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Purpose: The estimated glucose disposal rate (eGDR) is a simple and noninvasive

clinical measure used to assess insulin resistance (IR), yet its potential utility as a

marker for hyperuricemia risk had not been systematically evaluated. This study

aimed to investigate the relationship between eGDR and hyperuricemia risk

among American adults.

Methods:Data for this cross-sectional study were obtained from the 2007–2018

National Health and Nutrition Examination Survey (NHANES). Hyperuricemia was

identified as a serum urate (SU) concentration of ≥7 mg/dL in males and ≥6 mg/

dL in females. The relationship between eGDR and hyperuricemia risk was

assessed using multivariate logistic regression and restricted cubic spline (RCS)

methods, with additional subgroup and interaction analyses performed.

Results: With increasing eGDR values, the prevalence of hyperuricemia

decreased significantly (29.93% vs. 19.11% vs. 13.20% vs. 5.03%, P<0.001).

Multivariate logistic regression indicated that eGDR was independently

associated with the risk of hyperuricemia after controlling for covariates

including demographic, lifestyle, and clinical factors (OR=0.93, 95%CI: 0.90-

0.96, P<0.001). RCS analysis further revealed a nonlinear relationship, with a

turning point at eGDR 7.96 mg/kg/min. Subgroup analysis revealed a stronger

inverse association between eGDR and hyperuricemia risk in females.

Conclusions: The eGDR is inversely associated with hyperuricemia and appears

to be a promising epidemiological tool for evaluating the impact of IR on the risk

of hyperuricemia.
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1 Introduction

Hyperuricemia, characterized by abnormally high uric acid

levels in the blood, is a common chronic metabolic condition (1).

It serves as a key factor in the development of gout (a very painful

long-term systemic inflammatory arthritis caused by the deposition

of monosodium urate crystal) (2, 3) and has been increasingly

associated with conditions such as diabetes, metabolic syndrome,

cardiovascular diseases, and higher mortality rates (4–6). In recent

years, the global rise in hyperuricemia cases has placed a

considerable burden on healthcare systems and economies (7).

Insulin resistance (IR) is an important pathophysiological risk

factor for hyperuricemia (8). IR, with consequent compensatory

hyperinsulinemia, can disrupt uric acid homeostasis by altering

renal urate excretion and potentially increasing de novo uric acid

production (8, 9). The hyperinsulinemic-euglycemic clamp remains

the most reliable method for measuring insulin resistance; however,

its use in large-scale epidemiological studies is constrained by the

complexity and time requirements of the procedure (10). The

estimated glucose disposal rate (eGDR) is a clinical parameter-

based index for evaluating insulin sensitivity (11). Initially

developed for type 1 diabetes (T1DM) patients, it incorporates

variables such as waist circumference (WC), glycated hemoglobin

(HbA1c), and hypertension status (12, 13). Moreover, the

recognition exists that these individual risk factors (including

central obesity, hypertension, and inflammatory states), integral

to the eGDR and often co-manifesting, are capable of

mechanistically altering the intricate dynamics between glucose

regulation and uric acid levels by exacerbating overall metabolic

dysregulation. Lower eGDR values indicate poorer insulin

sensitivity and greater IR. Compared with traditional methods

such as the homeostasis model assessment of insulin resistance

(HOMA-IR) and the triglyceride-glucose (TyG) index, eGDR

demonstrates superior performance, is simpler to use, does not

require fasting blood samples, and is particularly well-suited for

large-scale studies (14, 15). Recently, research has shown that eGDR

effectively reflects IR and is strongly linked to metabolic syndrome,

cardiovascular diseases, and diabetes complications (11, 16–19).

Although IR is a well-established correlate of hyperuricemia

with multiple established measurement indices, a notable research

gap persists regarding the eGDR. The potential value of eGDR as a

simple, non-fasting metric requiring only basic clinical parameters-

which could serve as a robust insulin sensitivity marker particularly

advantageous for large-scale epidemiological studies and

hyperuricemia risk stratification in diverse populations-remains

insufficiently investigated. Given the absence of studies on eGDR

and hyperuricemia risk, our research, utilizing the National Health

and Nutrition Examination Survey (NHANES) data, examine this

relationship in the U.S. population. We predict that increased eGDR

values are associated with a reduced risk of hyperuricemia.
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2 Materials and methods

2.1 Study population

Data for this study were drawn from NHANES, a survey

conducted by the National Center for Health Statistics at the

Centers for Disease Control and Prevention (CDC). The survey

used a stratified, randomized, multi-stage sampling approach to

ensure a nationally representative sample. Participants underwent

physical examinations, completed health and nutrition surveys, and

participated in laboratory tests. The NHANES protocol was

reviewed and approved by the Ethics Review Board of the

National Center for Health Statistics (NCHS), and written

informed consent was collected from all participants. Detailed

methodologies and datasets are available at https://wwwn.cdc.gov/

nchs/nhanes/. The NHANES cycles from 2007 to 2018, comprising

59842 participants, were utilized in this study, with exclusions

applied to individuals under 20, pregnant women, and those

lacking complete eGDR and uric acid data, resulting in

29328 participants.
2.2 Definition of eGDR and hyperuricemia

The eGDR (mg/kg/min) is estimated using the formula:

eGDR = 21.158 − (0.09 × WC) − (3.407 × HTN) − (0.551 ×

HbA1c) (13, 20). In this equation, WC represents waist

circumference in centimeters, HTN indicates hypertension status

(1 = yes, 0 = no), and HbA1c refers to glycated hemoglobin (%).

Hyperuricemia is determined by serum urate (SU) levels of 7 mg/dL

or more in men and 6 mg/dL or more in women (21).
2.3 Assessment of covariates

In this study, covariates included demographic characteristics

(age, gender, and race), socio-economic factors (marital status,

income, and education), smoking history, alcohol consumption,

diuretics use, health conditions (hypertension, diabetes,

cardiovascular disease, chronic kidney disease, and gout), and other

indicators such as body mass index (BMI), WC, HbA1c, triglycerides

(TG), total cholesterol (TC), high-density lipoprotein cholesterol

(HDL-c), and low-density lipoprotein cholesterol (LDL-c). Smoking

history encompasses both current and former smoking. Alcohol

consumption was determined having consumed at least 12

alcoholic drinks in the past year. Use of diuretics was determined

based on responses to the question: “During the past 30 days, have

you used or taken any prescription medications?”. Diagnosis of

chronic kidney disease was determined by an estimated glomerular

filtration rate (eGFR) below 60 mL/min/1.73 m² and/or a urine
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albumin-to-creatinine ratio (UACR) of 30 mg/g or more. The eGFR

was calculated using the Chronic Kidney Disease Epidemiology

Collaboration (CKD-EPI) equation, which incorporates age,

gender, race, and serum creatinine (Scr) levels (22). Diabetes was

diagnosed based on a self-reported history, fasting plasma glucose

(FPG) levels of ≥7.0 mmol/L, HbA1c levels of ≥6.5%, or the use of

antidiabetic drugs. Hypertension was defined as a self-reported

history, systolic blood pressure (SBP) ≥140 mmHg, diastolic blood

pressure (DBP) ≥90 mmHg, or the use of antihypertensive

medications. Cardiovascular diseases were identified through

participants’ self-reported histories of heart attacks, strokes, heart

failure, coronary artery disease, or angina. The presence of gout was

established through the question: “Has a doctor or other health

professional ever told you that you have gout?”. Full methodological

details for each variable analyzed in this research are publicly accessible

via the NHANES database (https://wwwn.cdc.gov/nchs/nhanes/).
2.4 Statistical analysis

In accordance with CDC guidelines, statistical analyses utilized a

complex multistage cluster survey design and incorporated sampling

weights. Continuous variables were presented as means with 95%

confidence intervals (CIs), while categorical variables were

summarized as percentages with 95% CIs. Weighted Student’s t-tests

and chi-squared tests were used to evaluate group differences in

continuous and categorical variables, respectively. Logistic and linear

regression models were applied to investigate the relationships between

eGDR and hyperuricemia or SU levels. To assess potential nonlinear

associations between eGDR and hyperuricemia risk, restricted cubic

spline (RCS) regressionwith four knots was performed, with themedian

value as the reference point. A two-piecewise regression model was

employed to identify intervals, and the Log-likelihood ratio test was used

to evaluate the presence of a threshold effect. Subgroup analyses were

carried out based on covariate stratification, with the other covariates

being adjusted for. Receiver operating characteristic (ROC) curve

analysis and decision curve analysis (DCA) were employed to

compare the classification accuracy and clinical utility of eGDR with

those of other alternative indicators. Statistical analyses in this research

we r e pe r f o rmed us ing Empower so f twa r e ( h t t p : / /

www.empowerstats.com) and R software (http://www.R-

project.org), with a two-sided P value < 0.05 considered

statistically significant.
3 Results

3.1 Baseline characteristics of study
population.

The study population consisted of 29328 participants with a

mean age of 47.49 years. The racial composition included 8.64%

Mexican Americans, 10.53% Non-Hispanic Blacks, 66.94% Non-

Hispanic Whites, 5.90% Other Hispanics, and 7.98% from other

racial groups. A weighted analysis was performed to evaluate the
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general and clinical characteristics of participants with and without

hyperuricemia (Table 1). The results showed that individuals with

hyperuricemia were generally older, predominantly male, more

likely to smoke and consume alcohol, and more frequently used

diuretics (P<0.01). They also had higher prevalence rates of

diabetes, hypertension, chronic kidney disease, cardiovascular

disease, gout, as well as elevated BMI, WC, HbA1c, TG, TC, and

LDL-c levels (P<0.001). Additionally, they were found to have lower
educational attainment and reduced HDL-c levels (P<0.01).
Furthermore, eGDR levels were significantly reduced in the

hyperuricemia group compared to the non-hyperuricemia

group (P<0.001).
3.2 Baseline characteristics of four different
quartiles (1-4) based on increasing eGDR
values.

Participants were classified into four groups based on eGDR

quartiles (Table 2). Compared to those in the lowest quartile,

individuals in the higher quartiles were younger, more likely to be

female and drinkers, and had lower rates of smoking, diuretic use,

diabetes, hypertension, chronic kidney disease, cardiovascular

disease, and gout (P<0.001). They also tended to have higher

levels of education and a greater PIR (poverty income ratio)

(P<0.001). Significant reductions were noted in BMI, WC,

HbA1c, TG, TC, and LDL-c levels, while HDL-c levels were

significantly higher (P<0.001). Race distribution also differed

significantly (P<0.001). SU levels and hyperuricemia prevalence

decreased with rising eGDR levels which is in agreement with the

previous report (23) (P<0.001).
3.3 Analyzing the relationship between
eGDR and hyperuricemia or SU levels using
Logistic and Linear regression analysis.

Our findings demonstrate a significant negative association

between elevated eGDR levels and hyperuricemia, which persists

across models 1 (OR=0.78, 95%CI: 0.78-0.79, P<0.001), 2

(OR=0.79, 95%CI: 0.78-0.80, P<0.001), and 3 (OR=0.93, 95%CI:

0.90-0.96, P<0.001) (Table 3). Further stratification by eGDR

quartiles, using the lowest quartile as a reference, shows that

individuals in the highest quartile also have a lower risk of

hyperuricemia in the fully adjusted model (OR=0.49, 95%CI:

0.38-0.63, P<0.001). The analysis of SU levels as the dependent

variable and eGDR levels as the independent variable through linear

regression also demonstrates a negative relationship between them

(b=-1.19, 95%CI: -1.98–0.39, P=0.003) (Table 4).
3.3 RCS analysis

RCS analysis to assess non-linearity in the relationship between

eGDR and hyperuricemia (Figure 1). The threshold effect analysis
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shows that the inflection point for eGDR levels is 7.66 mg/kg/min,

with a more pronounced relationship on the right side (OR=0.76,

95%CI: 0.71-0.82, P<0.001) compared to the left side (OR=1.02,

95%CI: 0.98-1.06, P=0.395) (Table 5).
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3.4 Subgroup analyses

In analyses stratified by variables such as age (<60/≥60 years),

gender (female/male), race (Mexican American/Non-Hispanic
TABLE 1 Baseline characteristics of study population, weighted.

Characteristics Overall (n=29328)
Non-hyperuricemia

(n=24359)
Hyperuricemia

(n=4969)
P value

Age (years) 47.49 (47.04, 47.94) 46.93 (46.46, 47.41) 50.39 (49.75, 51.02) <0.001

Gender <0.001

Female 50.90 (50.28, 51.51) 54.65 (53.98, 55.33) 31.18 (29.56, 32.85)

Male 49.10 (48.49, 49.72) 45.35 (44.67, 46.02) 68.82 (67.15, 70.44)

Race (%) <0.001

Mexican American 8.64 (7.25, 10.28) 9.00 (7.56, 10.68) 6.77 (5.45, 8.38)

Non-Hispanic Black 10.53 (9.22, 12.01) 10.21 (8.96, 11.62) 12.21 (10.43, 14.25)

Non-Hispanic White 66.94 (64.10, 69.66) 66.64 (63.77, 69.39) 68.51 (65.37, 71.48)

Other Hispanic 5.90 (5.00, 6.96) 6.18 (5.22, 7.29) 4.48 (3.72, 5.38)

Other Races 7.98 (7.15, 8.90) 7.97 (7.12, 8.91) 8.04 (6.95, 9.28)

PIR (%) 0.193

<=1.3 21.62 (20.32, 22.96) 21.77 (20.41, 23.19) 20.81 (19.36, 22.33)

>1.3, <=3.5 35.41 (34.11, 36.73) 35.14 (33.76, 36.55) 36.83 (34.87, 38.83)

>3.5 42.98 (40.96, 45.02) 43.09 (41.00, 45.21) 42.36 (39.71, 45.06)

Education level (above high
school) (%)

61.45 (59.62, 63.24) 61.94 (60.06, 63.78) 58.88 (56.32, 61.39) 0.006

Smoking history (%) 44.47 (43.28, 45.67) 43.63 (42.30, 44.97) 48.88 (46.96, 50.80) <0.001

Alcohol consumption (%) 80.56 (79.38, 81.68) 80.17 (78.92, 81.36) 82.59 (81.00, 84.07) 0.002

Diabetes (%) 12.79 (12.24, 13.36) 11.66 (11.08, 12.26) 18.72 (17.35, 20.18) <0.001

Hypertension (%) 36.74 (35.71, 37.77) 33.07 (32.00, 34.16) 56.00 (54.12, 57.86) <0.001

Chronic kidney disease (%) 13.81 (13.21, 14.43) 11.45 (10.89, 12.03) 26.29 (24.60, 28.04) <0.001

Cardiovascular disease (%) 8.27 (7.81, 8.76) 7.30 (6.82, 7.81) 13.38 (11.98, 14.90) <0.001

Gout (%) 3.95 (3.63, 4.31) 2.73 (2.45, 3.04) 10.38 (9.24, 11.65) <0.001

Diuretics (%) 6.94 (6.52, 7.38) 5.12 (4.76, 5.50) 16.51 (15.23, 17.87) <0.001

BMI (kg/m2) 29.00 (28.84, 29.17) 28.38 (28.21, 28.55) 32.31 (31.99, 32.62) <0.001

WC (cm) 99.34 (98.90, 99.78) 97.53 (97.08, 97.97) 108.85 (108.08, 109.62) <0.001

HbA1c (%) 5.64 (5.62, 5.65) 5.61 (5.59, 5.63) 5.76 (5.72, 5.79) <0.001

TG (mmol/L) 1.40 (1.37, 1.43) 1.32 (1.29, 1.35) 1.78 (1.71, 1.86) <0.001

TC (mmol/L) 4.99 (4.97, 5.02) 4.97 (4.95, 5.00) 5.11 (5.06, 5.16) <0.001

LDL-c (mmol/L) 2.94 (2.92, 2.97) 2.93 (2.91, 2.95) 3.02 (2.96, 3.07) 0.003

HDL-c (mmol/L) 1.38 (1.37, 1.39) 1.41 (1.39, 1.42) 1.24 (1.22, 1.25) <0.001

eGDR (mg/kg/min) 7.86 (7.79, 7.93) 8.16 (8.09, 8.24) 6.28 (6.17, 6.40) <0.001
Weighted analyses to evaluate the general and clinical characteristics of participants with and without hyperuricemia.
PIR, poverty income ratio; BMI, body mass index; WC, waist circumference; HbA1c, glycated hemoglobin; TG, triglycerides; TC, total cholesterol; LDL-c, low-density lipoprotein cholesterol;
HDL-c, high-density lipoprotein cholesterol; eGDR, estimated glucose disposal rate.
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Black/Non-Hispanic White/Other Hispanic/Other Races), BMI

(≤25/25-30/>30 kg/m2), diabetes (yes/no), cardiovascular disease

(yes/no), and chronic kidney disease (yes/no), the association

between eGDR and hyperuricemia risk was significantly stronger
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in females (OR=0.87, 95%CI: 0.82-0.91) than in males (OR=0.97,

95%CI: 0.93-1.01) (P for interaction=0.001)(Figure 2). Across other

subgroups, the relationship showed no significant variation (P for

interaction > 0.05).
TABLE 2 Baseline characteristics of four eGDR quartiles (increasing order, 1-4), weighted.

Characteristics Quartile 1 Quartile 2 Quartile 3 Quartile 4 P value

Age (years) 56.73 (56.25, 57.21) 53.20 (52.57, 53.83) 45.06 (44.51, 45.62) 37.70 (37.11, 38.28) <0.001

Gender <0.001

Female 44.88 (43.24, 46.53) 51.93 (50.47, 53.38) 44.39 (42.95, 45.84) 61.07 (59.59, 62.52)

Male 55.12 (53.47, 56.76) 48.07 (46.62, 49.53) 55.61 (54.16, 57.05) 38.93 (37.48, 40.41)

Race (%) <0.001

Mexican American 7.13 (5.70, 8.89) 7.49 (6.12, 9.12) 11.87 (9.91, 14.15) 7.70 (6.54, 9.05)

Non-Hispanic Black 14.01 (11.92, 16.39) 11.44 (9.96, 13.11) 8.35 (7.23, 9.64) 9.12 (7.99, 10.40)

Non-Hispanic White 68.99 (65.55, 72.24) 68.15 (65.10, 71.06) 65.84 (62.68, 68.88) 65.35 (62.52, 68.07)

Other Hispanic 4.56 (3.67, 5.65) 5.22 (4.38, 6.22) 6.82 (5.73, 8.09) 6.67 (5.56, 7.98)

Other Races 5.32 (4.59, 6.15) 7.70 (6.64, 8.91) 7.12 (6.14, 8.24) 11.16 (9.82, 12.64)

Married (%) 58.82 (56.92, 60.70) 56.96 (55.18, 58.73) 59.01 (57.03, 60.96) 48.60 (46.49, 50.72) <0.001

PIR (%) <0.001

<=1.3 22.34 (20.55, 24.25) 20.74 (19.30, 22.26) 21.61 (19.96, 23.37) 21.78 (19.93, 23.75)

>1.3, <=3.5 37.55 (35.91, 39.23) 37.81 (35.84, 39.82) 34.45 (32.48, 36.48) 32.62 (30.71, 34.58)

>3.5 40.10 (37.61, 42.65) 41.45 (38.97, 43.97) 43.94 (41.11, 46.80) 45.60 (42.87, 48.36)

Education level (above high
school) (%)

55.69 (53.67, 57.70) 59.29 (56.92, 61.62) 60.13 (57.67, 62.54) 69.10 (66.78, 71.32) <0.001

Smoking history (%) 51.91 (50.27, 53.54) 47.27 (45.42, 49.13) 43.35 (41.80, 44.92) 37.31 (35.36, 39.29) <0.001

Alcohol consumption (%) 78.22 (76.64, 79.72) 78.89 (77.45, 80.27) 82.36 (80.70, 83.90) 82.19 (80.59, 83.69) <0.001

Diabetes (%) 37.17 (35.68, 38.70) 12.63 (11.58, 13.76) 5.20 (4.64, 5.81) 0.95 (0.70, 1.29) <0.001

Hypertension (%) 95.13 (94.42, 95.76) 64.70 (63.08, 66.29) 2.48 (2.07, 2.97) 0.00 (0.00, 0.00) <0.001

Chronic kidney disease (%) 27.47 (26.20, 28.79) 17.59 (16.45, 18.78) 7.33 (6.64, 8.10) 6.11 (5.46, 6.84) <0.001

Cardiovascular disease (%) 18.70 (17.48, 19.99) 11.42 (10.45, 12.47) 3.67 (3.14, 4.30) 1.80 (1.45, 2.24) <0.001

Gout (%) 9.74 (8.86, 10.70) 4.61 (3.95, 5.39) 2.22 (1.77, 2.78) 0.50 (0.36, 0.68) <0.001

Diuretics (%) 19.79 (18.56, 21.09) 9.05 (8.14, 10.05) 1.19 (0.94,1.51) 0.53 (0.34, 0.84) <0.001

BMI (kg/m2) 35.43 (35.17, 35.69) 29.84 (29.62, 30.06) 29.05 (28.91, 29.19) 23.20 (23.10, 23.29) <0.001

WC (cm) 117.09 (116.60, 117.57) 102.09 (101.58, 102.60) 99.94 (99.71, 100.18) 82.39 (82.14, 82.64) <0.001

HbA1c (%) 6.32 (6.27, 6.36) 5.67 (5.65, 5.70) 5.47 (5.45, 5.48) 5.23 (5.22, 5.24) <0.001

TG (mmol/L) 1.78 (1.71, 1.85) 1.47 (1.41, 1.52) 1.44 (1.39, 1.48) 0.98 (0.96, 1.00) <0.001

TC (mmol/L) 4.95 (4.91, 5.00) 5.11 (5.07, 5.16) 5.14 (5.10, 5.18) 4.79 (4.76, 4.82) <0.001

LDL-c (mmol/L) 2.88 (2.83, 2.92) 3.02 (2.97, 3.08) 3.11 (3.08, 3.15) 2.76 (2.73, 2.80) <0.001

HDL-c (mmol/L) 1.22 (1.21, 1.23) 1.38 (1.37, 1.40) 1.32 (1.30, 1.33) 1.56 (1.54, 1.58) <0.001

SU (mg/dL) 6.06 (6.01, 6.12) 5.59 (5.54, 5.64) 5.45 (5.40, 5.50) 4.76 (4.73, 4.80) <0.001

Hyperuricemia (%) 29.93 (28.53, 31.36) 19.11 (17.81, 20.49) 13.20 (12.07, 14.42) 5.03 (4.41, 5.75) <0.001
Participants were classified into four quartiles based on increasing eGDR from quartile 1 to quartile 4.
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3.5 ROC and DCA analyses

We evaluated eGDR in comparison with other IR surrogates,

such as the Triglyceride-Glucose index (TyG) and Homeostasis

Model Assessment of Insulin Resistance (HOMA-IR). As illustrated

in Figure 3, both ROC and DCA analyses were performed. The area

under the curves (AUCs) for eGDR, TyG, and HOMA-IR were

69.5%, 65.0%, and 64.2%, respectively, highlighting eGDR as the

most effective discriminator for hyperuricemia risk. Moreover,

DCA indicated that the eGDR model offered increased net benefit

across a broader range of threshold probabilities, reflecting its

superior clinical usefulness.
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4 Discussion

This study reports the results of our investigation about whether

the eGDR, used to assess IR, can serve as a straightforward and

noninvasive indicator of hyperuricemia. A cross-sectional analysis

of 29328 participants revealed a negative and nonlinear correlation

between the eGDR and the risk of hyperuricemia.

IR and SU levels were described bidirectionally interconnected

because higher SU levels are known to adversely affect the insulin

signaling pathway causing IR while IR is a known predictor for the
FIGURE 1

The results of RCS analysis.
TABLE 5 Threshold effect analysis of eGDR on hyperuricemia risk.

Model OR (95% CI) P value

Total 0.93 (0.90, 0.96) <0.001

Breakpoint (K) 7.66

OR1 (<7.96) 1.02 (0.98, 1.06) 0.395

OR2 (>7.96) 0.76 (0.71, 0.82) <0.001

OR2/OR1 0.75 (0.69, 0.82) <0.001

P for logarithmic likelihood ratio <0.001
OR, odds ratio.
95% CI, 95% confidence interval.
adjusted for age, gender, race, marital status, PIR, education level, smoking, alcohol
consumption, diabetes, chronic kidney disease, cardiovascular disease, gout, diuretics, BMI,
TG, LDL-c, and HDL-c.
TABLE 3 Logistic regression analysis to assess relation between eGDR
and hyperuricemia.

Hyperuricemia
OR (95%CI) P value

Model 1 Model 2 Model 3

Continuous

eGDR
0.78 (0.78,
0.79) <0.001

0.79 (0.78,
0.80) <0.001

0.93 (0.90,
0.96) <0.001

Categories

Q1 reference reference reference

Q2
0.53 (0.50,
0.58) <0.001

0.54 (0.50,
0.59) <0.001

1.02 (0.88,
1.18) 0.823

Q3
0.34 (0.31,
0.37) <0.001

0.34 (0.31,
0.38) <0.001

0.75 (0.63,
0.89) 0.001

Q4
0.13 (0.11,
0.14) <0.001

0.13 (0.11,
0.15) <0.001

0.49 (0.38,
0.63) <0.001

P for trend <0.001 <0.001 <0.001
Logistic regression analyses in three different models of adjustment were performed to
investigate the relationships between eGDR and hyperuricemia.
OR, odds ratio.
95% CI, 95% confidence interval.
Model 1: non-adjusted.
Model 2: adjusted for age, gender, race, marital status, PIR, education level, smoking, and
alcohol consumption.
Model 3: adjusted for age, gender, race, marital status, PIR, education level, smoking, alcohol
consumption, diabetes, chronic kidney disease, cardiovascular disease, gout, diuretics, BMI,
TG, LDL-c, and HDL-c.
TABLE 4 Linear regression analysis to assess relation between eGDR and
SU levels.

SU
b (95%CI) P value

Model 1 Model 2 Model 3

Continuous

eGDR
-0.16 (-0.17,
-0.16) <0.001

-9.06 (-9.44,
-8.69) <0.001

-1.19 (-1.98,
-0.39) 0.003

Categories

Q1 reference reference reference

Q2
-0.50 (-0.54,
-0.45) <0.001

-25.69 (-28.27,
-23.11) <0.001

-1.35 (-5.35,
2.64) 0.506

Q3
-0.64 (-0.68,
-0.59) <0.001

-37.50 (-40.21,
-34.79) <0.001

-4.92 (-9.31,
-0.53) 0.028

Q4
-1.28 (-1.32,
-1.24) <0.001

-70.09 (-73.01,
-67.17) <0.001

-14.02 (-19.62,
-8.42) <0.001

P for trend <0.001 <0.001 <0.001
Linear regression analyses in three different models of adjustment were performed to
investigate the relationships between eGDR and SU levels.
95% CI, 95% confidence interval.
Model 1: non-adjusted.
Model 2: adjusted for age, gender, race, marital status, PIR, education level, smoking, and
alcohol consumption.
Model 3: adjusted for age, gender, race, marital status, PIR, education level, smoking, alcohol
consumption, diabetes, chronic kidney disease, cardiovascular disease, gout, diuretics, BMI,
TG, LDL-c, and HDL-c.
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development of hyperuricemia (8, 24). Renal anti-uricosuric effect

of insulin was also described preserved in states of IR in human. In

compensatory hyperinsulinemia in the state of IR a chronic anti-

uricosuric pressure on the kidney cause in hyperuricemia (25). In an

in vitro experiment, insulin was shown to stimulate urate uptake in

human proximal tubular cells (PTC-05) and HEK293T cells and in

Xenopus oocyte expression system, where insulin was shown to

stimulate urate uptake activity of urate reabsorption transporter,

glucose transporter 9 (GLUT9) (26). The eGDR, which is based on

clinical parameters, provides a practical and accurate assessment of

insulin sensitivity and resistance (27). Specifically, the three

components of eGDR reflect IR from different perspectives:

Increased WC indicates visceral fat accumulation, which can

promote the release of inflammatory factors, exacerbate IR, and

reduce renal uric acid excretion, thereby leading to elevated SU

levels (28). Hypertension is often associated with IR and may reduce
Frontiers in Endocrinology 07
uric acid clearance through renal hemodynamic alterations (29).

Elevated HbA1c reflects chronic hyperglycemia and IR, both of

which can also influence the renal tubular handling of uric acid (30).

Our study found a nonlinear association between eGDR and the

risk of hyperuricemia. When eGDR is below the threshold of 7.66,

increases in eGDR have limited impact on hyperuricemia risk.

However, once eGDR exceeds 7.66, further increases are

significantly associated with a reduced risk of hyperuricemia.

Therefore, eGDR may serve as a simple and practical screening

tool for assessing hyperuricemia risk, especially in primary care

settings where more complex measures of IR are unavailable. We

propose 7.66 as a potential cutoff value for screening purposes. Our

research also revealed that the relationship between eGDR and

hyperuricemia risk was stronger in women, potentially reflecting

their distinct physiological traits in metabolic regulation (31).

Additionally, estrogen plays a role in reducing inflammation and
FIGURE 2

The results of subgroup analysis.
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enhancing insulin sensitivity, but its decline after menopause may

worsen insulin resistance and disrupt uric acid metabolism (32–35).

Estradiol reduces the expression of urate reabsorption transporters,

including urate transporter 1 (URAT1) and GLUT9, as well as the

efflux transporter ATP-binding cassette sub-family G member 2

(ABCG2), in ovariectomized mice, regardless of hormone

replacement therapy (36). Additionally, 17-b-estradiol (E2) has

been found to decrease GLUT9 protein levels in human renal

tubular epithelial cells (HK2) through estrogen receptor b
(ERb) (37).

The interaction between IR and hyperuricemia is bidirectional,

with both conditions sharing metabolic and pathological mechanisms

that perpetuate a vicious cycle (4). Obesity, hyperglycemia, and lipid

metabolism disorders are common factors linking IR and

hyperuricemia, as they promote purine metabolism, oxidative

stress, and inflammation, leading to increased uric acid production

and decreased insulin sensitivity (38, 39). Clinical evidence showing

that allopurinol combined with standard treatment in severe Covid-

19 patients reduced oxidative and inflammatory disorders, suggesting

that lowering serum urate levels can mitigate oxidative stress (40). In

hyperuricemia, reactive oxygen species (ROS) are overproduced

during uric acid formation by xanthine oxidases. Both ROS and

intracellular uric acid can regulate multiple signaling pathways. For

instance, studies demonstrate increased ROS production during 3T3-

L1 cell differentiation into adipocytes, indicating that ROS generation

correlates with fat accumulation. Interestingly, in fully differentiated

3T3-L1 adipocytes, ROS production was markedly inhibited by

NADPH oxidase inhibitors, but not by oxypurinol, rotenone, or

thenoyltrifluoroacetone (41).

Uric acid is recognized as an important antioxidant in vivo,

capable of scavenging ROS such as hydroxyl radicals and

peroxynitrite (42, 43). However, under severe oxidative stress, its

antioxidant capacity may be overwhelmed, potentially disrupting

metabolic homeostasis. Although xanthine oxidase is a key enzyme
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in uric acid production and a known source of ROS, the relationship

between oxidative stress and xanthine oxidase activity remains

complex. Some studies indicate that oxidative stress in

hyperuricemia may occur independently of xanthine oxidase

activity (44), and clinical trials with xanthine oxidase inhibitors

(e.g., allopurinol, febuxostat) have yielded inconsistent effects on

oxidative stress-related outcomes. Therefore, further research is

needed to clarify whether oxidative stress directly disrupts uric

acid metabolism or whether their interaction involves additional

regulatory mechanisms.

However, this study has limitations. First, given the study’s

cross-sectional design, the direction of causality cannot be

ascertained, and the role of hyperuricemia in amplifying IR

cannot be ruled out. Second, although adjustments were made for

several covariates, the effects of unaccounted confounders such as

treatment with allopurinol and differences in diuretic use cannot be

entirely ruled out. Third, subgroup analyses for factors such as

diabetes types, nonalcoholic fatty liver disease (NAFLD) and

metabolic syndrome were not performed. Finally, our results,

derived from a US population sample, require further verification

to ensure their applicability to other demographic groups.
5 Conclusion

A nationally representative study among adults aged 20 years or

older identified a negative association between the eGDR and the

risk of hyperuricemia.
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