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With the accelerated aging of the population, degenerative orthopedic diseases, 
particularly osteoporosis, have become a major public health challenge, 
threatening bone health and affecting the quality of life. Existing anti-
osteoporosis regimens remain rather unitary or poorly adhered, which also 
limits the maintenance of bone health to some extent. Given the increasingly 
elucidated prominence of gut-related factors in osteoblasts/osteoclasts and 
bone formation/metabolism/maintenance, focusing on intestinal microecology 
and then targeting the distal bone tissue via the gut–bone axis have been 
recognized as a feasible intervention strategy. This review systematically 
summarized the interaction of the gut–bone axis while highlighting the 
physicochemical barriers formed by intestinal intrinsic structures, the gut 
microbiota, and related molecules for bone health maintenance through the 
immune and endocrine pathways. Meanwhile, we emphasized the ideal anti-
osteoporotic property and individual achievability of methods like fecal 
microbiota transplantation, probiotic and prebiotic supplementation, and 
dietary pattern modification. The conceptual framework of the gut–bone axis 
plus X was innovatively proposed, given the potential synergy among different 
organs in disease characterization and pathogenesis, which may help better 
explain the etiology and manage other co-morbidities concurrent with or 
secondary to osteoporosis. Since the intersection of orthopedics with other 
subjects, we also supported the application of nano-biomaterials, bacterial 
synthetic biology, and novel small molecules in anti-osteoporosis, which is 
expected to unlock broader prospects for the multidisciplinary integration of 
the gut–bone axis. 
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1 Introduction 

Bones are integral to multiple systems of the human body, such 
as locomotion, hematopoiesis, and metabolism (1), whose 
formation and maintenance affect life activities both structurally 
and functionally. Irrespective of the slow accumulation of tiny 
lesions or their instantaneous aggressive attacks, the qualitative 
alterations caused by quantitative changes in the human skeleton 
often, in turn, result in the occurrence and prolongation of 
osteoporosis, osteoarthritis, fractures, and other orthopedic 
diseases (2). Osteoporosis (3), a systemic degenerative bone 
disease characterized by declining bone mass and microstructural 
disruption, has become a major health concern, hindering the self-
management of aging populations, with an incidence of more than 
200 million people worldwide (4). Due to the fixed skeletal position 
and its dynamic pathophysiological behavior, the diagnosis and 
monitoring of musculoskeletal injuries generally rely on X-rays, CT, 
and MRI, while the treatment and prognosis involve uncertainty to 
some extent (5). Notably, the gut, as an organ distant from the 
skeleton, may possess a unique strength in extending the 
therapeutic spectrum of acute and chronic orthopedic diseases by 
functional linkages. 

The human gut is recognized as a multi-constituent and multi-

functional digestive organ (6). Inherent structures such as the 
intestinal epithelium, enteric nerves, gut microbiome, and derived 
metabolites, together with their interactions therein, constitute the 
gut microecology collectively (7). With the combination of omics 
and sequencing (8), the evolutionary patterns of the intestinal 
microenvironment in different somatic states have been clearly 
understood. Except intestinal pathologies like inflammatory bowel 
disease (IBD) and irritable bowel syndrome (IBS) (9, 10), varying 
degrees of intestinal dysbiosis also exist in other systemic diseases 
including obesity, diabetes, and Parkinson’s disease, which may be 
attributed to the metabolic, immune, and neural pathways (11). 
Hence, the concept of the gut-X axis is represented by the gut–brain 
axis (12), which refers to the dual communication between the gut 
and brain via a neuroendocrine pathway, externally impacting 
mood, cognition, and behavior, and vice versa. In orthopedics, 
postmenopausal osteoporosis (PMOP) is associated with a 
significant decline in the diversity and abundance of intestinal 
microbial communities in a clinical study enrolling 106 
individuals, while bone loss was positively correlated with the 
decrease in genera Allisonella, Klebsiella, and Megasphaera (13). 
In contrast, Guan Z et al. (14) reviewed the effect of the gut 
microbiota depletion on osteoporosis and osteoarthritis, 
mentioning that symptoms such as reduced bone mineral density 
(BMD) were induced in a mouse model of post-antibiotic microbial 
depletion. The above hints at the plausibility of establishing an axial 
system between the gut and bone tissue, which may benefit 
interventions for osteoporosis. 

This subtle link between intestinal ecology and the bone 
microenvironment is defined as the gut–bone axis (15), which has 
revolutionized the management principle of bone-related diseases. 
Microbes and their metabolites originating from the gut exhibit 
local or distal effects on the bone by repairing the integrity of the 
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intestinal epithelial barrier, participating in neurological, immune, 
and endocrine regulation; restoring the homeostasis between 
osteogenesis and osteoblasts; and ultimately prompting the long-
term maintenance of bone health (16). Several studies have reported 
that metabolic bone diseases such as osteoporosis and osteoarthritis 
would be alleviated or even reversed through strategies targeting the 
gut–bone axis, as evidenced by inhibited bone loss, fortified bone 
biomechanics, and increased trabecular numbers (17). A 
shortcoming, however, is that current literature on the relevance 
of the gut–bone axis in orthopedic diseases remains insufficient and 
lacks a more comprehensive synthesis on how to combine the two 
or how to combine them with other organs. 

Therefore, this review focused on orthopedic diseases, 
particularly osteoporosis; emphasized the effects of intestinal 
factors (such as gut microbiota, derived metabolites, and gut 
barrier) on osteogenesis, bone metabolism, and maintenance via 
the gut–bone axis; and provided feasible insights into the classical or 
innovative interventions that target intestinal microecology to 
mitigate osteoporosis and restore bone health. In addition, we 
expanded knowledge of the gut–bone axis and systematically 
generalized the potential routes of the gut–bone axis plus X, 
which may benefit the co-treatments of co-morbidities secondary 
or concomitant to orthopedic diseases. 
2 Perceptions on osteoporosis and 
gut–bone axis 

To tackle osteoporosis, the first step is to know how to assess 
bone health in different stages of bone growth and define what 
parameters to adopt. Considering both histological structure and 
physiological function, a healthy skeleton indicates the 
compositional integrity and excellent adaptation of the bone (18), 
that is, having an ideal height and shape and being moderately 
tough, which requires the bone to have sufficient density and 
strength to support the body, protect the internal organs, and 
maintain the balance between stability and mobility (19). Hence, 
bone density and strength are often cited as the primary indicators 
of normal bone formation. BMD actually reflects the amount of 
minerals (mainly calcium and phosphorus) in bone tissue, whose 
measurement usually relies on dual-energy X-ray absorptiometry 
(DEXA) (20). Low BMD correlates significantly with the increased 
risk of osteoporosis; thus, maintaining proper bone density is key to 
preventing osteoporosis and fractures. Bone strength, in contrast, is 
not only dependent on BMD but is also associated with the 
structure and quality of the skeleton, as monitored by more 
multifaceted parameters such as bone volume fraction (BV/TV), 
trabecular number (Tb. N), connectivity density (Conn. D), and 
trabecular thickness (Tb. Th) (21). However, the criteria for bone 
metabolism are more detailed, which include substances such as 
osteocalcin (OC; promotes bone production) (22), C-terminal 
telopeptides of type I collagen (CTX; suggests the activity of bone 
resorption), type I pre-collagen carboxy-terminal pre-peptide 
(P1CP; monitors osteogenesis levels), type I pre-collagen amino-

terminal pre-peptide (P1NP; reflects the amount of collagen in the 
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bone), 1,25-dihydroxyvitamin D3 [1,25-(OH)2-D3; promotes the 
transportation of calcium to bone], parathyroid hormone (PTH; 
lowers bone mass and raises blood calcium), alkaline phosphatase 
(ALP; typically 50–130 U/L for women and 45–125 U/L for men), 
calcium (standardized value: 2.25–2.75 mmol/L), and phosphorus 
(standardized value: 0.97–1.61 mmol/L) (23). In addition, the 
genetic, hormonal, and nutritional levels of individuals should not 
be overlooked in the evaluation of bone quality and quantity (24). 

Abnormalities in bone mass directly contribute to osteoporosis, 
whose occurrence is mainly attributed to insufficient bone mass 
accumulation in early life and accelerated bone loss in later life. 
Early bone mass accumulation refers to bone mineralization that 
occurs during the younger years of individuals (primarily childhood 
and adolescence), which determines the overall health of the skeleton 
(25). Osteoporosis involves a gradual loss of minerals (especially 
calcium) with age (26). Altogether, the accumulation and loss of the 
bone are involved in establishing skeletal foundation, maintaining 
bone microstructural stability, and improving fracture resistance of 
the skeleton, thus inhibiting osteoporosis, particularly in the hip and 
spine. Optimizing peak bone mass (PBM) may be a proven solution 
(27), which denotes the total amount of bone tissue that an individual 
reaches during the most mature period of body growth (usually at 
20–30 years old). The level of PBM and the cumulative rate of bone 
loss due to menopause and aging determine the possibility of 
developing osteoporosis. It has been reported that a one standard 
deviation increase in PBM lowers lifetime fracture risk by 50% (28). 
Lifestyle modifications centered on nutritional intake (calcium and 
vitamin D) and moderate exercise are known to be effective in 
enhancing PBM, thereby preventing osteoporosis and ameliorating 
prognosis (29). In addition, the first-line medications for patients 
with osteoporosis consist of bisphosphonates (BPs), selective estrogen 
receptor modulators, parathyroid hormone analogs, and therapeutic 
doses of calcium and vitamin D, which improve bone quality by 
inhibiting bone resorption, promoting bone formation, and 
supplementing bone nutrition (30). BPs, in particular, are vital in 
inhibiting osteoclast activity and decelerating bone loss by specifically 
binding to skeletal hydroxyphosphatidylcholine, thereby lowering 
blood calcium concentrations and reducing the incidence of 
osteoporosis (31). In addition to vitamin D3, which promotes the 
absorption of calcium and phosphorus in the intestine, its active 
metabolite, osteotriol, can also directly participate in bone mineral 
metabolism without hepatic or renal hydroxylation (32). However, 
even with the support of evidence-based medicine and extensive 
applications in a clinical setting, first-line medications for 
osteoporosis still fall short in terms of patient adherence, gaps in 
drug efficacy compared to trial outcomes, side effects, drug selection, 
and personalized treatment (33). 

As early as 1980, patients who received total parenteral 
nutrition for more than 3 months were reported to suffer from 
orthopedic diseases such as ostealgia and osteochondrosis. With the 
empirical evidence of intestinal factors affecting osteoporosis, the 
mechanisms of how the intestinal intrinsic structure, gut 
microbiota, and microbial metabolites interact with bone health 
have been increasingly elucidated. As mentioned above, 
osteoporosis shows significant individual variation due to 
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internal/external influences such as genetics, hormones, age, and 
diet, and the gut acts as a natural dynamic lumen exposed to the 
external environment, forming the basis for the study of the gut– 
bone correlation (34). The intestinal lamina propria is composed of 
the mucosa, submucosa, muscularis propria, and plasma, among 
which the mucosa is located in the innermost part of the intestinal 
wall and consists of the epithelium, lamina propria, and mucosal 
muscularis propria (35). The intestinal epithelium is arranged in a 
single layer of columnar cells embedded with tight junction proteins 
[Claudin, Occludin, and Zonula occludens (ZO)] (36), while 
immunocytes,  such  as  lymphocytes,  plasma  cells,  and  
macrophages, are present in the lamina propria and participate in 
intestinal immune defense (37). Between the intestinal lumen and 
feces is the mucus layer, where most of the gut microbes and their 
derived metabolites reside. The intestinal microbiome consists 
mainly of microorganisms such as bacteria, fungi, and viruses, 
numbering up to 100 trillion, with more than 1,000 species, 
which maintain an organized equilibrium in an uninterrupted 
exchange of material and energy with the organism (38). A large 
number of bacterial metabolites are produced in the process, 
including short-chain fatty acids (SCFAs; such as acetic and 
propionic acids), secondary bile acids (SBAs), neurotransmitters 
[such as gamma-aminobutyric acid (GABA), dopamine (DA), 
serotonin (5-HT), histamine (Hi), and glutamic acid (Glu)], and 
other substances such as indoles, branched-chain amino acids 
(BCAAs), and vitamins (39). In terms of gut–bone synergy, the 
mechanical barrier formed by the triad of intestinal mucosal 
epithelial cells, intercellular tight junctions, and bacterial 
membranes prevents pathogen invasion and toxin infiltration 
(40). Various derived metabolites such as SCFAs, SBAs, 5-HT, Hi, 
and vitamins are more often indicated as signaling molecules and 
substrates of metabolic reactions, which affect the distal bone tissues 
through pathway conduction and cascade, and participate in the 
formation, metabolism, and maintenance of the skeleton (41). 

Hence, the concept of the gut–bone axis emerged. Current 
research on the role of the gut–bone axis in osteoporosis mainly 
targets the regulation of bone metabolism by intestinal factors, the 
pathogenesis and therapeutics of osteoporosis, and the interaction 
of the gut–bone axis with other systems. To thoroughly investigate 
the underlying associations, several types of animal models have 
been used. Among them, the PMOP mouse model simulated by 
ovariectomy is the most versatile (42), and exogenous 
glucocorticoids administered at high doses over a long term also 
induce similar osteoporotic manifestations in C57BL/6 female mice 
(43). Consistent with the etiology of osteoporosis, the effect of bone 
mass accumulation profile on skeletal health in early adulthood has 
also been replicated in experimental animals. Xi X et al. (44) 
employed 7-week-old male Wistar rats of normal growth, while 
Yuan Y et al. (45) constructed an early bone mass deficiency model 
using calcium-restricted Sprague–Dawley (SD) rats. Interestingly, 
bone loss was observed in 12-week-old male BALB/c mice after 
broad-spectrum antibiotics (ABX) treatment for 2 weeks (46), and 
an alcoholic osteoporosis model induced by ethanol has also been 
established to counteract the skeletal problems in chronic drinkers 
(47). In clinical practice, randomized controlled trials (RCTs) were 
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widely conducted to evaluate the efficacy of fecal microbiota 
transplantation (FMT), probiotics, prebiotics, and other 
interventions that target the gut–bone axis for osteoporosis, 
providing more feasibility for the integrated management of 
osteoporosis through the analysis of intestinal microbial data, 
BMD, and bone metabolic markers (48). Regarding diagnostic 
tools, high-throughput sequencing, predominantly 16S rRNA 
amplicon sequencing (49), and the integration of multi-omics 
technologies (including genomics, transcriptomics, proteomics, 
and metabolomics) (50) have enabled a more comprehensive 
advancement in exploring the mechanisms by which the gut 
microbiota and related molecules exert their anti-osteoporosis 
effects (Figure 1). 
3 Holistic account of the mechanism 
of gut–bone axis and molecules 
involved 

3.1 Direct effect of gut factors on bone 
health 

3.1.1 Microbe-derived components in bone 
homeostasis 

Intestinal factors act on bone either directly or through immune 
and endocrine transitions, with the direct role of SCFAs in 
influencing osteoclasts and osteoblasts being prominent. As the 
principal products of dietary fiber fermented by intestinal 
microbiota, SCFAs such as acetic, propionic, and butyric acids 
can provide energy to enterocytes and promote intestinal barrier 
integrity (51). In molecular signaling, SCFAs activate the members 
of the G protein-coupled receptor (GPR) family, such as GPR41, 
GPR43, and GPR109A, which in turn regulate the key pathways of 
bone metabolism, Wnt/b-catenin, and the receptor activator of 
nuclear factor-kB ligand (RANKL)/RANK/osteoprotegerin (OPG), 
for instance (52). When Wnt signaling is activated, b-catenin 
accumulates in the cytoplasm and enters the nucleus, where it 
binds to T-cell factor (TCF)/lymphoid enhancer factor (LEF) 
transcription factors and promotes the expression of osteogenesis-
related genes, thereby increasing bone formation (53). For the 
RANKL/RANK/OPG pathway, RANKL/RANK binding promotes 
the differentiation and activity of osteoclasts, while OPG acts as a 
decoy receptor for RANKL to inhibit the above process (54). RANK 
also serves as an activator of the nuclear factor kB (NF-kB) receptor, 
which is likewise involved in osteoclast differentiation (55). 
Additionally, SCFAs mediate bone mineralization and bone 
formation through the runt-related transcription factor (RUNX) 
signaling pathway, a key factor regulating the differentiation of 
osteoblast marker genes, which induces the directional 
differentiation of bone marrow stromal cells to bone and cartilage 
precursor cells (56). 

In addition to SCFAs, how other microbial-derived molecules 
directly affect bone health cannot be neglected either. The gut 
microbiota metabolizes tryptophan (Trp) to two types of 
products, indoles and quinolinic acid (QUIN) (57). As an 
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endogenous ligand for the intestinal aryl hydrocarbon receptor 
(AhR; a transcription factor), indole-acrylic acid (IA), indole-3-
propionic acid (IPA), and indole-acetic acid (IAA) can achieve the 
specific activation of AhR (58). AhR signaling not only directly 
inhibits the differentiation of osteoclasts induced by RANKL but 
also inhibits the NF-kB pathway in osteoblasts and promotes the 
expression of genes related to osteogenesis, such as Runx2 and 
Osterix (59). QUIN has been reported to mediate mitochondrial 
oxidative stress through the activation of the N-methyl-D-aspartate 
receptor (NMDAR) (60), yet its studies on bone maintenance 
remain lacking. Regarding the intrinsic structure of intestinal 
bacteria, lipopolysaccharide (LPS) is a major component within 
the cell wall of gram-negative bacteria (61). When intestinal 
microecology is disrupted, LPS enters blood circulation, activates 
the Toll-like receptor 4 (TLR4) signaling, and upregulates the 
expression of the NF-kB pathway, which in turn promotes the 
differentiation and activity of osteoclasts, leading to severe bone loss 
and osteoporosis (62). 

3.1.2 Intestinal permeability in maintaining bone 
health 

The intestinal mucosa acts as a selective filter, controlling 
material passage, mainly co-regulated by tight junction proteins 
and the mucus layer (63). Abnormal intestinal permeability leads to 
the endocytosis of bacterial endotoxins, pathogens, and undigested 
particles known as leaky gut (64), especially the LPS-TLR4/NF-kB 
pathway, which develops a direct stimulus to osteoclasts (65). A 
clinical study enrolling 150 IBD patients also provided empirical 
evidence for the significant correlation between leaky gut and 
decreased BMD (66). It is worth stating that the gut microbiota 
and their derived metabolites are critical in maintaining normal 
intestinal permeability. Beneficial bacteria such as Lactobacillus and 
Bifidobacterium secrete antimicrobial peptides (AMPs) to inhibit 
the intestinal colonization of pathogenic bacteria and maintain 
intestinal barrier integrity (67). SCFAs inhibit histone deacetylase 
(HDAC) and activate the adenosine 5′-monophosphate-activated 
protein kinase (AMPK) pathway, which in turn promotes the 
expression of ZO-1 and Occludin (68). Chen C et al. (69) also 
observed that supplementation of Trp metabolites such as IAA and 
IPA repaired the intestinal barrier integrity and bone loss in PMOP 
mice in an AhR-dependent manner, which involved the crosstalk 
between AhR and Wnt/b-catenin signaling cascade (70). The above 
elaborations support the crucial role of intestinal permeability in the 
gut microbiota–bone axis. 
3.2 Gut–immune–bone axis: indirect 
effects through immunization 

3.2.1 Participation of diverse immunocytes in 
osteoporosis 

As a chronic disease, the mechanisms of osteoporosis cannot be 
separated from immunity and inflammation; hence, the activation 
of immunocyte clusters and inflammatory cytokines that are highly 
correlated with bone health was explored. The first are Treg and 
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Th17 cells, as subpopulations of lymphocytes with opposite 
functions, whose balance is essential for inhibiting osteoclast 
activity and maintaining bone homeostasis (71). Th17 releases 
interleukin-17  (IL-17)  and  stimulates  osteoblasts  and  
mesenchymal stem cells (MSCs) to express RANKL, thereby 
accelerating the differentiation of osteoclasts (72). In contrast, IL-
10 and transforming growth factor-b (TGF-b) secreted by Treg 
display exactly the opposite effect. It is worth emphasizing that 
TGF-b, as a regulatory cytokine, participates in the activation of the 
bone morphogenetic protein (BMP)/Smad signaling pathway while 
mediating inflammation, which in turn regulates the differentiation 
and proliferation of osteoblasts, hence facilitating bone formation 
and restoration (73). The internal antagonism of macrophages 
likewise contributes to skeletal immune homeostasis. M1 
macrophages secrete pro-inflammatory  factors such as tumor

necrosis factor-a (TNF-a) and  IL-1b to inhibit osteoblast 
proliferation and promote osteoclast differentiation, while anti-
inflammatory M2 macrophages are beneficial to bone restoration 
(74). Moreover, certain activated B lymphocytes have also been 
Frontiers in Endocrinology 05 
reported to communicate with osteoblasts and osteoclasts via 
molecules including RANK, IL-7, and anti-OPG antibodies (75). 

3.2.2 How gut factors regulate bone health via 
immune system 

Except for the direct targeting of osteocytes as described above, 
intestinal factors also influence the distal bone tissue through the 
immune and inflammatory pathways. Going back to SCFAs, 
butyrate, propionate, and acetate were observed to possibly 
induce the expression of forkhead box protein 3 (Foxp3) to 
trigger the development of Treg while inhibiting CD4+ T cells 
(76). Trp metabolism in the intestine, as well as exogenous IAA and 
IPA, enhances M2 macrophages and bolsters the massive diffusion 
of IL-10 from the intestinal lamina propria to the bone marrow, 
thereby significantly promoting osteogenesis (70). While anchoring 
osteoclasts, LPS also activates the TLR4 signaling on the surface of 
macrophages, prompting the secretion and aggregation of cytokines 
such as TNF-a and IL-6 (77). The generation of anti-OPG 
antibodies in B lymphocytes was also dependent on leaky gut-
FIGURE 1 

The causative factors, detection indicators, therapeutic drugs, and construction of experimental animal models of osteoporosis. 
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induced entry of enterogenic antigens into the circulation, which in 
turn interferes with bone homeostasis (75). 
3.3 Gut–endocrine–bone axis: intervention 
of hormones and other endocrine 
substances 

3.3.1 Endocrine hormones related to both the gut 
and the bone 

The endocrine pathway is another indirect form of the gut– 
bone axis, in which the involvement of different types of hormones 
ranks as the most important aspect. As an endocrine cell distributed 
at the intestinal epithelium, enterochromaffin cells are capable of 
delivering 5-HT, also known as serotonin, which exerts a delicate 
and complex physiological effect on bone remodeling (78). As an 
important neuroendocrine mediator, 5-HT routinely travels 
through the bloodstream to the skeletal tissues, where it binds to 
appropriate receptors and regulates bone formation and resorption 
(79). However, high levels of 5-HT for a long period may lead to 
elevated osteoclast activity and bone resorption, which in turn result 
in osteoporosis. Other metabolic hormones also interact extensively 
with the gut microbiota and are involved in bone microecology. For 
example, intestinal b-glucuronidase-yielding bacteria such as 
Clostridia and Bacteroides catabolize the metabolized estrogen 
into a deconjugated active form, reabsorbing it through the 
enterohepatic circulation (80). The serum estrogen then binds to 
estrogen receptor (ER) a/ERb in bone tissue, inhibiting the 
differentiation of osteoclasts through the RANKL/OPG signaling 
axis (81). PTH promotes bone formation by driving the 
differentiation of osteoblasts and coordinating the recruitment of 
osteoblast progenitor cells (82). However, when intestinal barrier 
damage leads to decreased calcium absorption, the insufficient 
concentration of blood calcium directly stimulates the 
parathyroid glands to secrete PTH, liberating calcium at the 
expense of bone resorption (83). Calcitonin secretion is similarly 
regulated by intestinal barrier function, which inhibits osteoblasts 
and promotes osteogenesis (84). After the intestinal epithelium 
absorbs amino acids such as leucine, mechanistic target of 
rapamycin complex 1 (mTORC1) signaling is activated to initiate 
the synthesis of insulin-like growth factor-1 (IGF-1) in hepatocytes 
(85). IGF-1 not only promotes cartilage formation and midshaft 
bone growth but also affects the progression of osteoblasts and 
osteoclasts (86). Interestingly, LPS leakage also exhibits endocrine 
disruption, causing abnormal cortisol release and accelerated 
osteoblast apoptosis by affecting the hypothalamic–pituitary– 
adrenal (HPA) axis (87). 

It is well known that the biogenesis of bone is highly dynamic, 
with the process of bone resorption showing evident circadian 
rhythmicity (88). Previously, rhythmic signals sent from the 
center were believed to influence skeletal growth, metabolism, and 
homeostasis, whose disruption is significantly associated with 
decreased BMD (89). Based on the equally high sensitivity of 
intestinal physiology to circadian rhythm disruption, coupled 
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with the influence of intestinal factors on bone remodeling, Ko 
FC et al. (90) identified colon epithelial cell-specific Bmal1, a clock 
gene that regulates the intestinal circadian rhythms and whose 
disruption was shown to result in the absence of bone trabeculae 
and cortex in male mice. Furthermore, skeletal circadian rhythms 
have been observed to be similarly regulated by a variety of gut 
hormones, including glucagon-like peptide-1 (GLP-1), glucagon-
like peptide-2 (GLP-2), glucose-dependent insulinotropic 
polypeptide (GIP), and polypeptide YY (PYY) (91). In particular, 
GLP-1 and PYY, which are produced by enteroendocrine L cells, 
not only regulate the circadian rhythms of bone resorption and 
formation but also influence processes such as insulin secretion, 
appetite, and energy metabolism, which indirectly contribute to 
bone health. 

Melatonin (MLT), a crucial endogenous hormone whose 
synthesis takes Trp as raw material, was also observed to influence 
bone health while linking with intestinal microecology. Through 
shared precursors, metabolic interactions, and functional 
collaborations, MLT and intestinal Trp metabolites constitute a 
classic host–microbial co-metabolic network (92), which has also 
been reported to have certain anti-osteoporosis effects. Chen Y et al. 
(93) observed that disturbed intestinal Trp metabolism due to 
osteoporosis exposure further triggered a decrease in gut 
microbiota-derived MLT, whereas the administration of MLT 
alleviated osteoporosis symptoms and reversed intestinal dysbiosis, 
like increasing the relative abundance of probiotics such as 
Allobaculum and Parasutterella. The acting spectrum of gut 
microbiota-derived MLT also involves the production of SCFAs 
and the downregulation of trimethylamine N-oxide (TMAO)-

related metabolites, which precisely rehabilitates the disrupted 
intestinal microecology. Thus, microbial Trp metabolites are 
expected to be a feasible intervention site to inhibit osteoporosis 
progression through the gut–endocrine–bone axis. As a substance 
competing with intestinal Trp metabolism for precursors, MLT also 
participates in the dynamic modulation of M1/M2-type macrophage 
balance (94), which in turn reduces serum pro-inflammatory 
cytokine levels and restores intestinal barrier function. 

3.3.2 Vitamins absorbed through the intestine 
that act on bone 

While vitamin D at therapeutic doses was mentioned earlier as 
an effective nutritional supplement for the bone, dietary intake of 
vitamin D also plays an essential role in maintaining bone 
homeostasis. The small intestine absorbs the liposoluble vitamin 
D, which is then activated to 1,25-(OH)2-D by the liver and kidneys, 
thereby stimulating calbindin in the intestinal epithelial cells to 
maintain adequate blood calcium concentration (95). Based on the 
calcium dependence of calcineurin (CaN), calcium further serves as 
a second messenger to drive the CaN/nuclear factor of activated T 
cells (NFAT) pathway, participating in osteoblast proliferation, 
differentiation, and apoptosis (96). In addition to absorbing 
dietary vitamin K, intestinal bacteria harboring the Men gene 
cluster can directly synthesize vitamin K2 via the menaquinone 
pathway. The obtained vitamin K operates as a coenzyme of g-
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glutamyl carboxylase and engages in the carboxylation of bone 
matrix proteins such as osteocalcin, which is critical for maintaining 
bone strength and preventing osteoporosis (97) (Figure 2). 
4 Strengthened concept of gut–bone 
axis: an exploration of gut–bone axis 
plus X 

4.1 Extension on the boundary of gut– 
bone axis 

Since the gut and bone are physically distant but closely 
interconnected, certain upstream, midstream, and downstream 
mediators, as well as other targets, are bound to exist to 
guarantee the integral harmonization of the organism’s activities, 
theoretically. Here, we propose a reinforced mode of the gut–bone 
axis plus X that the gut–bone axis synergizes with other tissues or 
organs in the form of additive effects on clinical manifestations and 
mechanisms of action that are in tandem, constructing a broader 
biological network at the core of the gut–bone axis while spreading 
to other systems of the organism. Regarding the form of 
characterization, it can be interpreted that the effect chains of the 
entero-skeletal axis may influence the genesis and progression of 
certain systemic pathologies, or the presence of complications in 
specific diseases may be significantly linked to the gut–bone axis. 
4.1.1 Gut–bone axis and the hematopoietic 
system 

Bone tissues, except for the skeleton, as the most vital sustaining 
structure of the human body, the red bone marrow in long bones, and 
the cancellous stroma in flattened bones, also possess a lifelong 
hematopoietic function (98). In the bone marrow, the biogenesis of 
hematopoietic stem cells to hemocytes, leukocytes, and platelets 
maintains the homeostasis of the blood components to a large extent 
(99). Thus, the interaction between the gut–bone axis and the 
hematopoietic system is the chief problem. One study reviewed the 
impact of the gut–bone axis in the context of aging on phenomena 
constituting osteoporosis and hematopoietic hypoplasia (100). It noted 
that the key point would be the communication between gut-related 
agents [SCFAs, lactate, tryptophan metabolites, iron potency, bacterial 
extracellular vesicles, TLR signaling, and microbe-associated molecular 
patterns (MAMPs)] and hematopoietic-related immune cells, to which 
these kinds of aging-related functional degeneration should 
be attributed. 
4.1.2 Gut–bone–tumor axis 
Interestingly, there was a study reporting the involvement of the 

gut–bone axis in breast cancer (BC) and proposing the concept of 
the “gut–bone-tumor axis” innovatively. Mechanistically, BC is a 
kind of tumor that is greatly affected by endocrine disorders. The 
levels of hormones such as estradiol and progesterone are highly 
correlated with the incidence of BC, while obesity resulting from 
improper diet is also one of the pathogenic factors that cannot be 
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ignored (101), which corresponds to the gut–bone axis. Therefore, it 
is of clinical significance to describe the gut–bone axis in BC. Chen J 
et al. (101) demonstrated that intestinal dysbiosis induced by high-
fat diet promotes the release of leucine into the peripheral 
bloodstream, which further activates the rapamycin complex 1 
(mTORC1) signaling in medullary progenitor cells, triggers the 
differentiation of polymorphonuclear myeloid-derived suppressor 
cells (PMN-MDSCs) (102), and ultimately results in the adverse 
clinical outcomes of BC. Concentrating on the “gut–bone–tumor 
axis”, that study provides unique insights for BC management, on 
the one hand, and paves novel avenues for anticancer therapies 
targeting the intestinal dysbiosis, on the other hand. Nevertheless, it 
is worth stating that the exploration of more tumor types and more 
comprehensive mechanisms that correlate with the gut–bone axis is 
absolutely necessary; otherwise, the “gut–bone–tumor axis” may 
remain in the awkward conceptual stage. 

4.1.3 Gut–bone axis and diabetes 
According to the gut–endocrine–bone axis described above, GIP 

and GLP-2 are involved in the maintenance of bone homeostasis as 
regulators of bone conversion. As key enteroglucagons, GIP and 
GLP-2 themselves exhibit excellent hypoglycemic properties (103), 
which may be the rationale for the link between the gut–bone axis 
and diabetes. Several studies on type 1 diabetes mellitus (T1DM) and 
type 2 diabetes mellitus (T2DM) coincide with our conjecture. On the 
premise that T2DM patients with normal BMD still present an 
increased risk of fracture, Skov-Jeppesen K et al. (104) injected 
exogenous GIP and GLP-2 subcutaneously into 10 male T2DM 
patients. At the endpoint of the trial, significant reductions in 
several indices related to bone conversion, such as CTX, P1NP, 
osteosclerotic proteins, and parathyroid hormones, were observed 
compared with the placebo and baseline data. The above results 
organically combine the gut hormones and bone conversion together 
to achieve effective control of the elevated fracture risk in diabetes. In 
addition to T2DM, Hartmann B et al. (105) obtained consistent 
conclusions in T1DM. This observational case–control study 
targeting T1DM verified that patients with T1DM showed 
significantly impaired inhibition of bone resorption (as assessed by 
CTX) and bone formation (as assessed by P1NP) in oral glucose 
tolerance test (OGTT), in comparison to the iso-glycemic 
intravenous glucose infusion (IIGI) and healthy controls. 
Interestingly, this phenomenon was found to be independent of 
insulin secretion and glucose fluctuations, which further reflects the 
influence of the gut–bone axis and enteroglucagons on reduced BMD 
and increased fracture risk in diabetic patients. 

4.1.4 Gut–bone axis and periodontitis 
Periodontitis is a chronic infectious disease caused by periodontal 

pathogenic bacteria, which stimulates the differentiation of osteoclasts 
while inducing periodontal inflammation, resulting in alveolar bone 
resorption (106). In addition to the oral microbiota disturbance, 
intestinal microecology contributes as well. Studies have reported that 
PMOP plays a promoting role in the genesis and progression of 
periodontitis, which is legitimately associated with systemic bone 
destruction accompanied by PMOP, including the alveolar bone. To 
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figure out whether the process of PMOP leading to periodontitis 
explicitly involves the presence of the gut microbiota or the gut–bone 
axis, Han N and Jia X et al. (107, 108) developed a multifaceted 
elaboration in the aspects of circulatory metabolism and immune 
mediation that related to the gut–alveolar bone axis. On the one 
hand, intestinal bacterial compositions such as LPS and SCFAs may 
distally transfer to the alveolar bone to regulate bone homeostasis. On 
the other hand, intestinal pathogenic bacteria induce the homing of 
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immunocytes such as Th1, Th17, and natural killer (NK) cells to 
distant organs, leading to pathological alveolar bone loss. In addition, 
gut dysbiosis enhances systemic inflammation and subsequently 
releases  cytokines such as IL-6 and  TNF-a, which  in  turn
exacerbate periodontitis. Hence, it can be implied that anti-
osteoporosis strategies targeting the gut–bone axis may possess an 
adjunctive role in the prevention of periodontitis complicated 
by PMOP. 
FIGURE 2 

Mechanisms of how intestinal-related factors influence bone health through the gut–immune/endocrine–bone axis. 
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4.1.5 Brain–gut–bone axis 
The human body is functionally interconnected as a whole, and 

thus, synergies between the gut–bone axis and other organs in terms of 
mechanisms are also predictable. In the gut plus X regime, the brain– 
gut axis is a well-deserved hotspot. This bidirectional signaling between 
the brain and the intestine is essentially in tandem in the neural, 
endocrine, and immune pathways (109). In particular, neuroendocrine 
conduction, with neurotransmitters such as acetylcholine (ACh) and 
GABA directing the connection between the brain and intestine via the 
vagal and spinal nerves, plays a role in regulating the sensory, motor, 
and secretory functions of the digestive system (110). The gut–brain 
axis is also inseparable from the HPA axis, a crucial signaling cascade 
system. Corticotropin-releasing hormone (CRH) and arginine 
vasopressin (AVP) secreted by the hypothalamus act on the anterior 
pituitary and accelerate the release of adrenocorticotropic hormone 
(ACTH) and its stimulation of the adrenal cortex, further triggering the 
secretion of cortisol and other hormones and ultimately reaching the 
target site through blood circulation, affecting the functional and 
immune states of the intestinal tract (111). The reported presence of 
hypothalamic neuroendocrine alterations in PMOP patients laid a 
factual foundation for the research of the brain–gut–bone axis. 
Furthermore, Chen Z et al. (112) verified  the negative regulation  of  
neuropeptide Y (NPY), a potential neuroendocrine signal, on the 
brain–gut–bone axis in ovariectomy (OVX) rats. Under the 
condition of exogenous NPY overexpression, bone formation and 
bone microarchitecture were disrupted, pyroptosis-related molecules 
such as NOD-like receptor protein 3 (NLRP3) and Caspase-1 in 
subchondral cancellous bone were upregulated, and the levels of 
colonic inflammatory indicators like IL-1b, IL-18, and  serum LPS

were elevated as well. Correspondingly, the altered diversity and 
composition of the gut microbiota were observed, including a-
diversity represented by the Shannon, Simpson, and Chao1 indices; 
b-diversity assessed by principal coordinate analysis (PCoA); the ratio 
of Firmicutes to Bacteroidetes (F/B); and the relative abundance of 
Clostridia, Bacteroidia, and Lachnospirales. Y1R antagonist (Y1Ra; 
blocking NPY receptor) and FMT from healthy samples alleviated or 
even reversed the above alterations to some extent, suggesting the 
possibility of targeting the NPY-mediated brain–gut–bone axis for 
PMOP intervention. In addition, Zhang YW et al. (17) also reviewed  
the regulatory effects of probiotics on bone metabolism through the 
brain–gut–bone axis, stating the underlying mechanisms by which 
physicochemical factors, such as the intestinal epithelial barrier and 
derived metabolites, influence osteoporosis through neurological, 
immunological, and endocrine factors. 

4.1.6 Gut–liver–bone axis 
As emphasized above, the activation of vitamin D from intestinal 

sources depends on the support of the liver. Analogously, studies on 
the gut–liver–bone axis have elaborated on the adjunctive role of the 
liver in the gut–bone axis, with BA metabolism as an indispensable 
intermediary. Carson MD et al. (113) simulated the bone formation 
during puberty on specific pathogen-free (SPF) and germ-free (GF) 
mice at 6–12 weeks by administering a therapeutic dose of 
minocycline (a systemic ABX indicated for juvenile acne) and 
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explored the involvement of the gut–liver–bone axis in osteoporosis 
pathogenesis. As described, ABX-induced intestinal dysbiosis results 
in the altered microbial BA metabolism, which destroys the 
homeostasis between BA synthesis in the liver and BA metabolism 
in the intestine, restricts the farnesoid X receptor (FXR)/fibroblast 
growth factor 15 (FGF15) signaling axis in enterocytes with the 
conjugated BAs being an effective inhibitor of FXR, and further 
undermines the interplay of FGF15 with fibroblast growth factor 
receptor 4 (FGFR4) in the hepatocytes (114). The mutual outcome of 
these two effects is the upregulation of hepatic BA formation and 
emission of conjugated BAs into the blood circulation, which distally 
anchors the FXR in the bone marrow, resulting in the loss of 
osteoblast function, negatively impacting BMD, bone volume 
fraction, and fracture resistance (115). 
4.2 Refinement on the connotation of gut– 
bone axis 

In the downscaled concept of the gut–bone axis, the influence of 
gut microbes on the entire skeletal system is de-emphasized; here, we 
mainly summarize the role of the gut microbiota in specific parts  of  
the skeleton (such as the femur and vertebrae). A Mendelian 
randomization conducted by Chen S et al. (116) to clarify the 
causality between the gut microbiota and musculoskeletal disorders 
restricted the scope of orthopedic pathologies to six musculoskeletal 
diseases that may be highly associated with the gut–bone axis: 
osteoporosis, fracture, myasthenia gravis, low back pain (LBP), 
rheumatoid arthritis (RA), and ankylosing spondylitis. The inverse 
variance weighting (IVW) method in combination with Bonferroni 
correction ultimately yielded the causal relationships between genus 
Bifidobacterium and elevated left handgrip strength,  genus
Oxalobacter and the high risk of LBP, and family Oxalobacteraceae 
and the decreased risk of RA. The above results were obtained from 
the genetic level, which laid a foundation for further basic 
experiments and clinical validation. The concept of the gut–spine 
axis and gut–disc axis is even narrower. Morimoto T et al. (117) 
proposed that the degeneration of spinal components is associated 
with gut microbiota anomalies and separately categorized 
osteoporosis, synovial osteoarthritis, disc degeneration, spinal 
sarcopenia, and lumbar stenosis under spinal degenerative diseases 
(SDD), introducing the concept of the gut–spine axis for the first 
time. Based on the primary etiology and location of LBP, Li W et al. 
(118) initially constructed the gut–disc axis to summarize the overall 
impact of gut microbiome on intervertebral disc degeneration (IDD). 
The results suggested that strategies targeting the gut microbiota and 
interrupting the gut–disc axis cascade can inhibit the inflammation in 
IDD and thus alleviate LBP. Indeed, investigating a relatively narrow 
but centralized concept can simplify the workflow and help draw 
parallels to guide the interventions for a collective group of 
orthopedic diseases. However, the desirability of the above axes 
depends, in principle, on the theoretical and practical implications 
of characterizing some different orthopedic diseases within a single 
context; otherwise, it would remain just a vague definition (Figure 3). 
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5 Strategies for osteoporosis 
management: gut–bone axis targeted 

5.1 FMT, probiotics, and prebiotics 

5.1.1 FMT 
As a novel technique of “organ transplantation”, FMT involves 

transferring fecal microbiota from healthy donors to recipients to 
modify disturbed intestinal ecology, whose efficacy in treating 
digestive diseases such as Clostridioides difficile infection (CDI) 
(119), ulcerative colitis (120), and IBS (121) has been repeatedly 
verified. The effect spectrum of FMT has also taken a qualitative 
leap in recent years, with the paving of networks such as the gut– 
brain axis, gut–liver axis, and the intestinal–vaginal bi-luminal tract. 
Hence, diseases like Parkinson’s disease, alcoholic fatty liver, and 
epithelial ovarian cancer, which affect multiple systems throughout 
the body, can be partially or substantially intervened by FMT. 
Similarly, both basic and clinical studies on FMT for bone health are 
underway, fueled by increasing empirical evidence of the gut–bone 
axis. Wang et al. (122) transferred feces from osteoporotic rats to 
young rats and observed the onset of osteoporosis in the recipients, 
which was primarily ascribed to gut microbiota dysbiosis and 
intestinal mucosal barrier damage. Atarashi et al. (123) also found 
that Clostridium IV and XIVa isolated from healthy mice increased 
the number of systemic and lamina propria Treg cells when 
transplanted into germ-free mice, which in turn affected 
osteoclast genesis through the secretion of IL-4, IL-10, and TGF-
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b. Moreover, a study (43) has reported bone loss in antibiotic-
pretreated mice 1 week after receiving fecal bacteria from mice with 
glucocorticoid-induced osteoporosis, somewhat corroborating the 
endocrine involvement of FMT in influencing bone health. To 
summarize, FMT first exerts in situ effects on intestinal metabolites 
and the intestinal mucosal barrier, consequently working through 
the immune and  endocrine pathways to regulate bone mass.

Nowadays, the application of FMT in anti-osteoporosis treatment 
remains in the research stage and has not yet been applied in a 
clinical setting. Due to the lack of standardized treatment protocols, 
transplantation routes, donor selection, microbiota preparation, 
and storage methods may affect the ultimate results (124). 
Meanwhile, given the individual differences in gut microbiota 
composition and metabolic characteristics of osteoporosis 
patients, the risk of immune rejection and infection associated 
with long-term transplantation, and the ethical issues and 
informed consent related to the protection of donor–recipient 
privacy (125), there may still be a long way to go before the use 
of FMT in the management of osteoporosis. 
5.1.2 Probiotics 
Probiotics are live microorganisms that benefit human health 

when consumed in adequate amounts (126). Somewhat unlike 
FMT, the administration of combined or single probiotics has 
been more recognized as alleviating digestive diseases and lesions 
distant from the intestinal tract, as well as in orthopedic diseases. 
Considering the altered gut microbiota in the context of bone loss as 
FIGURE 3 

Mechanistic correlation of the gut–bone axis with (a) brain and (b) liver and (c) the concept extrapolation/shrinkage of gut–bone axis according to 
representational relevance. 
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discussed above, the intake of probiotics from Firmicutes has 
become our major concern. Surprisingly, we observed the positive 
effect of a series of probiotics classified morphologically as bacilli on 
bone quality enhancement. The administration of Bifidobacterium 
bifidum FL228.1 and Bifidobacterium animalis subsp. lactis F1-7 
(127) was reported to increase the relative abundance of beneficial 
bacteria such as Lactobacillus and Colidextribacter while inhibiting 
the colonization of pathogenic bacteria like Desulfovibrio. The
remodeled microbiome composition further optimizes the 
integrity and permeability of the intestinal barrier via Occludin, 
ZO-1, Claudin-2, and  Mucin 2 (MUC2), at the  same  time

suppressing the activity of M1-type macrophages, thereby 
improving the clinical indices of bone health, including BMD, 
BV/TV, and Tb. N. Similar osteoporotic remission was also 
observed in OVX mice treated with quantitative gavage of Rothia 
for 8 weeks (128). In addition, Lactobacillus rhamnosus GG (129) 
strengthened bone microstructure and bone biomechanics by 
adjusting the ratio of Firmicutes/Bacteroidetes, maintaining Th17/ 
Treg balance, repairing mucosal damage caused by estrogen 
deficiency, and upregulating the levels of GLP-2R, CTX, P1NP, 
and RANKL. A similar phenomenon was observed in heat-killed 
Lacticaseibacillus paracasei GMNL-653 (130), which was confirmed 
by in vitro and in vivo models and whole-genome sequencing. 
Herein, the mechanism of probiotics influencing bone health 
involves first exerting in situ effects on the gut microbiota and 
intestinal barrier, then affecting the interactive pathways of the gut– 
bone axis (including endocrine, inflammation, and immunity), and 
ultimately regulating bone homeostasis. 

In the field of bacterio-pharmaceuticals, the preference for 
probiotics over FMT can be largely attributed to the fact that 
probiotics, as the most potent component of fecal microbiota, are 
better established in research, while the operation process is more 
streamlined and controllable. This norm seems to be equally 
applicable in the gut–bone axis in treating orthopedic diseases. 
While mono-bacterial supplementation facilitates the exploration of 
the mechanisms of the gut–bone axis and expands the insights into 
microbiome–host interactions, multi-bacterial combinations can be 
constantly optimized in terms of procedures and proportions to see 
if there are synergies or detractions, thus maximizing the efficacy of 
probiotics in the treatment of orthopedic disorders. Therefore, it is 
ideal to evaluate the efficacy of probiotics on orthopedic diseases 
under the premise of ethical approval. 

5.1.3 Prebiotics 
In addition to FMT and probiotics, prebiotics have also been 

reported to treat orthopedic disorders through the gut–bone axis. 
Prebiotics can be defined as a non-digestible carbohydrate that 
selectively stimulates the activity of beneficial bacteria in the 
intestinal tract, thereby positively affecting host health (131). 
Certain strains in the gut microbiota ferment prebiotics and 
influence the health of the skeleton in a variety of ways, for 
instance, promoting the production of SCFAs, lowering luminal 
pH, improving the absorption of calcium and phosphorus, 
enhancing anti-inflammatory properties, and modulating intestinal 
Treg cells. The prospect of prebiotics such as oligofructose (FOS), 
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galacto-oligosaccharide (GOS), inulin, and phenolic acids applied to 
support bone quality has been elucidated in several studies (29). 
Especially for FOS, a study specifically comparing FOS 
supplementation with blank control and tart cherry addition (TC; a 
natural active substance) verified in an osteoporosis model of C57BL/ 
6 female mice that FOS significantly increased the content of SCFAs 
and the BMC, density, and BV/TV in vertebral bodies and the 
proximal tibia, which involved the presence of osteoblast genes 
(Wnt10b, Bmp2, Osterix, and Col1a1) and osteocyte genes (Phex, 
Dmp1, Mepe, Cnx43, and Sost). Interestingly, the above effects on 
osteoblasts and osteocytes were independent of Treg cells. Similarly, 
konjac oligosaccharides (KOSs) (71) were also observed to increase 
the number of bone trabeculae by 134.2% and bone bending stiffness 
by 103.1% in OVX rats, thereby significantly alleviating bone loss. 
This effect was achieved through the gut–bone axis (promoting the 
growth of Bifidobacterium longum, repairing intestinal mucosal 
barrier, inhibiting pro-inflammatory cytokines, and restoring Treg/ 
Th17 balance in bone tissue), helping to inactivate the osteoclasts. 
Furthermore, researchers used resveratrol (132), a widely employed 
polyphenol with prebiotic properties that can be converted into a 
highly metabolically active molecule by the gut microbiota, thus 
serving as one kind of epigenetic modulator in the combined therapy 
and prevention of osteoporosis. 
5.2 Dietary interventions 

5.2.1 Dietary supplements or nutrients 
Parallel to prebiotics, some other dietary  supplements or

nutrients have also been shown to alleviate orthopedic diseases, 
whose function varies depending on the composition. Multiple 
different nutrients with bone health-promoting effects, such as 
dietary fiber (DF), vitamins, and ketones, were observed. The first 
is DF, a carbohydrate polymer derived from bacterial cell walls that 
cannot be hydrolyzed by enzymes in the small intestine, which exerts 
complementary or overlapping functions with prebiotics. Wu Y et al. 
(133) administered DF at different levels for 8 weeks in an SD rat 
model of osteoarthritis, and 16S rRNA sequencing showed that high 
DF intake significantly increased the abundance of Bacillota-
dominant microbiota and attenuated the extent of osteoarthritic 
lesions. The latter was achieved mainly through the gut–bone axis 
by upregulating SESN2 expression in the knee joint, maintaining 
chondrocyte activity, and mitigating synovial inflammation. Another 
promising dietary supplement, menaquinone-7 (MK-7), presents a 
slightly different mode of effect (45). As the most bioavailable and 
stable congener of vitamin K2, one study evaluated the effects of 
exogenous intake of MK-7 combined with vitamin D on bone 
formation in SD rats growing under calcium limitation. The results 
showed that MK-7 supplementation improved several bone quality 
parameters, such as femoral cortical thickness, cortical bone area, and 
calcium content, on the one hand, and remodeled the gut microbiota 
dysbiosis accompanying calcium deficiency, on the other hand, with a 
significant  decline in  the  abundance of pathogenic bacterium

Parasutterella. Ultra-high-performance liquid chromatography– 
quadrupole-time of flight mass spectrometry (UHPLC-Q/TOF-MS) 
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metabolomic analyses of cecum and humerus samples also suggested 
a normalization of isovaleric acid levels and holistic metabolic 
profiles. More interestingly, isoquercetin (IQ), a natural dietary 
flavonoid previously regarded as one of the desirable targets for 
hepatocellular carcinoma treatment (134), was innovatively validated 
by Wu M et al. (135) to have anti-osteoporosis properties in an OVX 
model. Long-term supplementation of IQ improved the disturbed gut 
microbiota and LPS-triggered inflammatory status, at the same time 
inhibiting the NF-kB signaling pathway, thereby alleviating or 
reversing bone loss outcome. In addition, in vitro experiments 
demonstrated that the effect of IQ was dose-dependent and 
achieved partly through the promotion of osteoblast proliferation. 
However, it is noteworthy that some substances listed above may be 
more than simply categorized as dietary supplements, which may also 
engage in more macroscopic modulation of dietary patterns. 

5.2.2 Dietary patterns 
Osteoporosis and osteoarthritis are widely accepted as chronic 

diseases, making conventional therapies combined with lifestyle 
modifications indispensable. As an adaptive factor that is highly 
correlated with the gut–bone axis, elaborating the overall localized 
dietary patterns that affect bone health is critical. Dietary patterns 
focused on reducing inflammatory response in vivo through the 
intake of anti-inflammatory and antioxidative foods are thought to 
hold the potential of ameliorating osteoporosis (130). For example, 
the Mediterranean diet (MD), low glycemic index diet (LGID), and 
dietary approaches to stop hypertension (DASH) have been tested to 
diminish the levels of inflammatory factors such as C-reactive protein 
(CRP), IL-6, and TNF-a, but their detailed roles in the maintenance 
of bone quality have yet to be elucidated. The botanical constituent 
blackcurrant (BC) was noted to significantly and dose-dependently 
increase the abundance of Ruminococcus 2 in a clinical RCT that 
recruited 51 PMOP women with BC intake for six consecutive 
months (136). Further correlation analyses demonstrated the high 
correlation between Ruminococcus 2 and BMD maintenance in the 
high BC group, which highlighted Ruminococcus 2 as the key 
bacterium in bone protection. Also, the significant upregulation of 
plasma proteins (IGFBP4, fetuin-B, tetranectin, and vitamin K-
dependent protein S) was tentatively proposed to be associated 
with osteoclast activity. He W et al. (137) administered milk 
calcium-fortified yogurt to OVX mice for 6 weeks, observed the 
modulation of the glycine pathway and the elevated Lactobacilli, and  
monitored the decrease in Clostridiaceae by metabolome and genome 
techniques, which were directly related to enhanced spinal BMD. The 
above results implied that yoghurt, a processed dairy product, may 
act as a calcium vector and benefit bone mineralization in PMOP. Liu 
Z et al.  (47) revealed the harmful effects of chronic alcohol 
consumption on bones in that long-term intake of large amounts 
of ethanol affects the gut microbiota while stimulating the negative 
regulation of the gut–bone axis by 5-HT, which in turn induces the 
genesis of alcoholic osteoporosis in rats. 

It is worth noting that prebiotics, in a broad sense, also belong 
to the category of dietary supplements while being incorporated 
into dietary patterns with relatively unclear boundaries. For 
instance, the fruit product dried prunes (138), conventionally 
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categorized as a dietary supplement, has been shown to restore 
bone loss in OVX mice, as further studies have attributed this effect 
to polyphenols and carbohydrates, which are more explicitly 
identified as prebiotics. Furthermore, given the strong interaction 
of the prebiotic–gut microbiota axis, discussing prebiotics in the 
context of microbiota may make more sense, as described above. 
However, here, we give the concept of “Medicine Food Homology 
(MFH)” (139), which encompasses dietary-relevant structures that 
are postulated to have therapeutic effects in orthopedic diseases 
through the gut–bone axis. MFH is derived from the theory of 
traditional Chinese medicine (TCM), which reveals both the 
nutritional and medicinal value of many foods, and the 
preventive and therapeutic effects of these substances on 
orthopedic diseases corroborate this point. It is undeniable that 
MFH is currently regarded as a hotspot in food research and also a 
blue-ocean market with great potential. Nevertheless, whether food 
as medicine possesses real efficacy, and whether such efficacy can be 
presented in more quantitative and visualized indicators, is highly 
related to the subsequent clinical translation and industrial launch 
and is also the most worthwhile issue awaiting to be clarified in the 
field of bone health. 
5.3 Drug application 

The routine therapeutic drugs for osteoporosis include BPs, 
selective estrogen receptor modulators, and parathyroid hormone 
analogs, matched to the intervention of osteoporosis under different 
etiologies, fulfilling ideal efficacy while accompanied by certain 
adverse effects (33). Following the renaissance and promotion of 
TCM, mounting studies currently spotlight the seminal applications 
of herbs in the prevention and treatment of skeletal lesions and 
envisage their potential mechanisms via the gut–bone axis. Li K et al. 
(140) reviewed a variety of natural herbs such as Achyranthes 
bidentata Blume, Ganoderma lucidum, Pueraria lobata, and

Agaricus blazei Murill, which were found to potentially affect 
Firmicutes and Bacteroidetes abundance, promote SCFA 
production, and modulate Treg/Th17 proportion, thereby indirectly 
working on bone maintenance. The function of puerarin, in 
particular, was also revealed by Li B et al. (141) through

experimental methods such as m-CT, 16S rRNA sequencing, and 
metabolomics. Results showed that puerarin restored the disturbed 
intestinal microecology by enriching amino acid metabolism, butyric 
acid generation, and LPS biosynthesis, herein alleviating osteoporosis. 
The above confirmed the clinical potential of puerarin as a 
phytoestrogen to remodel the bone microenvironment through the 
gut–bone axis and thus counteract PMOP. Korean red ginseng 
(KRG) and its processed products, senna granules (SG), have also 
been shown to prevent and alleviate osteoporosis via the gut–bone 
axis. Chargo NJ et al. (142) observed the effects of KRG extracts in 
preventing distal femur bone loss as well as significantly altering the 
composition of the gut microbiota in corticosterone-induced 
osteoporosis (GIO) mice. Kang HJ et al. (46) similarly  observed  a
significant correlation between bacteria Lactobacillus, rc4-4, and 
Alistipes finegoldii and bone strengthening after the addition of 
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KRG extracts in a mouse model of significant bone loss induced by 
intestinal dysbiosis following ABX, suggesting the involvement of the 
gut–bone axis in the role of KRG extracts in bone health. However, 
both studies appeared to find relatively limited effects of KRG extracts 
on modulating immune status and intestinal barrier function. In 
contrast, SG delivered better clinical benefits, which have been shown 
to be an efficient prescription for PMOP (42). SG intake not only 
systemically strengthened bone quality but also modulated the 
composition of the gut microbiota. At the cellular and molecular 
levels, the expression of femoral OPG and RANKL proteins, fecal 
SCFAs and colonic FOXP3 cells, and ZO-1 and Occludin proteins 
were elevated, together with the upregulation of serum cytokines IL-
10 and TGF-b and the downregulation of IL-17 and TNF-a. The
above results hinted that SG ameliorates osteoporosis via the gut– 
immune–bone axis as an ideal vehicle, which may account for its 
superiority over KRG extracts. Interestingly, some novel small 
molecules present in natural herbs have also been tentatively 
speculated to exert protective effects against osteoporosis through 
the gut–bone axis. For example, Icariin I (GH01) (143), extracted 
from the herb Epimedium, has been reported to significantly restore 
the intestinal barrier function, remodel the microbial composition, 
and regulate the host immune status in OVX mice, thereby effectively 
improving osteoporosis and bone loss, and has undergone a 
preliminary exploration in the innovative application of TCM. 
 

6 Future prospects: innovating 
potential approaches for gut–bone 
axis to protect bone health 

6.1 Disciplinary intersection with nano/ 
molecular medicine 

Based on the excellent biocompatibility, degradability, and 
mechanical properties of biomaterials, a variety of nanomaterials 
have been applied in fracture reposition, bone defect restoration, 
joint replacement, and bone tumor treatment. Nanomedicine, as a 
major branch of molecular medicine, has gradually become a novel 
therapeutic trend in the current treatment of orthopedic diseases by 
virtue of its high efficiency, precision, and low adverse effects (144). 
Zheng Y et al. (145) developed a propolis nanoemulsion (PNE), 
which can be administered to manage osteoporosis by means of 
targeted transgene modulation. Test results showed that the oral 
administration of PNE mediated a decrease in the abundance of 
Streptococcus intestinalis and an increase in the transgenic 
metabolite L-arginine, which further inhibited osteoblasts and 
enhanced osteoclasts through the gut–bone axis, exerting a 
significant anti-osteoporotic effect. Furthermore, Chen Y et al. 
(146) observed the anti-inflammatory and antibacterial activities 
of gold nanospheres (GNS), which were screened under scanning 
electron microscopy (SEM) for uniform particle distribution with a 
zeta-potential value of approximately −24.6 mV. The modulatory 
effect of GNS on intestinal homeostasis (Chao1, Shannon, and 
Simpson indices, PCoA, and F/B ratio) was demonstrated in an 
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OVX mouse model of osteoporosis, which then restrained the 
metabolism of microbiota-related TMAO (betaine, choline, 
creatinine, carnitine, TMA, and TMAO) and the release of pro-
inflammatory cytokines [TNF-a, IL-6, and granulocyte colony-
stimulating factor (G-CSF)], thereby inhibiting bone loss induced 
by  estrogen  deficiency.  Admittedly,  the  application  of  
nanomedicine in osteoporosis shows definite potential in the 
context of medical–industrial integration. However, as an 
emerging discipline, the preparation and characterization, 
targeted delivery, and controlled release of nanomaterials remain 
a challenge, and the issues of biosafety, efficacy complexity, cost, 
and regulation also need to be optimized. 
6.2 Engineering of extracellular vesicles 

Extracellular vesicles (EVs) refer to vesicular structures with a 
membrane structure released by cells, including different subgroups 
such as exosomes, microvesicles, and apoptotic vesicles. These 
vesicles exist widely in blood, saliva, and urine, serving as an 
essential medium for intercellular communication (147). In recent 
years, the mechanism of EVs to prevent osteoporosis has been 
increasingly elucidated. It was reported that EVs from osteoblasts 
and MSCs are able to carry various signaling molecules, such as RNA, 
proteins, and lipids, thus regulating the balance of bone resorption/ 
formation and promoting the reestablishment of bone tissue (148). 
For example, Lee KS et al. (149) extracted EVs from adipose tissue-
derived stem cells (ASC-EVs), in which OPG, miR-21-5p, and let-7b-
5p were highly enriched. Among them, OPG (decoy receptor for 
RANKL) blocked the interaction between RANKL (NF-kB ligand)

and RANK, miR-21-5p downregulated Acvr2a, and let-7b-5p 
significantly downregulated the expression of osteoclast-related 
genes, which ultimately inhibited the germination and 
differentiation of osteoclasts. In addition to in situ effects on bone 
tissue, some natural or engineered EVs also participated in gut 
microecology in the anti-osteoporotic process, suggesting the 
involvement of the gut–bone axis. Hao H et al. (150) explored the 
effects of milk-derived EVs (mEVs) on osteoporosis in OVX mice and 
observed that the supplementation of mEVs promoted the 
colonization of anabolic Bacillus spp. associated with SCFAs; 
upregulated the levels of intestinal acetic, propionic, and valeric 
acids; and inhibited the expression of serum TNF-a and IL-17 
while downregulating the factors related to osteoclast differentiation 
in bone tissue to alleviate osteoporosis symptoms. More excitingly, 
Liu H et al. (151) used recombinant Escherichia coli Nissle 1917 to 
construct a fusion overexpression system of BMP-2 and CXCR4 with 
ClyA, a kind of bacterial EV (BEV) surface protein, and finally 
designed the engineered BEVs-BMP-2-CXCR4. BEVs obtained 
through this synthetic biology technique significantly promoted the 
differentiation of bone marrow MSCs toward osteoblasts and 
effectively prevented osteoporosis in OVX mice. In general, EVs 
exhibit superior bone-targeting and drug-loading capabilities as a 
novel cell-free therapeutic, which will play a greater role in bone 
health with updated extraction and purification processes (Figure 4). 
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6.3 Future technologies oriented by gut– 
bone axis 

Beyond referring to the past and taking stock of the present to 
achieve anti-osteoporosis effects through the gut–bone axis, it is 
equally of great significance to optimize tools for future 
technologies and to address the issues that exist along the way. 
Actually, studies have already been conducted to prospectively focus 
on bone loss in future survival environments, and Bedree JK et al. 
(152) examined the correlation between bone loss during spaceflight 
and gut microbiome, as well as specific host metabolites. 
Contextualizing the decline in BMD and disturbances in bone 
homeostasis according to Rodent Research 5 implemented by 
National Aeronautics and Space Administration (NASA) in the 
Deep Space Travel Experiment (DSTE), the study employed whole-
genome sequencing, 16S rRNA analysis, and liquid chromatography– 
tandem mass spectrometry (LC-MS) metabolomics to demonstrate 
the relative abundance alterations of bacterial strains (Lactobacillus 
murinus and Dorea sp.) and the functional gene cluster enrichment of 
metabolites (lactic acid, leucine/isoleucine, and glutathione) when 
exposed to microgravity. The exploration of spaceflight-related bone 
loss at the present time represents a more cutting-edge vision, but 
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shortcomings also exist. Except for the possible lack of sophistication 
in subject selection, the detection tools adopted and the potential 
mechanisms explored remain largely within the standard paradigm. 
While the latter appears to be a common problem in the research of 
the gut–bone axis affecting osteoporosis at the current level, the 
limitations are not yet evident. 

As summarized previously, a number of studies have revealed 
the impact of the gut microbiota on bone health and highlighted, for 
example, the role of bone metabolism by modulating the immune 
system, metabolic pathways, and hormonal dynamics. However, the 
specific and comprehensive molecular mechanisms, or whether 
there are associations and crosstalk between these different 
pathways, remain unclarified. With the advancement of molecular 
biology and genetics, networking the biological information on the 
effects of gut microbes on bone metabolism is possible, which will 
also provide a theoretical basis for the formulation of novel 
therapies and drugs. In addition, consistent with the current state 
of osteoporosis worldwide, mounting relevant basic and clinical 
trials are underway. The former centers on animal models, which 
illustrate valuable insights into the potential mechanisms by which 
the gut–bone axis influences osteoporosis, but more evidence is 
required to translate the findings into human clinical practice. 
FIGURE 4 

Intestinal microecology-targeted strategies for the management of osteoporosis and therapeutic effects on both bone health and intestinal 
homeostasis. 
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However, due to the complexity and ethical constraints of clinical 
trials, it is difficult for the latter to conduct large-scale and long-
term follow-up, and in contrast, most clinical RCTs aim at the 
validation of symptomatic drugs such as calcium, vitamin D, and 
BPs, while the microecological modifiers that target the gut–bone 
axis are seldom screened. More high-quality, large-scale, and multi-

centered clinical trials to prove the efficacy and safety of gut 
microbiota modulation in the treatment of orthopedic diseases 
are necessary. 

The next concern is methodology. Current gut microbiota 
monitoring relies primarily on 16S rRNA sequencing, with 
metabolomics or proteomics being additionally supplemented in 
some studies. These tools collect microbial information on certain 
facets at the genetic and transcriptional levels, but suffer from limited 
efficiency and low visualization levels and at the same time fail to 
achieve a dynamic description of the spatiotemporal distribution of 
the gut microbiota. As a result, there is still uncertainty as to whether 
the assessment of the intestinal microenvironment can accurately 
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reflect bone health. The development of more dynamic, objective, and 
visible assessment methods and storage tools is warranted to review 
gut microbiota alterations and their impact on bone health via the 
gut–bone axis and to facilitate clinical decision-making by delivering 
more detailed interactive information. Otherwise, given the 
individualized differences in gut microbiota composition and bone 
quality, the population’s responses to the same therapy can be 
variable. Herein, a feasible strategy would be to investigate the 
possibility of categorizing osteoporosis populations according to the 
gut microbiota, a more explicit and non-invasive characterization, for 
pre-osteoporosis prophylaxis and more precise cause-specific and

symptomatic treatment based on subgroup characteristics. 
Individualized interventions based on the gut microbiota may 
enhance therapeutic efficacy while minimizing side effects, which 
would benefit the majority of middle and older-aged adults, as well as 
some young children with skeletal disorders. Of course, all of the 
above cannot be achieved without interdisciplinary collaboration 
between orthopedics and a variety of fields, including microbiology, 
FIGURE 5 

Integral elaboration on appraisal of osteoporosis, how gut–bone axis influences bone health and interacts with other organs, and potential 
interventions for osteoporosis that target the gut–bone axis. 
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genetics, immunology, and endocrinology, which will help 
comprehend the relationship between the gut microbiota and 
osteoporosis  and  expand  the  therapeutic  spectrum  of  
orthopedic diseases. 
7 Conclusion 

In conclusion, this review focused on osteoporosis, the most 
common bone disease jeopardizing bone health, and described its 
causative factors, mechanisms, and diagnostic and therapeutic tools 
and their existing shortcomings. Clinical evidence on the involvement 
of gut-related factors in osteoporosis led us to undertake the core 
concept of the gut–bone axis and systematically summarize that the 
intestinal intrinsic structure, gut microbiota, and derived metabolites, 
with the immune and endocrine routes as the intermediate transitions, 
attain a bidirectional interplay with skeletal tissue through the gut– 
bone axis. Based on the holistic structure and function of the organism, 
we further propose the framework of the gut–bone axis plus X,  which  
provides some reference for the derivation and qualification of the gut– 
bone axis, helps to clinically interpret the gut–bone axis stimulated by 
organs such as the brain and liver, and precisely facilitates the treatment 
of differentiated individuals with osteoporosis. Furthermore, this review 
details FMT, probiotics and prebiotics, and dietary patterns as 
intervention strategies targeting the gut on osteoporosis; summarizes 
conventional medications, potential therapeutic drugs, and TCM that 
exert anti-osteoporosis effects via the gut–bone axis; and illustrates the 
superiority of nanomedicine, engineered biomaterials, and future 
technologies in the promotion of bone health given the 
interdisciplinary strengths of orthopedics. The above portrayal of the 
gut–bone axis in anti-osteoporosis, on the one hand, stimulates a 
broader management mindset for active health of the skeleton, and, on 
the other hand, highlights the key involvement of intestinal factors in 
systemic pathogenesis, which is expected to provide theoretical basis for 
disease intervention strategies that target the gut and the clinical 
implementation of micro-ecological preparations (Figure 5). 
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