lower risk of MASLD than men, while this

protection is lost after menopause, when women have a MASLD

prevalence comparable to men (14, 37). The underlying causes are

still not fully understood. To learn more about this sexual

dimorphism in diet-induced hepatic fibrosis development of

MASLD we used a mouse model of metabolic liver disease

induced by a “fast food diet” (FFD) high in saturated fat, fructose

and cholesterol that was described to induce profibrotic changes

and hepatocyte damage in murine liver (22). We compared the

phenotype of male with that of female mice and found key
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differences in fat distribution, gene expression and fibrosis

development. Of note, in the original study (22), both male and

female mice were included in each experimental group without

mentioning sex-dependent differences in phenotype.

As expected, both male and female mice on FFD gained more

weight over the course of the study than mice on CD, with a bigger

increase in male compared to female mice on FFD, as has previously

been shown in other studies (14, 22, 38). Checking WAT depot

mass at two time points during MASLD development, we could

show that, in contrast to males, female mice on FFD primarily

showed an increase in subcutaneous and, subsequently, visceral

white adipose tissue (WAT) depots. Sex differences in fat deposition

and mobilization in adipose tissue have previously been described

in mice (39) and humans (40–42), with predominant lipid

accumulation in subcutaneous WAT in females and visceral

WAT in males. Interestingly, adipose tissue of the visceral WAT

compartment contributes more to hepatic fatty acid uptake than

subcutaneous WAT because of its anatomical position (43).

We also found sex-dependent differences in hepatic lipid

accumulation, with male mice having bigger livers with a higher

percentage of steatosis and more lipid droplets already after 16

weeks on FFD. While they did not quite reach the liver/body weight

ratio reported by Charlton et al. (7.1 ± 1.3 vs. 8.5), male FFD-fed

mice in our study also did not accumulate substantially more

hepatic lipids at 24 (7.1 ± 1.3) than at 16 weeks (6.6 ± 1.4). In

contrast, female FFD-fed mice reached a higher liver/body weight

ratio than CD-fed only at 24 weeks, pointing to a delayed storage of

lipids in the liver. This delay of adverse effects of FFD in females was

also seen when checking serum levels of ALAT and number of lipid

droplets. Large lipid droplets are a hallmark of steatosis (44, 45)

There is evidence that the accumulation of lipids in the liver is

linked to liver fibrosis, inflammation, apoptosis and cancer (11, 46).

Blood glucose levels during GTT were strikingly lower in CD-fed

female mice compared to the other groups at 16 weeks, pointing to a

faster glucose metabolism and mirroring the lower overall fat mass

as well as visceral fat per body weight in CD-fed females. This

difference was lost completely at 24 weeks, when glucose tolerance

was similar between all groups regardless of diet or sex. In contrast,

Charlton et al. observed a significant higher blood glucose level after

weeks on fast food vs. control diet or a high fat diet, indicating a

bigger impact of fast food diet on glucose metabolism than in our

study. Other differences included a higher level of ASAT and higher

expression of myofibroblast activation marker anti-smooth muscle

actin (ASMA, data not shown) (22), for both parameters we did not

detect differences. There are several potential reasons for these

differences in phenotype, such as different mouse strains (C57/B6J

vs. C57/B6NCrl) and different animal facility (47), which was

shown to exerts a mayor influence on mouse phenotypes (47, 48).

Tgf b has been recognized as a key molecular regulator in

hepatic fibrosis. Its fibrogenic effects are mainly associated with

hepatic stellate cell (HSC) activation and the production of

extracellular matrix (ECM) protein, e.g. collagen (11). Moreover,
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Tgf b signaling in hepatocytes under metabolic stress mediates

hepatocyte death and lipid accumulation (49, 50), which are

processes leading to the development of steatohepatitis (50).

Our study revealed that in contrast to fat accumulation, Tgfb1

and Col1a1 expression increased over time in male livers, suggesting

that fibrosis was exacerbated with prolonged FFD feeding. This

points to a sex difference in fibrosis development, as we did not

observe these gene expression changes in the female mouse livers.

Previous studies have shown that estradiol prevented reactive

oxygen species and Tgfb1 production in cultured rat HSC (51).

Interestingly, another study showed that the fibrogenic genes, Tgfb1

and Col1a1, were upregulated in the livers of female ovariectomized

and high-fat/high-cholesterol-fed mice (20). Estradiol and its

derivatives were previously shown to be potent endogenous

antioxidants that reduce lipid peroxide levels, are linked to fat

metabolism in the liver (52, 53) and associated with sex-specific

differences in fibrosis development (14, 36, 54).

Because hepatic estrogen receptors (Er) a and/or b mediate

estrogen action (54), we asked whether the expression of these

receptors shows sex-dependent differences in mouse livers, which

could provide an explanation for the previously observed sex-specific

differences in fibrosis development. A recent rodent study revealed

that Er a, but not Er b, plays an essential role together with

peroxisome proliferator-activated receptor-g coactivator 1 a
(Pgc1a). Expression of Pgc1a was shown to be inversely correlated

with liver fat and MASLD severity. Er a partnering with Pgc1a is

associated with a reduction of oxidative stress damage and impairs

the transition from steatosis to severe steatohepatitis (55).

Furthermore, Esr1 knockout mice develop hepatic steatosis more

often than their wild-type controls as a consequence of the increased

expression of genes involved in de novo lipogenesis (18, 56). Similar

protective effects of Er a were also found in other studies (57–59). In

contrast to these studies, hepatic Er a was shown to be not required

for the protection against FFD-induced hepatic steatosis in female

mice and did not mediate sexual dimorphism in liver mitochondria

function (60). Er b expression was found to be favorable in different

animal models of liver injury (61, 62) mainly acting through

suppression of hepatic stellate cell activation (63).

In our study, Esr1 and Esr2mRNA levels encoding for Er a and

b, respectively, were similar in livers from 16-week-old male mice,

but differed in female livers, with a higher expression of Esr1 in

female mouse livers at 16 weeks, which was, however, not

dependent on diet. High hepatic Esr1 expression was also

reported in other studies, where normal rat livers primarily

express Esr1 with low levels of Esr2 (64). Interestingly, in our

study, expression of Esr2 was doubled in male livers from FFD-

fed mice after 24 weeks, while there was a trend towards higher Esr2

expression, but no significant changes in Esr1 expression in female

livers. This could suggest a compensatory upregulation of hepatic

Esr2 in males to prevent further damage after prolonged FFD.

In humans, the occurrence of MASLD was found to be higher

in menopausal and postmenopausal than in premenopausal

women (36) . Bes ides , ovar ian senescence , v ia hypo-

estrogenemia, facilitates both the development of massive

hepatic steatosis and the fibrotic progression of liver disease
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(65). The creation of novel medications based on the protective

effects of estrogens could provide new therapeutic strategies for

the treatment of MASLD (66). Our results support this proposed

concept and additionally point specifically to Er b as potential

target for novel MASLD treatment options.

In summary, we found that a diet high in fat, fructose and

cholesterol led to an increased fat accumulation and an

upregulation of profibrotic factors in livers of male mice, while

female mice appeared to store excess fat mainly in subcutaneous

and visceral adipose tissue depots. We also saw a diet- and time-

associated change in expression patterns of estrogen receptors

which was more pronounced in male mouse livers. Female mice

seemed to be protected against these profibrotic changes.
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nonalcoholic fatty liver disease: estrogen influence on the liver-adipose tissue crosstalk.
Antioxid Redox Signaling. (2021) 35:753–74. doi: 10.1089/ars.2021.0044
frontiersin.org

https://doi.org/10.1016/j.ab.2013.10.001
https://doi.org/10.1016/j.jceh.2019.01.007
https://doi.org/10.1016/j.jceh.2019.01.007
https://doi.org/10.1016/j.jceh.2019.05.001
https://doi.org/10.1016/j.jceh.2019.05.001
https://doi.org/10.1136/bmjopen-2020-042843
https://doi.org/10.1136/bmjopen-2020-042843
https://doi.org/10.3350/cmh.2024.0431
https://doi.org/10.1053/j.gastro.2014.11.039
https://doi.org/10.1002/hep.28123
https://doi.org/10.1016/S0140-6736(10)62037-5
https://doi.org/10.1038/nrgastro.2013.41
https://doi.org/10.1007/s12325-017-0556-1
https://doi.org/10.1016/j.cgh.2020.04.067
https://doi.org/10.1016/j.cgh.2020.04.067
https://doi.org/10.1002/path.4829
https://doi.org/10.1002/path.4829
https://doi.org/10.7554/eLife.88080
https://doi.org/10.1016/j.mce.2014.11.029
https://doi.org/10.2337/db05-1439
https://doi.org/10.1152/ajpendo.00268.2002
https://doi.org/10.1152/ajpendo.00268.2002
https://doi.org/10.1172/JCI21047
https://doi.org/10.1186/s12944-017-0521-7
https://doi.org/10.1038/nrgastro.2017.32
https://doi.org/10.1007/s00441-011-1246-y
https://doi.org/10.7554/eLife.53560
https://doi.org/10.1371/journal.pbio.3001837
https://doi.org/10.1371/journal.pone.0045285
https://doi.org/10.1371/journal.pone.0045285
https://doi.org/10.1002/hep.26698
https://doi.org/10.1136/gut.2005.053278
https://doi.org/10.3164/jcbn.3.233
https://doi.org/10.3390/cells10092502
https://doi.org/10.3748/wjg.v13.i32.4295
https://doi.org/10.1053/j.gastro.2016.09.017
https://doi.org/10.1038/sj.ijo.0803014
https://doi.org/10.1007/978-3-319-70178-3_28
https://doi.org/10.1007/978-3-319-70178-3_28
https://doi.org/10.1016/j.molmet.2018.02.012
https://doi.org/10.1016/j.molmet.2018.05.008
https://doi.org/10.1016/j.molmet.2018.05.008
https://doi.org/10.1210/jendso/bvad053
https://doi.org/10.1038/s41598-023-37007-1
https://doi.org/10.1006/bbrc.2001.5479
https://doi.org/10.1186/s40360-022-00617-y
https://doi.org/10.1111/jgh.13976
https://doi.org/10.1242/dmm.019950
https://doi.org/10.1089/ars.2021.0044
https://doi.org/10.3389/fendo.2025.1567573
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Sex differences in diet-induced MASLD – are female mice naturally protected?
	1 Introduction
	2 Materials and methods
	2.1 Chemicals and Reagents
	2.2 Animal experiments
	2.3 Laboratory analyses
	2.4 Histological analyses
	2.5 Gene expression analysis
	2.6 Statistical analysis

	3 Results
	3.1 Female FFD-fed mice stored more fat in adipose tissue depots than males
	3.2 Fast food diet causes lipid accumulation mainly in livers of male mice
	3.3 FFD feeding promotes signs of fibrosis only in male mouse livers

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


