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Xiaozhen Mou1,4 and Wilson C. J. Chung1,4

1School of Biomedical Science, Kent State University, Kent, OH, United States, 2Department of
Medical Sciences, University of Adelaide, Adelaide, SA, Australia, 3Department of Anthropology, Kent
State University, Kent, OH, United States, 4Department of Biological Sciences, Kent State University,
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Cyanobacterial harmful algal blooms (cHABs) produce various cyanotoxins,

primarily microcystin leucine arginine (MC-LR). Studies demonstrated that

intraperitoneal delivery of high-dose MC-LR affects the rat stress response,

which is regulated by the hypothalamus-pituitary-adrenal (HPA) axis. In

general, during stress parvocellular neurons in the hypothalamic

paraventricular nucleus (PVN) secrete corticotropin-releasing hormone (CRH),

triggering adrenocorticotropic hormone (ACTH) release from the anterior

pituitary, which leads to increased cortisol in humans and corticosterone in

rats and mice. Here, we tested the hypothesis that short-term sublethal ingestion

of MC-LR activates the peripheral and central components of the HPA axis. First,

we found that young adult male mice gavaged with MC-LR (50 mg/kg bw, p.o.)

every 2 days for 21 days had elevated plasma corticosterone levels when

compared to H2O (vehicle) mice. Ingestion of contaminated fresh water is a

likely natural route of MC-LR exposure for animals, including humans. Second,

Crh and arginine vasopressin (Avp) mRNA expressions were elevated in the

hypothalamus of MC-LR-dosed mice. Third, DFOSB (i.e., long-term cell activity

marker) immunofluorescence in the PVN and hippocampal dentate gyrus (DG) of

MC-LR mice was significantly elevated compared to vehicle mice, but not in

cornu ammonis (CA) 1, 2 and 3. In contrast, MC-LR mice had reduced

hypothalamic glucocorticoid receptor (Gr) mRNA expression. Fourth, no

significant changes were found in the mRNA expression of the inflammatory

markers: tumor necrosis factor a (Tnf-a) and interleukin-1b (IL-1b) in the

hypothalamus, liver, and spleen and C-reactive protein (Crp) in the liver and

spleen. These data indicate that short-term ingestion of sublethal levels of MC-

LR resulted in increased peripheral and central HPA axis activity.
KEYWORDS
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1 Introduction

Anthropogenic activities induced water eutrophication (i.e.,

increased levels of nitrogen and phosphorus), and higher water

temperatures have significantly increased the frequency of

cyanobacterial harmful algal blooms (cHABs) in freshwater (1).

This has dramatically elevated the production and release of

hazardous cyanotoxins, mainly microcystins (MCs) (2–4).

Current climate models predict that cHABs will persist and

expand in freshwater (5). Moreover, while water treatment plants

can remove MCs, effective removal is fiscally not feasible (6).

Therefore, accidental and short-term exposure to environmental

levels of MCs is almost inevitable through ingestion, inhalation, and

dermal contact with MC-contaminated drinking water. For

example, in the summer of 2014, MC levels exceeded 1 µg/L in

Toledo, OH drinking water due to cHABs in Western Lake Erie,

OH (6). This single event led to an immediate two-day ban on local

drinking water usage, which left half a million residents without a

source of clean public drinking water at a substantial economic cost.

More importantly, from a public health point of view, exposure to

MC-contaminated water in high concentrations has been shown to

cause acute liver toxicity (7–10) resulting in apoptotic or necrotic

cell death (10, 11) or even mortality in humans (12).

There are more than 200 MC congeners, of which MC leucine

arginine (MC-LR) is the most prevalent, best-studied, and one of

the most toxic variants (13–16). Overall, environmental MC-LR

levels in freshwater fluctuate highly between locations (from

undetectable to over 1000 µg/L) (2, 3, 17–19). Ingested MC-LR is

primarily passively absorbed by the small intestines into the portal

vein and transported through the blood from the gut to other

organs. Absorbed MCs are quickly taken up by mammalian cells

due to their water-solubility and the presence of transmembrane

organic anion transport polypeptides (OATPs), which have been

widely detected in various cell types, including the liver, kidney,

intestines, and brain (8, 20–22). Following absorption through gut,

the MC-LR is passed into the liver which then goes into the blood

stream and then to other organs (23, 24). Also, exposure to MC-

contaminated water in high concentrations has been shown to cause

acute liver and splenic toxicity (7–10, 25, 26). Microcystin-LR is a

well-known covalent inhibitor of protein phosphatase 1 (PP1) and

protein phosphatase 2A (PP2A). Inhibition of the major cellular

dephosphorylating enzymes can lead to cellular dysfunction and

apoptosis (27–30).

There is evidence indicating that exposure to intraperitoneal

MC-LR induces toxicity that impacts neuroendocrine functions that

control the mammalian stress response (31–34). In general, the

mammalian stress response is regulated by the hypothalamus-

pituitary-adrenal (HPA) axis. Stressors activate hypothalamic

PVN parvocellular neurons to release CRH, which stimulates

ACTH release from the pituitary, and subsequent glucocorticoids

release from the adrenals: cortisol in humans and corticosterone in

rodents. Upon cessation of the stressor, glucocorticoids provide

negative feedback to the pituitary, hypothalamus, and hippocampus

to inhibit HPA activation and return to homeostatic physiological

conditions (35–42). In addition, in rodents, repeated stress was
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shown to also induce AVP expression in CRH PVN neurons to

potentiate CRH-dependent HPA activation (37, 38, 43, 44). We and

others have shown that disrupted HPA activity is linked to

promoting anxiety and depression (39, 45–49).

Previous studies showed that concentration, exposure route,

and exposure length dictate MC-LR toxicity. For example, a single

intraperitoneal injection of MC-LR in male and female rats reduced

HPA activity 24 hours later (33, 34). In contrast, HPA activity was

elevated in rats that received daily intraperitoneal MC-LR dosing

for 42 days (50). Similarly, zebrafish immersed in MC-LR

contaminated water (as low as 1 µg/L) for 30 days caused an

activated stress axis (51). Moreover, the LD50 of intraperitoneal

MC-LR exposure is around 50 µg/kg (16, 52), which contrasts oral

MC-LR toxicity of 30–100 times less (16). Therefore, the route and

length of MC-LR exposure are critical for determining its toxicity to

mammalian HPA function.

In this study, we investigated the impact of short-term (< 1

month) oral MC-LR ingestion rather than intraperitoneal injections

at sublethal levels on the stress axis, which has not been studied in

depth. Young adult male C57BL6 mice (2 months of age) were

gavaged every two days with MC-LR for 21 days. Specifically, we

investigated MC-LR effects on the hypothalamic cellular activation in

the context of the stress response and the peripheral inflammatory

response. We found that short-term oral ingestion of sublethal MC-

LR levels elevated central and peripheral HPA activity without

significant activation of the central and peripheral inflammatory

response markers. Furthermore, there was evidence that the HPA

negative feedback was disrupted in animals treated with MC-LR.

These results indicated that MC-LR caused a maladaptive HPA

response that may contribute to stress-related mental health

conditions, such as anxiety and depression (39, 45, 46).
2 Materials and methods

2.1 Animals

Male C57BL/6 mice (6 weeks of age) were obtained from the

Jackson Laboratories (Bar Harbor, ME). Mice were kept in an

animal room and held at 22-25°C and 50-65% relative humidity

with a 12-hour light/dark cycle. The mice were given tap water,

standard pellet food (Prolab RHM 3000, Lab Diet, St. Louis, MO),

ad libitum. The Institutional Animal Care and Use Committee

(IACUC # 525 WC 22-03) approved all procedures.
2.2 MC-LR ingestion

C57BL/6 mice were habituated for 2 weeks and were randomly

divided into 2 groups: vehicle (n = 9) and MC-LR (n = 6) treatment

groups were determined by power analysis (i.e., significance level of

0.05, power of 0.8 and enrollment of 1.5 favoring vehicle was used to

obtain additional vehicle gavaging data). The body weight of the

animals was measured every day. Microcystin-LR (101043-37-2,

Cayman Inc., Ann Arbor, MI) stock solution of 10 mg/ml was
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diluted into a working stock of 12.5 mg/ml with sterile water and

stored at -20°C, which was used to gavage mice using a 30 mm

flexible oral polypropylene feeding tube (FTP-20-30, Instech Labs

Inc, Plymouth Meeting, PA) with MC-LR at 50 mg/kg body weight.
Based on average daily water consumption of C57BL6 mice (53), 50

µg/kg is equivalent to approximately 187 µg/L, a value this is not

only readily found in MC-LR contaminated freshwater sources, but

also far lower than the documented ingested MC-LR lethal dose 50

(LD50) (16) or lowest observed adverse effect levels (LOAELs) of 5

mg/kg (15). The vehicle mice were gavaged with equivalent sterile

water volume based on 50 µg/kg MC-LR. All mice were treated

every 48 hours for 21 days. On the 22nd day, mice were deeply

anesthetized with isoflurane and rapidly decapitated.
2.3 Blood collection and brain tissue
collection

Trunk blood was collected in tubes coated with 0.5 M EDTA

and kept on ice before centrifugation at 1000 x g at 4°C for 10

minutes. The plasma was stored at -20°C. Following, the brain was

retrieved from the skull and divided sagitally into two hemispheres.

One half was placed in 4% paraformaldehyde (PFA) 0.1 M

phosphate buffer (PB), pH 7.4 overnight at 4°C, cryoprotected in

30% sucrose, 0.1 M PB and stored at 4°C. The other half was rapidly

frozen on dry ice and stored at -80°C. The PFA-fixed brain halves

were sectioned into a series of four using a cryostat (CM1950, Leica

Biosystems, Deer Park, IL) at 50 mm, which were stored in

cryoprotectant (30% sucrose, 1% polyvinyl-pyrrolidone, 0.1 M

PB, and ethylene glycol) at 4°C.
2.4 Enzyme-linked Immunoassay for
plasma corticosterone

Plasma corticosterone levels were measured with an enzyme

immunoassay (EIA) previously described (54) with minor

modifications. Before running the samples, analytical tests

(parallelism and precision tests) were performed with mouse

plasma to discard possible interferences and matrix effects. The

curve generated by the pooled sample had a displacement parallel

to the standard curve. Similarly, precision tests using a pooled sample

spiked with corticosterone standards yielded a mean recovery of

120%, indicating no matrix effects. Following the analytical tests, all

samples were analyzed using the following methods. Briefly, we pre-

coatedmicroplates with 10 µg/ml goat anti-rabbit IgG (111-001-003,

Jackson Immunoresearch Laboratories, West Grove, PA) as

previously described (55). Corticosterone (16063, Cayman

Chemicals, Ann Arbor, MI) was used to prepare the standards. We

serially diluted nine standards with EIA buffer, starting at 20 ng/ml.

First, we added 50 µl of standards, samples (diluted at 1:20), and

control in duplicates to all wells. Immediately after, we added 25ml of
horseradish peroxidase conjugate (diluted at 1:35,000 in EIA buffer)

to all wells and 25 ml of the anti-rabbit polyclonal antiserum against

corticosterone-3-CMO-BSA (CJM006, diluted at 1:70,000 in EIA
Frontiers in Endocrinology 03
buffer) to all wells except non-specific binding wells. The plates were

incubated for 1 hour at room temperature, washed 4 x with wash

buffer, and developed with 60% 3,3’,5,5’-Tetramethylbenzidine

(TMBHK-100, Moss Inc, Pasadena, MD) for 10 minutes. The

reaction stopped with 1 N HCl and read using BioTek 800 TS

Absorbance Reader. The intra-assay coefficient of variation (CV)

was 3.74%, and the inter-assay CV was 6.6%.
2.5 Immunofluorescence

Brain sections (one of four series) from vehicle mice and MC-LR

micewere simultaneously processed forDFOSB immunofluorescence

(56–58). The staining conditions were standardized to minimize

variability as much as possible. The sections were rinsed 3 x 5

minutes tris-buffered saline and 0.3% Triton-X (TBS-T; 9002-93-1,

Fisher Scientific, Pittsburg, PA) on a 2D rotator, and incubated in

DFOSB rabbit mAB (1:3000, D3S8R, Cell Signaling Technologies,

Danvers,MA)diluted onTBS-T and2%normal goat serum for 2 days

at 4°C. Sections were rinsed 3 x 5 minutes with TBS and incubated

with biotinylated-goat anti-rabbit (1:600, BA-1000, Vector

Laboratories, Burlingame, CA) in TBS for 2 hours at room

temperature. Following, sections were rinsed 3 x 5 minutes with

TBS and incubated with Alexa Fluor 488-conjugated streptavidin

(1:1600, 016-540-084, Jackson Immunoresearch Laboratories, West

Grove, PA) inTBS for 1.5 hours at room temperature in dark. Sections

were mounted on gelatin-coated glass slides and coverslipped with

DABCO mounting medium.
2.6 Image analysis

Immunofluorescent photomicrographs of the rostral-caudal

PVN (plate 36-39), hippocampal regions: dentate gyrus (DG),

CA1, 2 and 3 (plate 42-48) and anterior cortex (plate 25-28) (59)

of MC-LR mice and vehicle mice were captured using a 20X

objective mounted on an Olympus microscope (BX61, Olympus,

Center Valley, PA) fitted with a SC30 color camera (Olympus,

Center Valley, PA) connected to a PC. The images (122500 mm2)

were analyzed with CellSens imaging software (Olympus, Center

Valley, PA). We standardized the threshold mask for both vehicle

and MC-LR mice to quantify the density of DFOSB-

immunofluorescent (IF) cells (cells per µm2) using CellSens

software (Olympus, Center Valley, PA). All the animals were

randomized and blinded to minimize the introduction of biases

(49, 60).
2.7 Quantitative PCR

Sections (150-250 µm) through the hypothalamus, dorsal

hippocampus, and anterior motor cortex (61) were used to collect

tissue samples using a tissue cannula punch 1 mm diameter (22G29,

Integra LifeScience, Mansfield, MA). Total RNA was isolated using

TRI-sure (BIO-38033, Meridian Bioscience, Cincinnati, OH)
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following the manufacturer’s protocol. The concentration of total

RNA was determined by using a spectrophotometer to measure the

value of absorbance at 260 nm (A260), and the purity of RNA was

determined by the ratio of A260 to A280 (Synergy H1 Hybrid

Reader, BioTek Instruments, Winooski, VT). Total RNA (500 ng)

was converted into the cDNA using LUNAScript RT SuperMix Kit

(E3010, New England BioLabs, Ipswich, MA) using oligo-dt

primers. qPCR was performed using the gene-specific intron-

spanning primers (Table 1) and LUNA 480 SYBR Green I

Universal qPCR Master Mix (M3003, New England BioLabs,

Ipswich, MA). The thermal cycle was set as follows: initial

denaturation at 95°C for 2 minutes, followed by 40 cycles of

denaturation at 95°C for 15 seconds, annealing at 60°C for 30

seconds, and elongation at 72°C for 30 seconds. Each sample was

run in triplicates, and PCR reactions with water (H2O) were used as

negative controls. Threshold cycle (Ct) values for the genes of

interest were normalized against the housekeeping gene

hypoxanthine phosphoribosyltransferase 1 (Hprt) value in the

same samples (62, 63). The relative fold change in mRNA

expression was calculated using 2-DDCt method (64).
2.8 Statistical analysis

Data was analyzed using Welch’s t-tests with treatment as a

variable (Sigma plot 14.5, Systat Software, PaloAlto, CA).Differences

were considered significant if p < 0.05 and indicated as an asterisk.
3 Results

3.1 Mice body weight and plasma
corticosterone levels

We measured the mouse body weight every day during the

experimental period. No significant changes in body weight were

detected between MC-LR mice and vehicle mice (Figure 1A). In
Frontiers in Endocrinology 04
contrast, plasma corticosterone levels were significantly higher in

MC-LR mice compared to vehicle mice (t (13) = -3.637, p <

0.05) (Figure 1B).
3.2 MC-LR affected hypothalamic Crh, Avp,
and Gr mRNA expression

The expression ofCrhmRNAwas higher in the hypothalamus of

MC-LR mice compared to vehicle mice (t(13) = -4.877, p < 0.05)

(Figure 1C). The expression of Crh mRNA was also higher in the

hippocampus of MC-LR mice compared to vehicle mice (t (13) =

-4.979, p < 0.05) (Figure 1D). No significant difference in CrhmRNA

expression was found in the anterior motor cortex between MC-LR

mice and vehiclemice (Figure 1E).Moreover,AvpmRNAexpression

was higher in hypothalamus of MC-LR mice compared to vehicle

mice (t (13) = -3.637, p < 0.05) (Figure 1F). In contrast, the expression

ofGrmRNA in the hypothalamus was significantly lower in MC-LR

mice compared to vehicle mice (t (13) = 4.389, p < 0.05) (Figure 1G).
3.3 MC-LR effects on DFOSB-IF cell density
in the PVN, hippocampus, and anterior
motor cortex

The DFOSB-IF cell density in the PVNwas higher inMC-LRmice

compared to vehicle mice (t (10) = -2.851, p < 0.05) (Figures 2A, B, E).

Similarly, DFOSB-IF cell density in the DGwas higher inMC-LRmice

compared to vehicle mice (t (13) = -2.980, p < 0.05) (Figures 2C, D, F),

whereas DFOSB-IF cell density did not differ in CA 1, 2 and 3 regions

between MC-LR mice and vehicle mice. No significant difference in

DFOSB-IF cell density was detected in anterior cortex between MC-

LR mice and vehicle mice (Figure 2G).
3.4 MC-LR did not affect inflammation
markers in the hypothalamus, liver, or
spleen

In the hypothalamus, there was no significant difference in Tnf-a
(t (13) = -0.9, p = 0.4) and IL-1b (t (13) = -1.0, p = 0.3) mRNA

expression between MC-LR mice and vehicle mice (Figures 3A, B).

CrpmRNA was not detected in the hypothalamus of MC-LR mice or

vehicle mice. In the liver, Tnf-a (t (13) = 1.125, p = 0.30), IL-1b (t (13) =
-2.1, p = 0.07), and Crp (t (13) = 0.6, p = 0.6) mRNA expression did not

differ between MC-LR mice and vehicle mice (Figures 3C-E). In the

spleen, Tnf-a (t (13) = 0.6, p = 0.6), IL-1b (t (13) = -1.1, p = 0.3), and

Crp (t (13) = 0.5, p = 0.6) mRNA expression did not differ between

MC-LR mice and vehicle mice (Figures 3F-H).
4 Discussion

Here, we report that short-term (i.e., every 48 hours for 21 days)

ingestion of sublethal levels of MC-LR increased plasma

corticosterone levels, hypothalamic Crh and Avp mRNA
TABLE 1 List of all the qPCR primers.

Name Sequence

Crh FWD-5’-CCTACCAAGGGAGGAGAAGAGAG-3’
REV- 5’-AAGAAATTCAAGGGCTGCGG-3’

Avp FWD-5’-ATCTGCTGCAGCGACGAGAG-3’
REV- 5’-TGTACCAGCCTTAGCAGCAG-3’

Gr FWD-5’-GCAAGTGGAAACCTGCTATGC-3’
REV-5’-AACCGCTGCCAATTCTGACT-3’

Tnf-a FWD-5’-CCCACGTCGTAGCAAACCAC-3’
REV- 5’-TTGAGATCCATGCCGTTGGC-3’

IL-1b FWD-5’-GCCACCTTTTGACAGTGATGAG-3’
REV- 5’-GACAGCCCAFFTCAAAGGTT-3’

Crp FWD-5’-CGGACTTTTGGTCATGAAGACAT-3’
REV- 5’-GTGTGTTGGAGCCTCAGGAA-3’

Hprt FWD-5’-CTCATGGACTGATTATGGACAGGAC-3’
FWD-5’-GCAGGTCAGCAAAGAACTTATAGCC-3’
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expression, and DFOSB immunoreactivity in the PVN and

hippocampal dentate gyrus, which are indicative of HPA

activation. These results in mice are in line with earlier long-term

sublethal MC-LR exposure studies in zebrafish and rats (50, 65). In
Frontiers in Endocrinology 05
contrast, hypothalamic Gr mRNA expression, which is known to

facilitate the negative feedback, was significantly lower in MC-LR

mice. MC-LR did not cause a significant inflammatory response in

the hypothalamus, liver, or spleen, suggesting that the oral MC-LR
FIGURE 1

(A) Body weight of vehicle and MC-LR mice. Mean body weight did not differ between MC-LR mice and vehicle mice. (B) Box plot indicating plasma
corticosterone level was higher in MC-LR mice compared to vehicle mice. (C-E) Bar graphs indicating that the expression of Crh mRNA higher in the
hypothalamus and hippocampus of MC-LR mice compared to vehicle mice. (F) Bar graph indicating that the expression of Avp mRNA in the
hypothalamus was higher in MC-LR mice compared to vehicle mice. (G) Bar graph indicating that the expression of Gr mRNA in the hypothalamus
was lower MC-LR mice compared to vehicle mice. Values are represented as mean ± standard error, n = 9 for vehicle mice and n = 6 for MC-LR
mice. * Indicates p < 0.05.
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FIGURE 2

(A, B) Photomicrographs of DFOSB immunofluorescent cells in the PVN and (C, D) DG of vehicle and MC-LR mice. For clarity, photomicrographs
were converted to grey scale and inverted using Corel PhotoPaint. (E) Bar graph indicating that the density of DFOSB-IF PVN cells was higher in MC-
LR mice compared to vehicle mice. (F) Bar graph indicating that the density of DFOSB-IF DG cells was higher in MC-LR mice compared to vehicle
mice. The density of DFOSB-IF cells in the CA 1–3 did not differ between MC-LR mice and vehicle mice. (G) Bar graph indicating that the density of
DFOSB-IF anterior cortex cells did not differ between MC-LR mice and vehicle mice. Scale bar represents 100 µm. Values are represented as mean ±
standard error, n = 9 for vehicle mice and n = 6 for MC-LR mice. * Indicates p < 0.05.
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dose used in this study did not elicit a significant immune response.

Together, these observations led to the conclusion that short-term

ingestion of sublethal levels of MC-LR results in HPA hyperactivity,

partly due to hypothalamic dysregulation of negative feedback.

In contrast to our short-term sublethal MC-LR ingestion

paradigm in male mice, earlier acute MC-LR dosing studies in

adult male and female rats showed that a single intraperitoneal dose

of MC-LR reduced HPA activity in both males and females one day

later (33, 34). These differences may be due to the MC-LR

administration route and length of administration. Studies in

mice showed that MC-LR is far more toxic when administered

intraperitoneally than orally. Toxicological studies in mice found

intraperitoneal MC-LR LD50 to be 50 mg/kg, whereas oral MC-LR

toxicity was 30–100 times less (16, 66–68). Alternatively, MC-LR

dosing duration may also have played a role; for instance, in

contrast to the aforementioned acute male and female rat studies

(33, 34), a recent study in male rats found that intraperitoneal

administration of sublethal MC-LR levels for 6 weeks also increased

plasma corticosterone levels (50). Therefore, the route and length of

MC-LR exposure must be considered when evaluating and

determining MC-LR toxicity on HPA function in mammals.

Short-term sublethal MC-LR ingestion increased plasma

corticosterone levels, which confirmed that ingested MC-LR can
Frontiers in Endocrinology 07
activate the stress axis. Based on this observation, we hypothesized

that short-term sublethal ingestion MC-LR may have activated

hypothalamic neuroendocrine cells that control the stress

response. In support, we demonstrated that hypothalamic Crh

and Avp mRNA expression were elevated in MC-LR mice.

Moreover, DFOSB immunoreactivity in PVN and hippocampal

dentate gyrus was higher in MC-LR mice than in vehicle mice.

The results clearly demonstrate that elevated corticosterone levels

following short-term sublethal MC-LR ingestion are a direct

consequence of the activation of hypothalamic and hippocampal

neurons responsible for regulating HPA activity. The elevated

hypothalamic Avp mRNA expression may indicate that short-

term sublethal MC-LR ingestion in our paradigm was sufficient to

stimulate hypothalamic Avp mRNA, which in previous rat and

human studies was shown to be indicative of prolonged stress and

potentiation of CRH-dependent activation of the stress axis (37, 38,

43, 44, 69, 70).

The stimulatory central limb of the stress axis (i.e., CRH and

AVP) is kept in balance by circulating corticosterone, which

provides negative feedback to the pituitary, hypothalamus, and

hippocampus to return the animal to homeostatic physiological

conditions (35–42). Generally, glucocorticoid negative feedback is

mediated by two corticosteroid receptor types: mineralocorticoid
FIGURE 3

(A, B) Bar graphs indicating that hypothalamic Tnf-a and IL-1b mRNA expression did not differ between MC-LR mice and vehicle mice. (C-E) Bar
graphs indicating that liver Tnf-a, IL-1b and Crp mRNA expression did not differ between MC-LR mice and vehicle mice. (F-H) Bar graphs indicating
that spleen Tnf-a, IL-1b and Crp mRNA expression did not differ between MC-LR mice and vehicle mice. Values are represented as mean ± standard
error, n = 9 for vehicle mice and n = 6 for MC-LR mice. * Indicates p < 0.05.
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receptor (MR) and GR, which reside in hypothalamic and

hippocampal neurons and pituitary cells. Because of their high

affinity for glucocorticoids, MRs are thought to regulate basal

hormone secretion. In contrast, GRs, which exhibit an

approximately 10-fold lower affinity for glucocorticoids, are

thought to turn off the HPA axis and return stress-responsive

glucocorticoid elevations to baseline (37, 71, 72). Based on our

observation demonstrating that hypothalamic Gr mRNA

expression was decreased in MC-LR mice, we infer that MC-LR

may have attenuated glucocorticoid-dependent negative feedback.

Alternatively, the cellular actions of MC-LR, a potent inhibitor of

protein phosphatase PP1 and PP2A (29, 30, 73), have been shown to

cause GR hyperphosphorylation, which may signal increased GR

degradation (74). Also, the hyperphosphorylation of GR might lead

to reduced glucocorticoid sensitivity (75).

It is unclear whether ingested MC-LR activates hypothalamic

and hippocampal neurons directly or indirectly to trigger the stress

response. However, previous studies showed that following passive

absorption by the small intestines, MC-LR passes into the portal

vein to travel by the blood to other organs, such as the brain.

Microcystin-LR can be quickly taken up by brain cells due to the

wide-spread presence of transmembrane OATPs in the blood-

brain-barrier endothelial cells and blood-cerebrospinal fluid

barrier epithelial cells (76), and enter brain cells (22, 77),

including neuroendocrine cells (78, 79) as demonstrated using in

vitro neuron cell models. These studies indicate that MC-LR may be

able to enter the brain. However, more in depth cell-specific studies

are needed to assess whether this is the case.

In the current study, we found that oral ingestion of MC-LR

activated the HPA axis, in contrast to the central and peripheral

inflammatory response. These results indicate that while short-term

ingestion of sublethal levels of MC-LR did not cause significant

activation of the inflammatory system, it was sufficient to activate the

HPA axis and therefore may potentially contribute to stress-related

mental health conditions, such as anxiety and depression. However,

further investigations are needed to elucidate the molecular and cellular

mechanisms of the impact of MC-LR on the HPA axis.
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