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Background: Diabetes Mellitus (DM) is a complex metabolic disorder

characterized by hyperglycemia, primarily arising from insufficient insulin

secretion or the development of insulin resistance. Estrogen plays a significant

role in regulating the occurrence and progression of DM. This study aims to

investigate the role of estrogen-related genes in diabetes, focusing on identifying

potential biomarkers and therapeutic targets for the disease.

Methods: We initially obtained gene expression datasets related to type 2

diabetes mellitus (T2DM) from the GEO database. A systematic and coherent

series of methodologies was then implemented in a structured manner. First,

Principal Component Analysis (PCA) was employed for preliminary data

exploration and dimensionality reduction. Next, we identified Differentially

Expressed Genes (DEGs). Subsequently, we conducted Weighted Gene Co-

expression Network Analysis (WGCNA) to uncover gene modules associated

with DM. This was followed by Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses to explore the biological

functions and pathways associated with the identified genes. To enhance the

precision of biomarker identification, we applied three distinct machine learning

algorithms, including Least Absolute Shrinkage and Selection Operator (LASSO),

Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and Random

Forest (RF), for further refined selection. This comprehensive approach ultimately

identified the estrogen-related gene IER3 as a promising biomarker for DM.

Furthermore, correlation analyses focusing on immune cell infiltration were

conducted to clarify the immunological role of IER3 in DM.

Results: Our findings revealed a significant downregulation of IER3 in DM

patients, accompanied by an AUC value of 0.723 in the diagnostic curve ROC,

indicating its considerable diagnostic and prognostic potential for DM.

Furthermore, the expression levels of IER3 exhibited a strong correlation with

variations in the proportions of diverse immune cell types, suggesting that it may

play a pivotal role in the immunoregulatory mechanisms underlying DM.
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Conclusion: In conclusion, our findings reveal that the estrogen-related gene

IER3 is significantly downregulated in patients with DM, highlighting its potential

as a diagnostic and prognostic marker for the disease. Therefore, IER3 may serve

as a promising biomarker and therapeutic target for DM.
KEYWORDS

diabetes mellitus, glycometabolism, estrogen, bioinformatics analysis, machine
learning, IER3
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1 Introduction

Diabetes mellitus (DM) is characterized by hyperglycemia and

encompasses several types, primarily type 1 diabetes mellitus

(T1DM), type 2 diabetes mellitus (T2DM), and gestational

diabetes mellitus (GDM). The primary pathological mechanisms

underlying DM involve either inadequate insulin secretion or the

presence of insulin resistance, resulting in sustained elevations in

blood glucose levels (1, 2). This hyperglycemic state not only

disrupts systemic metabolism but also inflicts damage to multiple

organs and systems. Chronic hyperglycemia is a contributing factor

to both microvascular and macrovascular complications, leading to

conditions such as diabetic retinopathy, diabetic nephropathy,

diabetic neuropathy, alongside a variety of gynecological

malignancies (3, 4). Furthermore, individuals with DM

demonstrate a markedly higher incidence of cardiovascular

diseases, contributing to a cardiovascular mortality rate that

exceeds that of individuals without DM (5, 6). Preventive

strategies for DM emphasize the importance of managing

established risk factors, including obesity, hypertension, and

unhealthy dietary habits, while also promoting public awareness

of DM through health policies designed to enhance early screening

rates. Notably, early intervention in T2DM has been shown to

effectively delay or prevent the onset of the disease.

Estrogens, a class of steroid hormones predominantly secreted

by the ovaries, include estradiol (E2), estrone (E1), and estriol (E3).

These hormones play a crucial role in the development of the female

reproductive system, the manifestation of secondary sexual

characteristics, and a multitude of physiological functions (7).

Recent advancements in understanding of estrogen signaling

mechanisms have yielded a more nuanced perspective on their

roles in various physiological processes. Within the female

reproductive system, estrogens are primarily responsible for

promoting the development and maturation of ovarian follicles,

sustaining endometrial proliferation, and facilitating ovulation.

Additionally, estrogens have garnered considerable attention for

their protective effects on bone health, as they help maintain bone

density by promoting bone matrix synthesis and inhibiting bone

resorption, thereby effectively reducing the risk of osteoporosis in

postmenopausal women (8). Furthermore, estrogens exert

significant influences on cognitive function, mood regulation, and

neuroprotection, with clinical studies suggesting their positive

impact on slowing the progression of Alzheimer’s disease (9).

It is essential to highlight the significant role that estrogens play

in DM. At certain concentrations, elevated estrogen levels can

enhance insulin sensitivity, thereby reducing the risk of

developing DM (10). Specifically, estrogens exert their effects by

binding to specific receptors and activating signaling pathways such

as PI3K/Akt and MAPK, which subsequently influence both insulin

secretion and action (11). This interaction ultimately modulates the

onset and progression of DM (12, 13). Given the intricate interplay

between estrogens and DM, alongside the current gaps in

understanding their molecular mechanisms and pathological

interactions, recent advancements in biotechnology offer valuable
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tools for exploring the underlying mechanisms linking these

two factors.

This study utilizes a comprehensive bioinformatics approach

combined with machine learning techniques to investigate the

shared genes and associated signaling pathways linking estrogens

and DM. By elucidating the specific pathogenic mechanisms of

estrogen-related genes in the context of DM, this research offers

valuable data support and identifies potential breakthroughs for

more targeted and effective prevention and treatment strategies

for DM.
2 Materials and methods

2.1 Data acquisition and preprocessing

Graphical Abstract illustrates the workflow of this study. The

gene expression dataset for DM was sourced from the GEO

database (https://www.ncbi.nlm.nih.gov/geo/) using “diabetes” as

the search term. We applied filtering criteria including “DataSets

Database” and “Homo sapiens” to refine the dataset. Specimens

related to “methylation,” “diabetic nephropathy,” and “non-

pancreatic tissues” were excluded from consideration. Ultimately,

we selected sequencing data from the T2DM group and the normal

pancreatic tissue group for further analysis. Based on the

aforementioned selection criteria, GSE76896 was identified as the

discovery cohort, comprising a total of 206 samples, including 117

from the normal group, 55 from the T2DM group, while 34 samples

from the impaired glucose tolerance group were excluded.
2.2 Principal component analysis

To reduce dimensionality and facilitate the visualization of

sample clustering, PCA was conducted on the original dataset,

with all preprocessing executed utilizing the “affy” package in R

(14). Probes were converted to gene symbols based on the GPL570

platform (Affymetrix Human Genome U133 Plus 2.0 Array). PCA

serves as a dimensionality reduction technique that applies

orthogonal transformation to reconfigure the data into a new

coordinate system, thereby maximizing variance along these new

axes. This approach preserves the most significant features of the

data and enables visualization of the distribution of high-

dimensional data across the first two principal components.
2.3 Identification of differentially expressed
genes in DM

We utilized the “Limma” package in R to identify DEGs within

the GSE76896 dataset. The criteria for DEG selection were established

as an adjusted p-value of <0.05 and a log-fold change (logFC) of

≥0.70. Additionally, we constructed a volcano plot to visually depict

the statistical significance and magnitude of expression changes
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associated with these DEGs. This approach enables researchers to

effectively identify target genes that exhibit significant upregulation or

downregulation under disease conditions.
2.4 Weighted gene co-expression network
analysis and module gene identification

We employed the R package “WGCNA” to identify biologically

meaningful co-expression gene modules and to explore the

relationship between gene networks and disease (15). Initially, the

top 10,000 genes with the highest variance were selected for further

analysis. Subsequently, the “pickSoft Threshold” function was

utilized to determine the optimal soft thresholding power (b),
which ranges from 1 to 20, in order to construct a scale-free

network. The average connectivity R² threshold was set at 0.85.

Following this, the adjacency matrix was transformed into a

Topological Overlap Matrix (TOM) to evaluate gene ratios and

dissimilarity. In the fourth step, hierarchical clustering and the

dynamic tree cut function were applied to delineate and identify co-

expression modules. These modules were then merged based on

analogous expression patterns for further analysis, with the

parameters “minModuleSize” and “deepSplit” set to 150 and 2,

respectively. In the fifth step, we examined the correlation between

modules and disease by calculating Gene Significance (GS) and

Module Membership (MM). Genes within the modules that

exhibited the strongest correlation with the disease were selected

for further investigation. Finally, we conducted an intersection

analysis between the DEGs and the genes identified through

WGCNA, which yielded a set of 34 common genes. We

visualized these shared genes using clustering heatmaps generated

by the “ggplot2” and “pheatmap” R packages (16). This step aims to

identify co-expression modules that are significantly associated with

DM, thereby providing a candidate set of genes for subsequent

functional enrichment analysis and machine learning screening.
2.5 Functional enrichment analysis

To further investigate the biological functions and signaling

pathway characteristics of diabetes-related genes, as well as to

elucidate their potential molecular mechanisms, we conducted

functional enrichment analysis using the “clusterProfiler” and

“ggplot2” R packages. This approach facilitated an efficient

evaluation and visualization of gene functionality. In the Gene

Ontology (GO) analysis, genes were categorized into three main

functional categories: Biological Process (BP), Cellular Component

(CC), and Molecular Function (MF). This categorization enhances

our comprehension of the roles of genes across various biological

dimensions. Additionally, Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analysis offers a

systematic framework for investigating gene functions,

particularly concerning cellular signaling and metabolic pathways.

To ensure the statistical significance of the analysis results, we

established a cutoff criterion for p-values and q-values at 0.05.
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2.6 Machine learning approaches for
identifying candidate biomarkers

To accurately identify candidate biomarkers associated DM

from extensive genomic datasets, we employed machine learning

methodologies. These algorithms have gained prominence in the

field of bioinformatics due to their robust capabilities for handling

complex datasets (17). They are capable of extracting critical

information from gene expression data and identifying the genes

that are most pertinent to specific disease states. By leveraging

machine learning techniques, we can more effectively manage high-

dimensional data, uncover nonlinear relationships, and filter

potential biomarkers. This approach enhances predictive accuracy

and addresses challenges that frequently confound traditional

statistical methods. Consequently, machine learning was used in

this study to further refine candidate genes with the aim of

discovering novel biomarkers for DM. We employed three widely

recognized machine learning algorithms to further refine the

selection of candidate biomarkers: Least Absolute Shrinkage and

Selection Operator (LASSO) (18), Support Vector Machine-

Recursive Feature Elimination (SVM-RFE) (19), and Random

Forest (RF) (20). LASSO is a regularized regression technique that

applies an L1 penalty to shrink the coefficients of less informative

variables to zero, thus facilitating simultaneous variable selection

and regularization. SVM-RFE is a backward feature elimination

method based on support vector machines, which recursively

eliminates features with the lowest ranking weights to identify the

subset that optimally separates the classes. RF, an ensemble learning

approach based on decision trees, trains each tree on a bootstrap

sample and a subset of features, allowing for the assessment of

feature importance via the mean decrease in impurity. These three

algorithms collectively enhance the feature selection process:

LASSO prioritizes sparsity, SVM-RFE focuses on margin-based

discrimination, and RF utilizes ensemble-based ranking. This

complementary synergy significantly bolsters the robustness and

reliability of the selected biomarkers. Candidate genes identified

through the intersection of these algorithms were considered highly

reliable for subsequent analysis.
2.7 Expression analysis and diagnostic
evaluation of candidate genes for DM

To further verify the diagnostic efficacy of candidate genes and

construct a clinically applicable risk assessment model, the

“ggplot2” package was utilized to assess the expression levels of

candidate biomarkers in both control and DM groups, with a

significance threshold set at p < 0.05. A Nomogram was

constructed using the “rms” package, wherein “Points” represent

the scores assigned to the candidate genes, and the “Total Score”

denotes the cumulative score across all the aforementioned genes.

To evaluate the diagnostic accuracy of the candidate biomarkers,

the area under the receiver operating characteristic (ROC) curve

(AUC) was calculated using the “pROC” package.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1570332
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ke et al. 10.3389/fendo.2025.1570332
2.8 Identification of candidate biomarkers

Candidate genes related to estrogen were retrieved from the

NCBI (National Center for Biotechnology Information, https://

www.ncbi.nlm.nih.gov/gene) database using the search terms

“oestrogen” and “Homo sapiens”. These estrogen-related genes

were subsequently intersected with genes linked to DM, with

selection criteria requiring an AUC ≥ 0.7 for further analysis.

After screening and identifying five candidate genes, we

conducted a comprehensive evaluation of each and determined

that IER3 exhibits the highest research value for the following

reasons:A. Estrogen linkage: Previous studies have demonstrated

that OHT, a related compound, stimulates IER3 expression in an

estrogen receptor-dependent manner (21). In contrast, other genes,

including LRRK2, have not shown a similar association.B. Immune

modulation: IER3 is a well-established immunoregulatory gene. For

instance, induction of IER3 protects macrophages from LPS-

induced apoptosis and inhibits NF-kB activity (22). This function

in modulating inflammation is directly relevant to diabetes, which is

characterized by chronic immune dysregulation.C. Metabolic

inflammation: IER3 plays a crucial role in mediating metabolic

and immune crosstalk in obesity. Mice deficient in IER3 exhibit

reduced adipose inflammation and improved insulin sensitivity

under high-fat diet conditions (23). This demonstrates that IER3

plays a significant role in regulating the interface between

metabolism and immune responses.
2.9 Gene set enrichment analysis

The Pearson correlation coefficients between IER3 and all other

genes were calculated using the cor.test function in R. Following this

calculation, all genes were ranked in descending order according to

their correlation with the target gene. This ranked gene list was then

utilized for GSEA to determine whether gene sets exhibiting a

strong correlation with the target gene are enriched in specific

biological pathways or functional modules. The primary objective

of this analysis was to identify the gene sets that demonstrated

significant correlations with the target gene and to elucidate the

biological implications of these gene sets.
2.10 Construction of protein-protein
interaction network

To further elucidate the functions and mechanisms of IER3 in

biological processes associated with DM, this study utilized the

STRING network data platform (https://string-db.org) to identify

protein associations and construct a PPI network. By establishing a

specified required confidence threshold of 0.400, we ensured that

only high-confidence interactions were included in the network,

thereby facilitating the identification of key proteins closely related

to the function of IER3. The establishment of this network enhances

our understanding of the molecular mechanisms underlying the
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role of IER3 in DM, as well as the associated signaling pathways and

biological processes in which it may be involved. Through this

systematic approach, we are able to delineate the critical role of

IER3 in the pathophysiology of DM and propose potential

molecular targets for future therapeutic strategies. To explore the

correlations between IER3 and key genes in the PI3K/Akt and

MAPK signaling pathways in DM, we utilized gene expression data

from public databases. We identified core genes in the PI3K/Akt

pathway, including PIK3CA, PIK3CB, PIK3CD, PIK3R1, AKT1,

AKT2, and AKT3, as well as key genes in the MAPK pathway, such

as MAPK3, MAPK8, MAPK9, MAPK14, MAP2K1, MAP2K2, and

MAP3K4. Following this, we performed a correlation analysis to

assess the expression relationships between IER3 and these genes in

DM samples. The results were visualized using a heat map to

facilitate interpretation of the correlations.
2.11 Immuno-infiltration analysis

To attain a deeper insight into the cellular composition and

functional alterations within the immune system in the context of

DM, this study employed the CIBERSORT algorithm for a

comprehensive analysis of immune cell infiltration. CIBERSORT

is a deconvolution algorithm that leverages gene expression data to

identify the relative abundances of 22 distinct immune cell types,

estimating their proportions in heterogeneous cell samples based on

a training set derived from established gene expression profiles

characteristic of known immune cells (24). The “CIBERSORT”

package was employed in our analysis to further elucidate the

differences in immune cell proportions between DM patients and

healthy control groups, as well as to explore potential correlations

between these variations and the immune responses and

inflammatory processes associated with DM.

To effectively present the analysis results visually, we applied R

packages such as “ggplot2,” “corrplot,” and “vioplot” to effectively

illustrate the distribution and interrelationships of various immune

cell types across the two groups. Furthermore, Spearman

correlation analysis was conducted to assess the association

between immune cells and the candidate biomarker IER3,

evaluating the impact of IER3 expression levels on the immune

cell ratios. This segment of the research not only deepens our

understanding of the role of immune cells in the pathological

processes of DM, but also provides empirical support for the

potential use of IER3 as a key biomarker. Consequently, it offers

new insights and viable targets for the diagnosis, treatment, and

prognostic evaluation of DM.
2.12 Statistical analysis

Statistical analyses were conducted utilizing R software (version

4.4.1), and the Wilcoxon and T-tests were employed to compare

differences between the T2DM group and the control group. A p-

value of less than 0.05 was considered statistically significant.
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3 Results

3.1 Identification of DEGs in DM

The results of PCA reveal a notable trend of separation between

DM patients and the normal population within the PCA space

(Figure 1A). While some overlapping regions are observed, the

overall clustering characteristics of the data points from the two

groups demonstrate marked differences. These findings indicate

that PCA effectively captures the principal variance patterns within

the dataset and partially elucidates the differences between the

two groups.

In the GSE76896 dataset, we identified a total of 401 DEGs,

comprising 177 upregulated and 224 downregulated genes

(Supplementary Table 1). The volcano plot (Figure 1B) visually

illustrates the expression changes and statistical significance of these

genes, with orange and green dots representing genes that are

significantly upregulated or downregulated in the DM group,

respectively. The black dots at the center of the plot indicate

genes with no significant changes in expression. Our results reveal

that the expression of the IER3 gene is significantly decreased in

DM patients compared to the control group, whereas the SLC26A4

and ELFN1 genes exhibit significant upregulation. These key DEGs

identified in DM lay the groundwork for further functional analysis.
3.2 WGCNA and module gene
identification in DM

To identify the gene modules most closely associated with DM,

we conducted a WGCNA. The optimal soft threshold for GSE76896

was determined to be 6 (Figure 1C). A total of 14 distinct modules

were then identified, among which the MEyellow module

demonstrated the strongest negative correlation with DM

(correlation coefficient = -0.38, p = 8e-05) (Figures 1D, E)

(Supplementary Table 2), encompassing 882 genes. We

subsequently intersected the DEGs with the genes selected

through WGCNA, resulting in a set of 34 shared genes associated

with DM (Figure 1F) (Supplementary Table 3). A clustering

heatmap for these 34 DM-related genes was generated using the

“ggplot2” and “pheatmap” R packages (Figure 1G).
3.3 GO enrichment analysis and KEGG
pathway analysis

To further explore the biological functions of the identified

DM-related genes and to uncover potential key signaling pathways

involved, we conducted GO enrichment analysis (Figures 2A–C)

and KEGG pathway analysis (Figure 2D). The top ten enriched BPs

included intracellular signal transduction, cell activation, leukocyte

activation, inflammatory response, regulation of signaling receptor

activity, myeloid leukocyte activation, response to molecule of

bacterial origin, regulation of leukocyte chemotaxis, nitric-oxide
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synthase biosynthetic process, and regulation of nitric-oxide

synthase biosynthetic process. Notably, the enrichment of nitric

oxide synthase biosynthetic process regulation aligns with emerging

evidence linking endothelial dysfunction to DM (25). In this

context, impaired NO bioavailability contributes to vascular

complications (26). The top ten enriched CC were identified as

extracellular region, endomembrane system, extracellular space,

organelle membrane, secretory vesicle, cytoplasmic vesicle

membrane, vesicle membrane, secretory granule, receptor

complex, and plasma membrane receptor complex. CC analysis

highlighted significant extracellular space and secretory vesicles,

indicating dysregulated paracrine signaling. For instance,

extracellular vesicles derived from b cells can serve as a medium

for intercellular communication within the pancreatic

microenvironment in type 1 DM and participate in immune

regulation (27). Furthermore, the top ten enriched MF included

receptor ligand activity, receptor regulator activity, signaling

receptor binding, co-receptor binding, growth factor activity,

cytokine activity, G protein-coupled receptor binding, molecular

function regulator, enzyme activator activity, and ion channel

binding. Additionally, Ion channel binding may be associated

with potassium channel mutations that lead to insufficient insulin

secretion in response to glucose levels (28). Following this, in terms

of KEGG pathways, the top ten pathways identified were the NOD-

like receptor signaling pathway, TNF signaling pathway, IL - 17

signaling pathway, Rheumatoid arthritis, Viral protein interaction

with cytokine and cytokine receptor, AGE-RAGE signaling pathway

in diabetic complications, NF-kappa B signaling pathway, Kaposi

sarcoma-associated herpesvirus infection, Chemokine signaling

pathway, and Legionellosis. Notably, these findings of the GO

classification and KEGG pathway analysis reveal the functional

characteristics of DM-related genes at the molecular biological and

signaling transduction levels, particularly in relation to immune

responses, signal transduction, and metabolic regulation, thereby

providing crucial insights into the molecular pathophysiological

mechanisms underlying the onset of DM.
3.4 Identification of candidate biomarkers
for DM through machine learning

To further refine the identification of key genes associated with

DM, we identified 34 common genes by intersecting 401 DEGs with

882 genes selected through WGCNA. Subsequently, we utilized

three machine learning algorithms to screen for potential candidate

biomarkers based on these 34 common genes. In the GSE76896

dataset, the LASSO regression identified eight genes (Figures 3A, B),

whereas the SVM-RFE algorithm extracted 20 genes with the lowest

root mean square error (RMSE) (Figure 3C). Additionally, the RF

classifier ranked the top 20 genes according to their importance

(Supplementary Table 4, Figures 3D, E). By intersecting the results

obtained from these three methods, we ultimately identified five

candidate biomarkers for DM, including ALDH1A3, MIOS-DT,

MELTF-AS1, LRRK2, and IER3 (Figure 3F).
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3.5 Risk stratification of candidate
biomarkers for DM

We subsequently constructed a nomogram (Figures 4A, B)

based on the above five identified candidate biomarkers for DM,
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which translates the relative expression levels of each gene into a

specific score ranging from 0 to 100. By aggregating the individual

gene scores to obtain a total score, we can effectively evaluate the

overall risk of an individual developing DM. Specifically, a higher

total score correlates with an increased risk of DM occurrence. This
FIGURE 1

Exploratory analysis of gene expression in DM. (A) Principal Component Analysis (PCA). (B) A volcano plot illustrating all differentially expressed genes
(DEGs). (C) Determination of the optimal soft threshold. (D) Heatmap depicting the relationship between gene modules and clinical traits. (E) Gene
cluster tree of co-expressed genes. (F) Venn diagram demonstrates the intersection of common genes identified through Weighted Gene Co-
expression Network Analysis (WGCNA) and DEGs. (G) Cluster heatmap based on all DEGs.
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methodology not only furnishes clinicians with a robust tool for risk

stratification of patients but also holds significant predictive value

for the prognosis of DM.

Furthermore, we evaluated the diagnostic performance of each

gene as a biomarker for DM through ROC curve analysis

(Figure 4C). The resulting AUC values were as follows:

ALDH1A3 (AUC: 0.627), MIOS-DT (AUC: 0.742), MELTF-AS1

(AUC: 0.694), and LRRK2 (AUC: 0.764), and IER3 (AUC: 0.723).

These findings not only enhance our understanding of the

molecular mechanisms underlying the onset of DM but also

provide valuable biomarkers for prospective clinical applications

in the prevention and treatment of DM.
3.6 Significance of estrogen-related gene
IER3 as a diagnostic and prognostic marker
for DM

In this study, we identified the estrogen-related genes and

intersected them with the five candidate genes for DM that

previously identified through machine learning techniques. We

specifically focused on genes exhibiting an AUC value of ≥0.7,

ultimately determining IER3 as a key biomarker for DM

(Figures 4D, E). ROC curve analysis revealed that IER3 achieved an

AUC value of 0.723, with a 95% confidence interval ranging from 0.636

to 0.811. This finding suggests that IER3 demonstrates both accurate

and satisfactory diagnostic and prognostic value for DM. Furthermore,

the ROC curve revealed sensitivity and specificity values for IER3

of 0.8205 and 0.7636, respectively. These performance metrics further

underscore the significant role of IER3 as an effective biomarker

for DM, highlighting its potential clinical utility. To further evaluate
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the accuracy of the candidate biomarkers, we employed the GSE72377

dataset for verification and ROC curve analysis revealed that

IER3 exhibits significant diagnostic value, with an AUC value of

0.703 (Figure 4F). As shown in Figure 4G, a significant negative

correlation was observed between the expression levels of IER3 and

ESR1 (R =- 0.39, P = 1.5e-07). The trend line, along with the 95%

confidence interval, is represented in gray. These findings offer

evidence suggesting a potential association between IER3 and

estrogen signaling pathways.
3.7 PPI network analysis of IER3 in DM

PPI network analysis serves as a crucial tool for elucidating gene

functions and their biological roles. To further investigate the role of

the IER3 gene in DM more comprehensively, we constructed a PPI

network centered on IER3 utilizing the STRING database

(Figure 5A). This network not only illustrates the direct and

indirect interactions between IER3 and its interactive genes but

also offers valuable insights into the strength and sources of

evidence supporting these interactions.

Using this high-throughput analytical approach, we successfully

identified the protein nodes that are closely associated with IER3,

specifically DUSP5, PHLDA1, ADCYAP1, PPP2R5C, PPP2R5B,

MAPK1, MCL1, MAPK3, RELA, and PPP2CA. These protein

nodes are depicted in the network with varying colors and line

styles, effectively illustrating the positioning of IER3 within the

network and its potential influence on other biomolecules. The

identification of these interacting proteins provides valuable

insights into the potential roles of IER3 in the pathological

processes of DM, thereby enhancing our understanding of the
FIGURE 2

GO and KEGG analyses of diabetes-related genes. (A–C) Gene Ontology (GO) categories for Biological Processes (BP), Cellular Components (CC),
and Molecular Functions (MF). The top 10 categories of BP, CC and MF are shown. (D) Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis.
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molecular pathways through which IER3 is involved in the

progression of DM. The heatmap illustrates significant

correlations between IER3 and genes involved in the PI3K/Akt

and MAPK signaling pathways associated with diabetes (Figure 5B).

In the PI3K/Akt pathway, both PIK3CA and PIK3CB exhibit strong

positive correlations with IER3. Within the MAPK pathway,

MAP2K1 shows a positive correlation with IER3, while MAP3K4

reveals a negative correlation. These findings suggest that IER3 may

play a role in the pathogenesis of diabetes through its interactions

with specific genes in these pathways.
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3.8 Functional enrichment of IER3

To further elucidate the functions of genes and their underlying

biological mechanisms, we conducted GSEA enrichment analysis to

identify differentially expressed genes between the low and high

expression groups of IER3 (Figure 5C). In the GO enrichment

analysis, the most significantly activated biological process

identified was axoneme assembly, followed by processes such as

microtubule bundle formation, host interaction, non-motile cilium

assembly, and positive regulation of canonical NF-kB signaling.
FIGURE 3

Machine learning in the screening of candidate biomarkers. (A, B) Based on the Lasso regression algorithm, 8 genes corresponding to the lowest
binominal deviation were identified as the most appropriate for diabetes mellitus (DM) diagnosis. (C) The top 20 genes were selected based on
Support Vector Machine Recursive Feature Elimination (SVM-RFE) with the lowest error rates and highest accuracy for DM classification. (D, E) The
top 20 genes were selected and ranked according to the importance scores derived from the random forest algorithm applied to DM. (F) A Venn
diagram showing the intersected genes identified by the three machine learning algorithms in DM.
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Additionally, the top five KEGG pathways identified included the

Escherichia ESPG to microtubule RHOA signaling pathway, the

SARS-CoV-2 spike protein to ANGII/AT1R/NOX2 signaling

pathway, the IL - 2-JAK-STAT signaling pathway, kinetochore

microtubule attachment, and microtubule depolymerization

(Figure 5D). These findings indicate that IER3 may be involved in

various complex biological processes related to DM, including

infection, cardiovascular diseases, immune regulation, cellular

dynamics, and cytoskeletal remodeling.
3.9 Immune cell infiltration analysis

In this study, we conducted a comprehensive analysis of the

cellular composition and functional alterations of the immune

system in the context of DM. Utilizing the CIBERSORT

algorithm, we performed a detailed comparison of immune cell

proportions between the DM group and normal controls

(Figure 6A). Our findings revealed significant differences in the

proportions of various immune cell types between the two groups,

which may be closely related to the immune response and

inflammatory processes associated with DM. Specifically, the

proportions of naive B cells, monocytes, M0 macrophages, and

activated dendritic cells were significantly elevated in the DM group

compared to the control group. Conversely, the proportions of CD8

+ T cells and follicular helper T cells markedly decreased in the DM

group. To further investigate the activation states of different

immune cells in DM, we constructed heatmaps to analyze the
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gene expression patterns of various cell types (Figure 6B) and

visualized the proportions of different immune cell types

(Figure 6C). The results indicated that the distribution of multiple

immune cell types in the DM group differed significantly from that

of the normal group, thereby reinforcing the role of immune cells in

the pathology of DM. An in-depth analysis through correlation

heatmaps illustrated the relationships among various immune cell

types, revealing a notably high degree of similarity between different

T cell subtypes, such as resting CD4 memory T cells and CD8+ T

cells (Figure 6D). This observation suggests potential functional

synergy among these cells. Overall, the correlation analyses

underscore the intricate interactions and regulatory mechanisms

of diverse immune cells in the context of DM.

To further explore the influence of IER3 on the proportions of

the aforementioned immune cells, we stratified the DM group into

two subgroups based on high and low expression levels of IER3

(Figure 6E). The results revealed that the proportions of naive B

cells, regulatory T cells (Tregs), activated dendritic cells, and

neutrophils were significantly elevated in the high IER3

expression group compared to those in the low expression group.

Conversely, the proportions of CD8+ T cells and follicular helper T

cells were markedly reduced in the high IER3 expression group.

Notably, consistent trends were observed in the proportions of

naive B cells, CD8+ T cells, follicular helper T cells, and activated

dendritic cells across both comparisons of immune cell proportions.

These findings strongly suggest that IER3 plays a pivotal role in

modulating the immune microenvironment, thereby influencing

the progression of DM. The elevated expression of IER3 appears to
FIGURE 4

Analysis of IER3 as a candidate biomarker for DM. (A, B) Nomogram construction based on five shared genes identified in discovery datasets. (C) The
Receiver Operating Characteristic (ROC) curve for the shared genes in discovery datasets. (D) IER3 was identified as a candidate biomarker. (E, F) The
ROC curve of IER3 in the GSE76896 and GSE72377 datasets. (G) The correlation between IER3 and ESR1 in diabetes.
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be associated with enhanced immune cell activation and increased

inflammatory responses. This segment of the research not only

underscores the significance of immune cells in the pathological

processes of DM but also provides additional empirical evidence for

IER3 as a potential biomarker, opening new avenues for the

diagnosis, treatment, and prognostic evaluation of DM.

Collectively, these results demonstrate significant changes in

immune cell composition under DM conditions, and IER3 is not

only closely correlated with variations in immune cell proportions

but also plays a crucial role in the immunoregulatory mechanisms

underlying DM. These findings underscore the considerable

research value of IER3 in elucidating the immunological basis of

DM and suggest its potential as a biomarker for future

therapeutic strategies.
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4 Discussion

DM is characterized as a complex metabolic disorder syndrome,

distinguished by hyperglycemia, insulin resistance, and

hyperinsulinemia, making it one of the most prevalent chronic

metabolic diseases globally (29). This condition significantly affects

individuals’ overall quality of life (30). Estrogen plays a crucial

protective role in the pathogenesis of DM by enhancing both insulin

sensitivity and secretion, thereby contributing to the maintenance

of stable blood glucose levels (31). Nevertheless, postmenopausal

women frequently experience increased insulin resistance and a

heightened risk of developing DM due to declining estrogen levels

(11, 32). Research has demonstrated that estrogen can regulate

pancreatic beta cell function (33), facilitate glucose uptake and
FIGURE 5

PPI network and functional enrichment analysis of IER3 in DM. (A) The network of interacting genes associated with IER3. The circles represent the
query proteins and their corresponding first shell interactors in the network. The color and number of edges indicate the source and quantity of
supporting evidence, respectively. (B) Correlation heatmap of IER3 with genes involved in the PI3K/Akt and MAPK signaling pathways. (C) Gene Set
Enrichment Analysis (GSEA) illustrating pathway enrichment across the ordered gene dataset. (D) KEGG analysis of the activated and repressed
biological processes.
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utilization, and reduce cellular apoptosis, all of which are critical for

preventing and controlling the onset and progression of DM (34).

This regulatory effect of estrogen is particularly vital for

women’s health.

This study employs a comprehensive approach that integrates

bioinformatics methods with machine learning techniques to

explore the shared genes and associated signaling pathways

related to DM and estrogen. It specifically highlights the potential

role of the estrogen-related gene IER3 in DM. The findings reveal a

significant downregulation of IER3 in DM patients, and it appears

to affect the progression of DM through the regulation of glucose

metabolism, immune responses, and inflammatory pathways,
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suggesting that IER3 may play a pivotal role in the pathological

processes linking DM and estrogen. Furthermore, the construction

of a diagnostic ROC curve based on IER3 gene expression

demonstrates both accurate and satisfactory diagnostic and

prognostic value of IER3 for DM. Notably, the study reveals

significant changes in immune cell composition under DM

conditions, and IER3 is not only closely correlated with variations

in the proportions of various immune cells, but also plays a crucial

role in the immunoregulatory mechanisms underlying DM.

Through an in-depth analysis of IER3 and its associated signaling

pathways, this research underscores the unique value of the

estrogen-related gene IER3 as a potential biomarker and
FIGURE 6

Analysis of immune cell infiltration. (A) The boxplot comparing the proportion of immune cells between DM and control groups. (B) Comparative
heatmap depicting immune cell gene expression in DM and control groups. (C) The bar plot visualizing the proportion of infiltrating immune cells in
different samples. (D) Correlation heatmap representing associations between various immune cell types. (E) The boxplot comparing the proportions
of immune cells in high and low IER3 expression groups.
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therapeutic target for DM. Collectively, our study lays the

groundwork for future investigations into the molecular

mechanisms underlying the pathogenesis of DM, while also

providing more molecular evidence and therapeutic strategies for

its diagnosis and treatment.

IER3 plays a crucial role in regulating cell apoptosis and the

heterogeneity of immune cells (35). Research indicates that

macrophages are key contributors to obesity-related inflammation,

particularly through the transition of adipose tissue macrophages from

alternatively activated macrophages (AAM) to classically activated

macrophages (CAM), a process that is significant in the context of

obesity-associated inflammation (36, 37). The high expression of IER3

in macrophages may facilitate this transformation, thereby promoting

the onset of obesity-related inflammation and enhancing insulin

sensitivity in murine models (38). Additionally, IER3 is extensively

implicated in vital biological processes such as cell proliferation,

differentiation, and apoptosis, with its expression regulated by

various transcription factors, including NF-kB, p53, SP1, AP1,
vitamin D3 receptor (VD3R), and retinoic acid receptors (RAR/

RXR) (39, 40). Furthermore, studies have highlighted the prognostic

value of IER3 in several pathological conditions, including pancreatic

cancer, hepatocellular carcinoma, and acute kidney injury (41–44).

Estrogen plays a pivotal regulatory role in the onset and

progression of DM, particularly among female patients, where

fluctuations in estrogen levels may directly affect insulin sensitivity

and glucose metabolism (45). This study posits that IER3 may serve as

an intermediary between DM and estrogen, thereby establishing a

critical connection between the two. The expression of the IER3 gene is

modulated by various factors, with estrogen emerging as a significant

regulator that may influence the development of DM through its

impact on IER3 expression. Furthermore, our findings indicate a

significant negative correlation between the expression levels of IER3

and ESR1, suggesting a potential association between IER3 and

estrogen signaling pathways. Additionally, studies have shown that

IER3 exhibits a dose-dependent response to 17b-estradiol stimulation

in MCF - 7 (BUS) cells, with its expression being upregulated in

conjunction with cyclin D1 and its mutants (46). These findings

collectively underscore the potential regulatory role of estrogen on

IER3 and highlight the importance for further investigation into this

gene and its associated pathways. Such investigations will enhance our

understanding of the pathological mechanisms underlying DM and

may offer novel therapeutic targets for clinical intervention.

In addition to its involvement in glucose metabolism and estrogen

levels, the IER3 gene may also participate in the immune regulatory

mechanisms associated with DM by modulating immune system

functionality. Recently, the interplay between immune responses and

DM has garnered significant attention (47). Research has indicated that

the chronic inflammatory state characteristic of DM is closely linked to

the aberrant activation of immune cells (48, 49). The dysregulation of

immune cell subset proportions constitutes a critical pathological

hallmark within the immune microenvironment of DM. Significant

elevations in the proportions of naive B cells, monocytes, M0

macrophages, and activated dendritic cells (DCs) were observed in

the DM patients. Research has demonstrated that in insulin-dependent

DM, activated DCs play a crucial role in autoimmune pathogenesis by
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presenting b-cell-derived autoantigens to naive autoreactive Th0

lymphocytes (50). This antigen presentation facilitates the

differentiation of Th0 cells into pro-inflammatory effector T cells,

which subsequently initiate b-cell apoptosis through cytotoxic

mechanisms. The resulting impairment of insulin biosynthesis in

pancreatic islets constitutes a key pathogenic mechanism in disease

progression, with DC-mediated antigen presentation serving as a

pivotal initiating event in the autoimmune destruction of b-cells.
Monocytes also contribute significantly to the vascular complications

associated with DM. In the diabetic environment, monocytes are

recruited to the vascular wall, leading to a rapid release of

inflammatory cytokines such as IL - 1b and TNF-a, which accelerate

the progression of atherosclerotic lesions and plaque instability (51).

Our study revealed significant reductions in CD8+ T cells and follicular

helper T cells among DM patients. As primary cytotoxic lymphocytes,

the depletion of CD8+ T cells may be linked to functional exhaustion

characterized by PD - 1 upregulation and metabolic dysregulation

manifested by glycolytic inhibition and mitochondrial dysfunction.

Consequently, this depletion diminishes their capacity to eliminate

aberrant cells in target tissues (52, 53). Furthermore, follicular helper T

cells play a pivotal role in maintaining immune tolerance and

regulating B-cell antibody production, with their diminished

frequency potentially predisposing to aberrant humoral immune

responses (54). This pathological process may exacerbate b-cell
dysfunction through disrupting local T-B cell interactions within

pancreatic islets and impairing antigen-specific immunomodulation.

Collectively, the imbalance of immune cell repertoires in DM is not

merely a passive epiphenomenon, it likely drives metabolic

derangements, islet dysfunction, and chronic inflammation via

mechanisms involving immunometabolic decoupling, dysregulated

cytokine release, and impaired local immune regulation. These

findings underscore the centrality of immune cell dyshomeostasis in

elucidating the pathophysiological progression of DM. Our findings

indicate a strong correlation between IER3 expression and alterations

in the proportions of immune cells, particularly in patients with DM,

suggesting that dysregulation of the immune system may exacerbate

the progression of DM by influencing the activation states of immune

cells. Therefore, IER3 may be pivotal in regulating the chronic

inflammatory response associated with DM through its impact on

immune system functionality. Several studies have highlighted the

significant role of IER3 in immune cells, potentially modulating the

release of cytokines, the activation of immune cells, and their

migration, thereby affecting systemic inflammatory responses (55).

This study elucidates the potential biological and immunological

significance of IER3 in DM by employing an integrated approach that

combines bioinformatics and machine learning techniques. However,

it remains in its preliminary stages and has certain limitations. The

molecular mechanisms that link IER3 to estrogen signaling pathways,

specifically the PI3K/Akt and MAPK cascades, along with their

interactions with immune regulation, require experimental

validation. Moreover, the causal relationship between IER3

downregulation and the progression of DM necessitates verification

through longitudinal studies and interventional models. Future

research should strive to diversify data sources by incorporating a

wide range of sample data from DM patients across various ethnicities
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and regions, thereby enhancing the reliability and generalizability of

the findings. Furthermore, it is essential to clarify the relationship

between IER3 and different types of DM, such as type 1 diabetes and

gestational diabetes, in order to further deepen and broaden the scope

of the research. Therefore, such future efforts have the potential to

substantially enhance the applicability of IER3 in the treatment of DM.
5 Conclusion

In this study, we conducted a thorough investigation focusing

on the role of the estrogen-related gene IER3 in the context of DM.

Our findings reveal a significant downregulation of IER3 in DM

patients, with an AUC value of 0.723 on the diagnostic ROC curve,

indicating its considerable diagnostic and prognostic potential for

DM. Furthermore, IER3 acts as a critical link between DM and

estrogen, influencing the progression of DM through its regulatory

effects on glucose metabolism, immune responses, and

inflammatory pathways. Notably, our study uncovers significant

alterations in immune cell composition under DM conditions. IER3

is not only closely correlated with variations in the proportions of

diverse immune cell types but also plays a crucial role in the

immunoregulatory mechanisms underlying DM. Through an in-

depth analysis of IER3 and its associated signaling pathways, this

research emphasizes the unique value of the estrogen-related gene

IER3 as a potential biomarker and therapeutic target for DM.

Conclusively, these findings offer valuable insights into the

biological and immunological significance of IER3. Monitoring its

expression could facilitate the identification of high-risk

populations, and its significance in the early diagnosis and

prognostic evaluation of DM should not be underestimated.

Consequently, extensive research on IER3 and its related

signaling pathways opens new avenues for the development of

innovative diagnostic tools and therapeutic strategies for the

prevention and management of DM. Future investigations should

explore the modulat ion of IER3 express ion through

pharmacological or gene-editing techniques, aiming to establish

new treatment strategies for DM and provide essential evidence for

personalized therapy. We anticipate that further exploration in this

field will facilitate advancements in relevant technologies and their

practical applications, ultimately enhancing the quality of life and

health outcomes for individuals affected by DM.
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