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Objective: This meta-analysis aims to evaluate the diagnostic performance of

ultrasound (US)-based artificial intelligence (AI) in assessing cervical lymph node

metastasis (CLNM) in patients with papillary thyroid carcinoma (PTC).

Methods: A comprehensive literature search was conducted in PubMed,

Embase, Web of Science, and the Cochrane Library to identify relevant studies

published up to November 19, 2024. Studies focused on the diagnostic

performance of AI in the detection of CLNM of PTC were included. A bivariate

random-effects model was used to calculate the pooled sensitivity and

specificity, both with 95% confidence intervals (CI). The I2 statistic was used to

assess heterogeneity among studies.

Results: Among the 593 studies identified, 27 studies were included (involving

over 23,170 patients or images). For the internal validation set, the pooled

sensitivity, specificity, and AUC for detecting CLNM of PTC were 0.80 (95% CI:

0.75–0.84), 0.83 (95% CI: 0.80–0.87), and 0.89 (95% CI: 0.86–0.91), respectively.

For the external validation set, the pooled sensitivity, specificity, and AUC were

0.77 (95% CI: 0.49–0.92), 0.82 (95% CI: 0.75–0.88), and 0.86 (95% CI: 0.83–

0.89), respectively. For US physicians, the overall sensitivity, specificity, and AUC

for detecting CLNM were 0.51 (95% CI: 0.38–0.64), 0.84 (95% CI: 0.76–0.89),

and 0.77 (95% CI: 0.73–0.81), respectively.

Conclusion: US-based AI demonstrates higher diagnostic performance than US

physicians. However, the high heterogeneity among studies and the limited

number of externally validated studies constrain the generalizability of these
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findings, and further research on external validation datasets is needed to confirm

the results and assess their practical clinical value.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/view/

CRD42024625725, identifier CRD42024625725.
KEYWORDS

artificial intelligence, ultrasonography, cervical lymph nodemetastasis, papillary thyroid
cancer, meta-analysis
Introduction

Papillary thyroid carcinoma (PTC) is the most common

malignant thyroid tumor, with a steadily increasing global incidence,

though its mortality rate remains relatively low (1). Approximately

30% to 80% of PTC patients experience lymph node metastasis

(LNM), with cervical lymph node metastasis (CLNM) occurring in

about 49% of these LNM-positive patients (2, 3). CLNM is a major

risk factor for recurrence and reduced survival, often requiring

aggressive surgical interventions, such as extensive lymph node

dissection, which carry higher risks of complications (4). Accurate

and timely detection of CLNM is therefore critical, as it directly

influences treatment strategies and improves patient outcomes.

Traditional imaging modalities, including ultrasound (US),

computed tomography (CT), magnetic resonance imaging (MRI),

and positron emission tomography-computed tomography (PET-

CT), are widely used for evaluating CLNM of PTC (5). Among

these, US is the first-line tool due to its non-invasive nature, real-

time imaging capabilities, and high spatial resolution (6). However,

its diagnostic accuracy is highly operator-dependent, leading to

inconsistent results (7). In contrast, CT andMRI offer more detailed

anatomical insights but have low sensitivity in identifying small

metastatic lymph nodes (<2–3 mm), increasing the risk of missed

diagnoses (8, 9). Moreover, these methods often rely on qualitative

or semi-quantitative assessments, such as lymph node size and

morphology, while neglecting quantitative features like texture,

density, and signal intensity, which may be critical for predicting

CLNM (10). These limitations highlight the need for more

advanced diagnostic tools.

Artificial intelligence (AI) offers promising opportunities to

improve the diagnostic performance of US in detecting CLNM. AI

algorithms, particularly those based on machine learning and deep

learning, can analyze complex imaging data and extract subtle

features beyond human perception (11, 12). These algorithms

process high-dimensional data and identify patterns that traditional

methods may overlook. However, the diagnostic performance of AI

remains inconsistent across studies (13, 14), and its comparative

performance versus experienced US physicians has not been fully

established, raising questions about its integration into routine

clinical practice (15).
02
This meta-analysis aims to systematically evaluate the

performance of US-based AI and its relative effectiveness

compared to US physicians in detecting CLNM of PTC,

providing a comprehensive assessment of its diagnostic

capabilities and potential impact on clinical practice.
Methods

The meta-analysis was carried out strictly following the

Preferred Reporting Items for Systematic Reviews and Meta-

Analyses for Diagnostic Test Accuracy (PRISMA-DTA)

guidelines (16). Moreover, the protocol of this study has been

registered with the PROSPERO (CRD42024625725).
Search strategy

A comprehensive search across PubMed, Embase, Web of

Science, and Cochrane Library, with cutoff date of November 19,

2024. The search strategy included three groups of keywords: the

first group related to AI (e.g., artificial intelligence, machine

learning, deep learning), the second group related to diseases

(e.g., lymphatic metastasis, lymph node metastasis), the third

group related to target condition (e.g., thyroid neoplasms, thyroid

carcinoma). We employed a combination of Medical Subject

Headings (MeSH) and keywords (see Supplementary Table S1).

Only studies published in English with full texts were included.

Additionally, we manually searched the reference lists of selected

studies to identify any potentially missed relevant articles. To ensure

no recent studies were overlooked, we repeated the literature search

on December 21, 2024.
Inclusion and exclusion criteria

Studies were carefully selected based on the PICOS framework.

Population (P): Participants included patients diagnosed with PTC

who required evaluation for CLNM. Intervention (I): AI models

based on US images. Comparison (C): Either without a control
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group or compared with experienced ultrasound physicians.

Outcome (O): The primary outcomes of interest included

sensitivity, specificity, and area under the receiver operating

characteristic curve (AUC). Study design (S): Both retrospective

and prospective study designs were included.

We excluded animal studies and non-original research articles,

including reviews, case reports, conference abstracts, meta-analyses,

and letters to the editor. In addition, non-English full-text articles

were excluded. Studies that did not meet these criteria were

excluded from further analysis.
Quality assessment

We employed a modified version of the Quality Assessment of

Diagnostic Performance Studies Revised (QUADAS-2-Revised

tool) tool (17) to comprehensively evaluate the methodological

quality of included studies. The adaptation involved replacing

certain non-relevant criteria with more pertinent standards from

the Prediction Model Risk of Bias Assessment tool, accounting for

potential sources of bias arising from variations in research design

and implementation.

The QUADAS-2-Revised tool assessed four critical domains:

participants, index test (AI algorithm), reference standard, and

analysis. The detail criteria were shown in Supplementary Table

S2. Two independent reviewers systematically evaluated each

domain’s risk of bias, with a particular focus on applicability in

the first three domains. Divergent assessments were resolved

through collaborative discussion.
Data extraction

Two reviewers independently evaluated the eligibility of studies

and extracted data. In cases of disagreement, a third reviewer acted

as an arbitrator to facilitate consensus. The extracted data included

the first author’s name, publication year, country of study origin,

study type, AI methods, selected AI algorithms, AI models, and

patient-related data.

Since most studies did not report diagnostic contingency tables,

we employed two methods to determine the diagnostic 2×2 table: 1)

using sensitivity, specificity, the number of true positives

determined by the reference standard, and the total number of

cases; 2) through receiver operating characteristic (ROC) curve

analysis, extracting sensitivity and specificity based on the optimal

Youden index.
Outcome measures

The primary outcome measures included sensitivity, specificity,

and area under the curve (AUC) for internal validation sets,

external validation sets, and radiologists. Sensitivity (also known

as recall or true positive rate) measures the probability that the AI

model correctly identifies true positive cases, calculated as TP/(TP
Frontiers in Endocrinology 03
+FN). Specificity (also known as true negative rate) reflects the

probability that the AI model correctly identifies healthy cases,

calculated as TN/(TN+FP). AUC represents the area under the

ROC curve, serving as a comprehensive measure of the model’s

ability to distinguish between positive and negative cases. We

extracted AI diagnostic performance data from internal validation

sets, external validation sets, and US physicians, including only the

models with optimal diagnostic performance (highest AUC values).
Statistical analysis

We summarized the overall sensitivity and specificity of AI

analyses predicting CLNM of PTC using a bivariate random effects

model for internal validation sets, external validation sets, and clinical

diagnoses (18). A forest plot was created to visually represent the

pooled sensitivity and specificity. Moreover, a summary receiver

operating characteristic (SROC) curve was constructed to illustrate

the overall sensitivity and specificity estimates along with their 95%

confidence intervals (CI) and prediction intervals. Additionally, a

Fagan plot was generated to evaluate the clinical applicability.

Heterogeneity among the included studies was assessed using

the I2 statistic, with I2 values of 25%, 50%, and 75% indicating low,

moderate, and high heterogeneity, respectively (19). For internal

validation sets (greater than 10 studies), meta-regression analysis

was conducted when significant heterogeneity was present (I2>50%)

to explore potential sources of heterogeneity. The variables for

meta-regression included US techniques (B-mode US or

multimodal US), AI algorithms, AI models, data analysis types,

and the location of CLNM. Furthermore, subgroup analyses were

conducted for these variables to assess differences between

subgroups. We also used the Z-test to compare the outcome

differences between the internal validation sets and US physicians

(20). Publication bias was assessed using Deeks’ funnel plot.

Statistical analyses were primarily conducted using the Midas and

Metadta programs in STATA version 15.1. The risk of bias

assessment for study quality was performed using RevMan 5.4

(Cochrane Collaboration). A P-value of <0.05 was defined as

statistically significant.
Results

Study selection

The initial database search yielded 593 potentially relevant

articles. After removing 103 duplicates, 490 unique articles

proceeded to preliminary screening. Following a rigorous

application of the inclusion criteria, 446 articles were excluded.

After a detailed full-text review, 17 studies were further excluded,

including seven studies for not being PTC, three studies due to

internal or external validation data being unavailable, and seven

studies for being non-US-based AI. Ultimately, 27 studies that met

the criteria for evaluating AI diagnostic performance were included

in the meta-analysis (2, 13, 21–45). The literature selection method
frontiersin.org
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is comprehensively outlined in accordance with the standardized

Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) flow diagram, as shown in Figure 1.
Study description and quality assessment

A total of 27 eligible studies were identified, with the internal

validation set comprising all 27 studies and a total of 6,366 patients

(range: 50-1,013), while the external validation set included 4

studies with a total of 1,592 patients (range: 95-881). 13 articles

provided diagnostic data from US clinicians. One study was

prospective, while 26 were retrospective design. Of the studies, 24

used pathology as the gold standard, and three utilized fine needle

aspiration (FNA) as the gold standard. The most common

modeling methods were logistic regression (LR) (12/27, 44%),

convolutional neural network (CNN) (7/27, 26%), and support

vector machine (SVM) (2/27, 7%). The characteristics of the studies

and patients are summarized in Tables 1 and 2.

According to the QUADAS-2-Revised tool, the risk of bias for

each study is shown in Figure 2. For the bias assessment regarding

Patient Selection, 4 studies were rated as “high risk” due to
Frontiers in Endocrinology 04
inappropriate exclusion. For the Index Test, 2 studies were rated

as “unclear” because it was uncertain whether the AI model

provided important training information. Regarding the

Reference Standard, 2 studies were rated as “unclear” because it

was uncertain whether the pathologists were aware of the pathology

results in the final diagnosis. Overall, the quality assessment

indicates that the quality of the included studies is acceptable.
Diagnostic performance of internal
validation set for AI and US physicians in
predicting CLNM of PTC

For the internal validation set, the sensitivity of AI in detecting

CLNM of PTC was 0.80 (95% CI: 0.75-0.84) and the specificity was

0.83 (95% CI: 0.80-0.87) (Figure 3a), with an AUC of 0.89 (95% CI:

0.86-0.91) (Figure 4a). Using a pre-test probability of 20%, the Fagan

nomogram indicated a positive likelihood ratio of 55% and a negative

likelihood ratio of 6% (Figure 5a). For US physicians, the sensitivity for

detecting CLNM of PTC was 0.51 (95% CI: 0.38-0.64) and the

specificity was 0.84 (95% CI: 0.76-0.89) (Figure 3b), with an AUC of

0.77 (95% CI: 0.73-0.81) (Figure 4b). Using a 20% pre-test probability,
FIGURE 1

PRISMA flow diagram illustrating the study selection process.
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TABLE 1 Study and patient characteristics of the included studies.

Author Year Country Study Imaging Location of cervical lymph Analysis Reference Patients/lesions per set No. of LNM+
patients/lesions/

g Internal
validation

External
validation

62 NR Training: 74
Internal validation: 33

906 339 Training: 1063
Internal validation: 460
External validation:162

272 NR Training: 228
Internal validation: 94

150 NR Training: 167
Internal validation: 74

153 NR Training: 228
Internal validation: 76

50 NR Training: 100
Internal validation: 26

220 NR Training: 160
Internal validation: 77

126 NR Internal validation: 59

90 NR Training: 75
Internal validation: 38

63 NR Training: 59
Internal validation: 29

78 NR Training: 108
Internal validation: 30

118 NR Training: 121
Internal validation: 32

143 277 Training: 104
Internal validation: 47
External validation:112

286 NR Training: 55
Internal validation: 31

84 NR Internal validation:36
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design modality node metastasis standard
Trainin

Agyekum
et al. (2)

2022 China Retro B-mode Central Patient-
based

Pathology 143

Chang
et al. (21)

2023 China Retro B-mode Central Patient-
based

Pathology 2114

Chen
et al. (22)

2021 China Retro B-mode Central Patient-
based

Pathology 634

Dai
et al. (23)

2023 China Retro CDU&EG Central Patient-
based

Pathology 348

Gao
et al. (13)

2024 China Retro B-mode Central Patient-
based

Pathology 460

Guang
et al. (24)

2023 China Retro B-mode Central& Lateral Patient-
based

Pathology 196

Huang
et al. (25)

2021 China Retro EG&CDU Central Patient-
based

Pathology 439

Jia
et al. (26)

2024 China Retro SWE&CEUS Central Patient-
based

Pathology NR

Jiang
et al. (27)

2020 China Retro SWE&CDU Central& Lateral Patient-
based

Pathology 147

Jiang
et al. (28)

2023 China Retro CEUS NR Patient-
based

Pathology 148

Qian
et al. (29)

2024 China Retro DUV NR Patient-
based

Pathology 233

Shi
et al. (30)

2022 China Retro B-mode Central Patient-
based

Pathology 469

Tong
et al. (31)

2022 China Retro B-mode Central& Lateral Patient-
based

Pathology 300

Tong
et al. (32)

2021 China Retro B-mode Lateral Patient-
based

Pathology 600

Wang
et al. (33)

2024 China Pro SWE NR Lesion-
based

FNA NR
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TABLE 1 Continued

Author Year Country Study Imaging Location of cervical lymph Analysis Reference
standard

Patients/lesions per set No. of LNM+
patients/lesions/

Training Internal
validation

External
validation

Pathology 282 141 NR Training: 138
Internal validation: 68

Pathology 353 68 NR Training: 185
Internal validation: 35

FNA 142 62 NR Training: 75
Internal validation: 27

Pathology 400 368 NR Training: 83
Internal validation: 100

Pathology 212 83 NR Training: 115
Internal validation: 45

Pathology 5129 903 NR Training: 2165
Internal validation: 553

Pathology NR 1013 368,513 Internal validation: 403
External validation: 217,218

FNA 655 206 NR Training: 327
Internal validation: 110

Pathology 340 83 95 Training: 185
Internal validation: 47
External validation:47

Pathology 451 194 NR Training: 67
Internal validation: 35

Pathology 608 326 NR Training: 182
Internal validation: 113

Pathology 282 118 NR Training: 117
Internal validation: 38

G, elastography; CEUS, contrast-enhanced ultrasound; SWE, shear wave elastography; DUV, dynamic ultrasound video.
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design modality node metastasis

Wei
et al. (34)

2023 China Retro CEUS NR Patient-
based

Wen
et al. (35)

2022 China Retro B-mode Central Patient-
based

Wu
et al. (36)

2024 China Retro EG Central Patient-
based

Park
et al. (37)

2020 South
Korea

Retro B-mode Lateral Patient-
based

Yan
et al. (38)

2023 China Retro B-mode Central Lesion-
based

Yao
et al. (39)

2022 China Retro B-mode NR Patient-
based

Yu
et al. (40)

2020 China Retro B-mode Central Patient-
based

Yuan
et al. (41)

2024 China Retro B-mode Lateral Lesion-
based

Zhang
et al. (42)

2025 China Retro B-mode Central Patient-
based

Zhang
et al. (43)

2023 China Retro CDU NR Patient-
based

Zhou
et al. (44)

2022 China Retro B-mode Central Patient-
based

Zhu
et al. (45)

2023 China Retro B-mode Central& Lateral Lesion-
based

Retro, retrospective; Pro, prospective; NR, not report; FNA, fine needle aspiration; B-mode, B mode ultrasound; CDU, color doppler ultrasound;
 E
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t
h
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TABLE 2 Technical aspects of included studies.

Author Year AI method Optimal AI Algorithm AI Mode Interval validation sets rnal validation sets Ultrasound physician

FP FN TN TP FP FN TN

NR NR NR 49 39 49 68

41 103 136 169,59 34,15 291,103 412,162

NR NR NR NR NR NR NR

NR NR NR NR NR NR NR

NR NR NR 32 23 44 54

NR NR NR 61 15 97 135

NR NR NR NR NR NR NR

NR NR NR 41 19 72 105

NR NR NR NR NR NR NR

NR NR NR NR NR NR NR

NR NR NR NR NR NR NR

NR NR NR NR NR NR NR

21 32 144 23,59 9,24 24,53 87,141

NR NR NR 22 31 9 224

NR NR NR NR NR NR NR

NR NR NR 52 33 16 40

NR NR NR 7 0 28 33

NR NR NR 25 15 2 20

NR NR NR NR NR NR NR

NR NR NR NR NR NR NR

NR NR NR NR NR NR NR

7 17,74 37,11 134,221 NR NR NR NR

NR NR NR 104 16 17 69

13 3 35 28 17 19 31

NR NR NR NR NR NR NR

(Continued)
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TP

NR

59

NR

NR

NR

NR

NR

NR

NR

NR

NR

NR

80

NR

NR

NR

NR

NR

NR

NR

NR

180,20

NR

44

NR
TP FP FN TN

Agyekum et al. (2) 2022 Machine learning LDA Ultrasound&clinical model 20 8 13 21

Chang et al. (21) 2023 Deep learning CNN Ultrasound&clinical model 182 104 278 342

Chen et al. (22) 2021 Deep learning CNN Ultrasound-based model 81 33 13 145

Dai et al. (23) 2023 Machine learning SVM Ultrasound&clinical model 59 8 15 68

Gao et al. (13) 2024 Deep learning CNN Ultrasound&clinical model 55 14 21 63

Guang et al. (24) 2023 Deep Learning CNN Ultrasound-based model 21 4 5 20

Huang et al. (25) 2021 Machine learning LR Ultrasound&clinical model 60 38 17 105

Jiang et al. (27) 2020 Machine learning LR Ultrasound&clinical model 33 14 5 38

Jiang et al. (28) 2023 Machine learning LR Ultrasound&clinical model 24 9 5 25

Qian et al. (29) 2024 Deep Learning CNN Ultrasound-based model 26 6 4 42

Jia et al. (26) 2024 Machine learning SVM Ultrasound-based model 53 18 6 49

Shi et al. (30) 2022 Machine Learning XGBoost Ultrasound&clinical model 28 12 4 74

Tong et al. (31) 2022 Machine Learning LR Ultrasound&clinical model 39 17 8 79

Tong et al. (32) 2021 Machine Learning LR Ultrasound&clinical model 25 14 6 241

Wang et al. 2024 Machine Learning Fisher Ultrasound-based model 30 8 6 40

Wei et al. (34) 2023 Machine Learning LR Ultrasound&clinical model 52 2 16 71

Wen et al. (35) 2022 Machine Learning LR Ultrasound&clinical model 24 8 11 25

Wu et al. (36) 2024 Machine Learning LR Ultrasound&clinical model 22 6 5 29

Park et al. (37) 2020 Machine Learning LR Ultrasound&clinical model 69 126 31 142

Yan et al. (38) 2023 Machine Learning LR Ultrasound-based model 42 4 3 34

Yao et al. (39) 2022 Deep Learning DCNN Ultrasound&clinical model 451 43 102 307

Yu et al. (40) 2020 Deep Learning TLR Ultrasound&clinical model 379 140 24 470

Yuan et al. (41) 2024 Deep Learning CNN Ultrasound-based model 107 6 14 79

Zhang et al. (42) 2025 Deep Learning CNN Ultrasound-based model 37 5 10 31

Zhang et al. (43) 2023 Machine Learning LR Ultrasound&clinical model 19 9 16 150
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Fagan nomogram showed a positive likelihood ratio of 44% and a

negative likelihood ratio of 13% (Figure 5b). The Z-test indicated that

AI had significantly higher sensitivity and AUC values (P < 0.001),

while there was no significant difference in specificity (P = 0.79).

For the internal validation set, both sensitivity (I2 = 95.21%) and

specificity (I2 = 91.33%) exhibited high heterogeneity. Meta-

regression analysis indicated that the heterogeneity was primarily

attributed to US techniques (sensitivity P < 0.01, specificity P <

0.001), AI methods (sensitivity P < 0.01, specificity P < 0.001), AI

models (sensitivity P < 0.05, specificity P < 0.001), and types of data

analysis (specificity P < 0.05) (Figure 6).
Diagnostic performance of external
validation sets for AI in predicting CLNM of
PTC

For the external validation set, the sensitivity for detecting

CLNM of PTC was 0.77 (95% CI: 0.49-0.92) and the specificity

was 0.82 (95% CI: 0.75-0.88) (Supplementary Figure S1), with an

AUC of 0.86 (95% CI: 0.83-0.89) (Supplementary Figure S2). Using

a pre-test probability of 20%, the Fagan nomogram indicated a

positive likelihood ratio of 52% and a negative likelihood ratio of 6%

(Supplementary Figure S3).
Diagnostic performance of subgroup
analysis for AI in predicting CLNM of PTC

In the subgroups of ultrasound techniques, B-mode US had a

sensitivity of 0.81 (95% CI: 0.76-0.86) and Multimodal US 0.78

(95% CI: 0.69-0.85), with no significant difference (P = 0.49). The

specificity was 0.82 (95% CI: 0.76-0.86) for B-mode and 0.86 (95%

CI: 0.80-0.91) for Multimodal US, also showing no significant

difference (P = 0.23) (Table 3).

For AI methods, the sensitivity was 0.84 (95% CI: 0.76-0.89) for

deep learning and 0.78 (95% CI: 0.71-0.84) for machine learning,

with no significant difference (P = 0.19). Both methods had a

specificity of 0.83 (95% CI: 0.76-0.88), with no significant

difference (P = 0.91) (Table 3).

Regarding AI models, the sensitivity of the US-based model was

0.88 (95% CI: 0.82-0.92) compared to 0.76 (95% CI: 0.70-0.81) for

the US & clinical model, showing a significant difference (P <

0.001). Both models exhibited a specificity of 0.83 (95% CI: 0.76-

0.89), with no significant difference (P = 0.93) (Table 3).

For data analysis types, patient-based sensitivity was 0.79 (95%

CI: 0.73-0.83) and lesion-based was 0.87 (95% CI: 0.77-0.93), with

no significant difference (P = 0.12). Specificity was 0.82 (95% CI:

0.78-0.86) for patient-based and 0.87 (95% CI: 0.78-0.93) for lesion-

based, also with no significant difference (P = 0.29) (Table 3).

In terms of CLNM locations, sensitivity was 0.82 (95% CI: 0.76-

0.87) for central and 0.80 (95% CI: 0.64-0.90) for lateral locations,

showing no significant difference (P = 0.49). However, specificity

was 0.80 (95% CI: 0.74-0.86) for central and 0.91 (95% CI: 0.84-

0.95) for lateral, indicating a significant difference (P <

0.05) (Table 3).
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Publication bias

Deeks’ funnel plot asymmetry test indicated no significant

publication bias for the internal validation set of AI and US

physicians (P = 0.47, 0.86) (Supplementary Figure S4-S5). For the

external validation set, no significant publication bias was observed

either (P = 0.49) (Supplementary Figure S6).
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Discussion

Our meta-analysis revealed that AI-based ultrasonography

demonstrated superior performance compared to human US

physicians in detecting CLNM in patients with PTC. Specifically,

AI achieved higher sensitivity, specificity, and AUC values. This

enhanced diagnostic performance is largely attributable to AI’s
FIGURE 2

Risk of bias and applicability concerns of the included studies using the Quality Assessment of Diagnostic Performance Studies (QUADAS)-2 Revised tool.
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ability to process large and complex datasets, extracting subtle, high-

dimensional features that may be imperceptible to human observers

(46). AI can integrate multiple imaging characteristics—such as

texture, density, and signal intensity—into predictive models,

thereby improving diagnostic precision (47). Internal validation

datasets, which are typically more homogeneous and closely
Frontiers in Endocrinology 10
aligned with the training data, tend to yield better algorithm

performance due to their consistency in imaging protocols and

patient characteristics (48). Conversely, external validation datasets

often introduce greater heterogeneity due to the imaging techniques,

equipment, and patient populations (48). Interestingly, our findings

demonstrate remarkable generalizability of the AI models, with the
FIGURE 3

Forest plots showing the combined sensitivity and specificity of ultrasonography-based artificial intelligence in patients with cervical lymph node
metastasis from papillary thyroid carcinoma: internal validation set (a) and ultrasound physicians (b). Squares represent the sensitivity and specificity
in each study, while horizontal bars indicate the 95% confidence intervals.
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FIGURE 4

Summary receiver operating characteristic (SROC) curves for diagnosing cervical lymph node metastasis in papillary thyroid carcinoma:
ultrasonography-based artificial intelligence on the internal validation set (a) and ultrasound physicians (b).
FIGURE 5

Fagan’s nomogram for diagnosing cervical lymph node metastasis in papillary thyroid carcinoma: ultrasonography-based artificial intelligence on the
internal validation set (a) and ultrasound physicians (b).
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AUC decreasing only marginally from 0.89 in internal validation to

0.86 in external validation. The lower sensitivity and AUC observed

among US physicians underscores the operator-dependent nature of

traditional ultrasonography and the inherent limitations of

qualitative or semi-quantitative assessments. These findings further

highlight the potential of AI to standardize diagnostic processes and

improve accuracy in clinical practice.

It’s worth noting that our meta-analysis revealed no statistically

significant differences in sensitivity (P = 0.19) or specificity (P =

0.91) between deep learning and machine learning methods. The

sensitivity of deep learning and machine learning was 0.84 and 0.78,

respectively, while both methods demonstrated a same specificity of

0.83. The comparable diagnostic performance may be explained by

their shared reliance on advanced algorithmic frameworks capable

of identifying critical imaging features relevant to CLNM prediction
Frontiers in Endocrinology 12
(49). Both approaches employ supervised learning techniques to

analyze structured imaging data, enabling the detection of patterns

such as texture, density, and morphological changes in lymph nodes

(50). Deep learning, particularly CNN, has the advantage of

automated feature extraction directly from raw data. In contrast,

machine learning often relies on handcrafted features derived from

expert knowledge (50). However, in this context, the imaging

datasets used in the included studies may have been sufficiently

optimized, with robust feature engineering for machine learning

models, thereby reducing the performance gap between the

two methods.

Another finding is that the results demonstrated a statistically

significant difference in sensitivity between the US-based model and

the US & clinical model for predicting CLNM of PTC patients, with

sensitivities of 0.88 and 0.76 (P < 0.001). The higher sensitivity of
FIGURE 6

Meta-regression analysis of the internal validation set for diagnosing cervical lymph node metastasis in papillary thyroid carcinoma.
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the US-based model may be attributed to its exclusive reliance on

ultrasound imaging features, which are directly associated with

structural and morphological changes in lymph nodes, such as size,

echogenicity, and vascularity—key indicators for detecting CLNM

(51). In contrast, the US & clinical model integrates additional

clinical variables, such as patient demographics and laboratory

findings, which may not be as strongly correlated with CLNM.

These variables could introduce irrelevant or conflicting

information, potentially diluting the predictive strength of the

imaging features and resulting in lower sensitivity (51).

This meta-analysis also showed no statistically significant

difference in sensitivity between the central and lateral locations of

CLNM. However, specificity was significantly higher for the lateral

lymph nodes (0.91) compared to the central lymph nodes (0.80; P <

0.05). The superior specificity for the lateral location may be

attributed to the distinct anatomical and imaging characteristics of

lateral lymph nodes. These nodes are typically larger, more superficial,

and easier to visualize using ultrasonography (52). They also tend to

exhibit clearer morphological changes, such as irregular margins, loss

of the hilum, or abnormal vascularity, which facilitate differentiation

from benign lymph nodes (52). In contrast, central lymph nodes are

situated in a more anatomically complex region, often surrounded by

structures such as the thyroid gland, trachea, and blood vessels. This

complexity can obscure visualization on ultrasonography and result

in overlapping features between metastatic and benign nodes, thereby

reducing diagnostic specificity (53).

Previous meta-analyses have provided valuable insights into the

diagnostic performance of various imaging modalities for LNM in

thyroid cancer. For instance, the 2023 meta-analysis by

HajiEsmailPoor et al. evaluated 25 studies assessing the
Frontiers in Endocrinology 13
performance of CT, US, and MRI-based radiomics for predicting

LNM in PTC (54). Their results indicated that US outperformed CT

andMRI, with a sensitivity of 0.77 and a specificity of 0.79. Our study,

focusing exclusively on AI-based models using US for predicting

CLNM of PTC, revealed even higher diagnostic performance, with

pooled sensitivity and specificity of 0.80 and 0.83. This improvement

may be attributed to the advanced analytical capabilities of AI, as

incorporating more US-based AI studies allows it to extract and

analyze subtle imaging features beyond human perception.

Furthermore, unlike previous studies, our study is the first meta-

analysis to focus on US-based AI models and their relative diagnostic

performance compared to US physicians for CLNM of PTC, offering

a more targeted and comprehensive result (55).

In comparison to the 2024 meta-analysis by Zhang et al., which

examined radiomics-based US models for LNM in thyroid cancer,

our study yielded slightly lower diagnostic performance (56). This

discrepancy may be explained by differences in study populations,

as Zhang et al. included various thyroid cancers (including PTC),

while our analysis was restricted to PTC cases. It is important to

notethat our study introduced two significant innovations: the first

direct comparison of AI models with US physicians, highlighting

the potential clinical advantages of AI, and a subgroup analysis

evaluating diagnostic performance using internal and external

validation datasets. These advancements provide critical evidence

for the practical application of AI in clinical settings and address

limitations in prior meta-analyses.

This study highlights that significant heterogeneity among the

included studies may have impacted the overall sensitivity and

specificity of AI in internal test datasets. Meta-regression analysis

identified US techniques, AI methods, and AI models as potential
TABLE 3 Subgroup analysis of cervical lymph node metastasis of papillary thyroid carcinoma of internal validation set.

Subgroup Studies, n Sensitivity
(95%CI)

Subgroup difference
P-value

Specificity
(95%CI)

Subgroup difference
P-value

Ultrasound techniques 0.49 0.23

B-mode ultrasound 17 0.81 (0.75-0.86) 0.82 (0.76-0.86)

Multimodal ultrasound 10 0.78 (0.69-0.85) 0.86 (0.80-0.91)

AI method 0.19 0.91

Deep learning 9 0.84 (0.76-0.89) 0.83 (0.76-0.88)

Machine learning 18 0.78 (0.71 - 0.84) 0.83 (0.78 - 0.88)

AI model <0.001 0.93

Ultrasound-based model 8 0.88 (0.82-0.92) 0.83 (0.76-0.89)

Ultrasound&clinical model 19 0.76 (0.70-0.81) 0.83 (0.78-0.87)

Analysis 0.12 0.29

Patient-based 23 0.79 (0.73-0.83) 0.82 (0.78-0.86)

Lesion-based 4 0.87 (0.77-0.93) 0.87 (0.78-0.93)

Location of cervical lymph
node metastasis

0.49 0.04

Central 14 0.82 (0.76-0.87) 0.80 (0.74-0.86)

Lateral 3 0.80 (0.64-0.90) 0.91 (0.84-0.95)
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sources of heterogeneity affecting sensitivity. The potential source of

heterogeneity for specificity were the types of data analysis. Despite

this heterogeneity, the findings demonstrate that US-based AI

achieves high diagnostic performance for predicting CLNM of

PTC across both internal and external validation datasets,

surpassing the diagnostic performance of US physicians. This

suggests that AI has the potential to alleviate the workload of

clinical practitioners, reduce misdiagnoses and missed diagnoses,

and prevent adverse outcomes associated with the disease. The

integration of US-based AI tools into primary care settings, such as

general practice, could support early detection and timely

management of PTC. Moreover, US-based AI has the potential to

enhance screening efficiency, particularly in resource-constrained

or remote areas where access to specialized expertise is limited. In

the future, US-based AI systems could serve as valuable tools to

assist US physicians in making more accurate diagnoses.

However, while diagnostic performance is crucial, cost-

effectiveness is an equally important consideration when

introducing new technologies into routine clinical practice. AI’s

diagnostic potential raises ethical and operational concerns,

including tensions between algorithmic efficiency and clinician

autonomy due to opaque “black-box” systems, as well as bias

risks from non-representative training data that may worsen

health inequities (57). Mitigation strategies could involve

adopting explainable AI to clarify decisions, implementing bias-

checking validation protocols, and establishing oversight-focused

regulatory policies with hybrid human-AI workflows to balance

innovation with accountability (58). Notably, this study did not

identify any research evaluating the cost-effectiveness of AI in

diagnosing CLNM of PTC, underscoring a critical gap that future

investigations should address.

The limitations of this study should be acknowledged. First, there

is a lack of external validation among the included studies, with only

four out of 27 studies performing external validation. External

validation is crucial because overfitting is a common issue in AI

training (48). Second, most of the included studies were retrospective

in design, which may introduce potential biases. Well-designed

prospective studies are necessary to confirm the findings of this

meta-analysis and ensure their robustness. Third, three studies used

non-pathology-based reference standards, which could introduce

bias in the evaluation of diagnostic performance. Fourth, this study

only included English-language literature, a decision primarily

driven by pragmatic considerations of accessibility. However, it

may bring potential publication bias. Future research should adopt

more standardized and consistent pathology-based reference

standards to ensure accuracy and reliability.
Conclusion

US-based AI demonstrates higher diagnostic performance than

clinicians. However, the high heterogeneity among studies limits

the strength of these findings, necessitating further investigation of

external validation datasets to confirm the results and assess their

practical clinical value.
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