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Chronic BPAF exposure
differentially enhances fat
deposition in mice fed normal
or high-fat diets via lipid
metabolism dysregulation
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Background: Bisphenol AF (BPAF), an alternative to Bisphenol A (BPA), is

increasingly utilized in various industrial applications, yet its toxicological

profile remains incompletely understood. This study aims to investigate the

impact of BPAF exposure on obesity and lipid metabolism in male mice

subjected to either a normal chow diet (ND) or a high-fat diet (HFD).

Methods: Mice were exposed to BPAF at a concentration of 100 mg/kg every

other day for five months under different dietary conditions, and body weight,

rectal temperature, and food intake were monitored regularly. After the mice

were sacrificed, the hepatic lipid metabolism was analyzed by measuring serum,

hepatic lipids and performing hepatic metabolomics; energy metabolism was

elucidated by assessing thermogenic pathways in brown adipose tissue (BAT) and

factors affecting ingestion in the hypothalamus; the development and pathways

of obesity were indicated by exploring lipogenesis and lipolysis pathways and fat

accumulation in white adipose tissue (WAT).

Results: Histomorphometric analyses indicated that BPAF exposure induced

drived fat deposition in white adipose tissue through adipocyte hypertrophy-

mediated pathways in eWAT of ND and HFD mice, accompanied by weight gain

in HFD mice. Energy metabolism analysis showed that BPAF exposure decreased

resting body temperature and reduced thermogenic factor expression in BAT of

ND and HFD mice, which may affect energy expenditure. Hepatic metabolomics

analysis suggested that BPAF exposure interfered with hepatic lipid metabolism

in ND and HFD mice, with elevated levels of hepatic triglycerides, total

cholesterol, and free fatty acids in HFD mice. Transcript analysis revealed

altered expression levels of genes regulating lipid metabolism in white adipose

tissue of ND and HFD mice, with a down-regulation observed in p-HSL protein
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expression, indicative of a potential inhibition effects of BPAF on lipolysis

signaling pathway.

Conclusion: Chronic BPAF exposure differentially exacerbates fat deposition in

mice fed normal or high-fat diets via affecting lipid metabolism. Given the

widespread prevalence of obesity and the pervasive environmental presence of

BPAF, our findings provide valuable insights into the metabolic toxicity of BPAF,

thereby raise further concern on the safe utilization and precision prevention of

this unique chemical.
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1 Introduction

Obesity has become a serious public health problem in the

present world, given its rising morbidity, excess mortality, and

enormous medical and economic burden (1, 2). It is extensively

linked to various chronic diseases, including, but not limited to,

diabetes, fatty liver, hyperlipidemia, atherosclerosis, stroke and

cancer. In particular, obesity in children and adolescents has

evolved into an escalating epidemic, not only interfering with

normal growth and metabolism but also persisting into

adulthood, with profound long-term health consequences (3). The

pathophysiological process of obesity is influenced by genetic,

endocrine, behavioral, psychological, and environmental factors,

and it is direct result of imbalance between energy intake and

expenditure. Among these factors, diets high in fat and sedentary

lifestyles are the most widespread causes of obesity (4). However, in

recent years, the role of environmental chemicals in promoting

metabolic disorders, including obesity, has also received

increasingly more attention (5).

Bisphenol A (BPA) is a globally ubiquitous environmental

chemical widely used in the production of plastics and resins, and

has been detected in a variety of environmental matrices such as

water, air, and soil, in human biological samples such as breast milk,

plasma, and in other wild animals (6–9). A plethora of deleterious

health effects have been demonstrated for BPA, including metabolic

disturbance, endocrine disruption, hepatotoxicity, reproductive

toxicity and neurotoxicity (10–13). Notably, exposure to BPA

during the early stages of life (gestation and/or lactation) can

interfere with the normal programming of the body’s systems

(14). The epigenetic changes induced by this developmental

exposure cause a significant increase in the risk of developing

chronic diseases such as abnormalities of glucose and lipid

metabolism and cardiovascular disease in adulthood (15, 16).

These detrimental effects have prompted the search for safer

alternatives. As a result, alternatives such as bisphenol AF

(BPAF), bisphenol F (BPF), and bisphenol S (BPS) have been

produced and put into use in large quantities. However, these
02
analogs appear to present analogical or even more serious

environmental threats and health risks than BPA (17–22).

Most bisphenols (BPs) have the potential to act as obesogens, a

property that can be attributed to their capacity to interfere with the

equilibrium of the endocrine system and energy metabolism as

environmental hormonal pollutants (23). Epidemiologic studies

have shown significant associations between BPs exposure and

obesity (24–26). For example, a cross-sectional study showed a

positive correlation between urinary levels of BPAF and indicators

of childhood obesity, particularly in boys (27). Animal studies have

shown that BPA and its substitutes (e.g., BPAF and BPF) interfere

with hepatic lipid metabolism in male mice fed a high-fat diet,

highlighting their potential role in inducing obesity (28). Moreover,

perinatal exposure to these chemicals induces disorders of glucose

and lipid metabolism, increased body weight and eWAT weight,

and hepatic steatosis in offspring during adulthood (29–32). It has

also been shown that BPS affects hypothalamic neuropeptides and

interferes with feeding behavior, which might induce energy

imbalance finally leading to obesity (33).

Although previous studies have revealed a strong association

between BPs and obesity, studies on the obesogenic effects of long-

term exposure to BPAF are still limited. The aim of this study was to

investigate the role of long-term BPs (especially BPAF) exposure in

the pathophysiological process of obesity under normal and high-

fat dietary conditions. We wished to indicate whether obesity occurs

by monitoring body weight changes, blood lipids, and white adipose

tissue (WAT) weight (ratio); to explore lipid metabolism disorders

by analyzing lipid synthesis and catabolism in epididymal white

adipose tissue (eWAT) and subcutaneous white adipose tissue

(sWAT) combined with hepatic lipid metabolism profiles; and to

elucidate the imbalance of energy homeostasis by investigating

thermogenic pathways in brown adipose tissue (BAT), food

intake regulatory pathways in the hypothalamus, in conjunction

with total energy intake of food and changes in resting body

temperature. Our findings are expected to shed light on the

health risks associated with BPAF exposure, especially its

potential effects on obesity.
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2 Materials and methods

2.1 Mice

Male C57BL/6J mice aged 8 weeks were brought from

Guangdong Medical Laboratory Animal Center (Guangdong,

China). All mice experiments were performed according to the

guidelines of the Institutional Animal Care and Use Committee of

Shenzhen Center for Disease Control and Prevention (Shenzhen

CDC A2018019). Mice were fed either a normal chow diet (ND, 10

kcal% fat, Research Diets, D12450) or a high-fat diet (HFD, 60 kcal

% fat, Research Diets, D12492) under controlled conditions of 22-

25°C and a 12h light/dark cycle. Mice were provided with ad libitum

access to food and water unless specified otherwise for

experimental procedures.
2.2 Experimental design and treatment

After acclimatisation feeding, the mice were randomly divided

into 8 groups of 10 mice each. Four of the groups (shown as ND-

CON, ND-BPAF, ND-BPS, ND-BPF) were given a normal diet,

while BPAF, BPF, and BPS were dissolved in olive oil (Macklin,

O815211), respectively, and were administered to the mice by oral

gavage at a concentration of 100 mg/kg every other day for five

months. BPAF, BPF, and BPS were brought form Sigma-Aldrich

(≥99% HPLC). Control mice were administered olive oil by gavage

only. The other four groups (shown as HFD-CON, HFD-BPAF,

HFD-BPS, HFD-BPF) of mice were given a high-fat diet, and other

treatments as above.
2.3 Histological analysis of adipose tissue

The eWAT samples from mice were fixed in 4%

paraformaldehyde overnight, embedded in paraffin, and

sectioned. Sections were then subjected to hematoxylin and eosin

staining for histological examination.
2.4 DNA content measurement

DNA was extracted from eWAT and sWAT using a DNA

extraction buffer, and DNA concentration was quantified by

NanoDrop spectrophotometer using the method of Ying Cheng

et al (34).
2.5 TG, TC, FFA measurement

Liver cells lipids were extracted using chloroform-methanol.

Serum and liver TG and TC levels were measured using the TG and

TC kit (SSUF-C, Shanghai, China). Serum and liver FFA levels were

determined using the FFA kit (Wako Pure Chemical Industries,

Osaka, Japan).
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2.6 Liver metabolites quantification

Targeted quantitative metabolomics analysis of liver tissue was

performed on the XporeMET platform (Metabolo - Profile, Shanghai,

China). Liver metabolites were quantitated using the ultrahigh-

performance liquid chromatography-tandem mass spectrometry

(UPLC-MS/MS) system (ACQUITY UPLC-Xevo TQ-S, Waters

Corp., Milford, MA, USA). The raw data was performed by

QuanMET software (v2.0, Metabo-Profile, Shanghai, China) and

metabolites were peak-integrated, calibrated and quantified.
2.7 Western blot

Total proteins were extracted from tissue lysates (eWAT,

sWAT, BAT), separated by 10% SDS-PAGE gels, and transferred

onto PVDF membranes for western blotting. Primary antibodies

were as follows: anti-FAS, anti-phospho-HSL (Ser660), anti-HSL,

anti-CPT1A (all obtained from Cell Signaling Technology, Beverly,

MA, USA), anti-SCD1, anti-UCP1 (Santa Cruz Biotechnology Inc,

CA, USA), anti-b-Actin (Sigma, MO, USA).
2.8 Total RNA extraction and qRT-PCR
analysis

Total RNA was extracted from BAT, eWAT, sWAT, and

hypothalamus using TRIzol reagent (Invitrogen, USA).

Synthesized cDNA from total RNA was used PrimeScript™ RT

reagent kit (TaKaRa, Beijing, China). qRT-PCR analysis was

performed using PowerUp™ SYBR™ Green Master Mix (ABI,

USA) and Prism 7500 system (ABI, USA). Gene expression levels

were normalized to GAPDH mRNA. Primers were synthesized by

Sangon Biotechnology (Shanghai, China) and are shown in

Supplementary Table S1.
2.9 Statistics

All the data are expressed as means ± standard error (SE). A

two-tailed Student’s t-test (two groups) or one-way analysis of

variance followed by a Student-Newman-Keuls (SNK) test

(multiple groups) was used to assess significant differences, when

the data conformed to normal distribution with chi-square.

Conversely, nonparametric tests were used. P < 0.05 means

statistically significant.
3 Results

3.1 BPAF treated mice showed increased
body weight under HFD condition

BPA and its analogues have been implicated in adverse health

effects and their association with obesity has been documented (35).
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To explore the effects of BPA analogues (BPAF, BPF, BPS) under

varying nutritional conditions, male mice were subjected to 100 mg/
kg of the chemicals by gavage every other day for 5 months, while

feeding either a normal chow diet (ND) or a high-fat diet (HFD).

The experimental setup is illustrated in Figure 1A. Results

revealed that, under normal diet condition BPAF, BPF, and

BPS treatments exhibited negligible effects on body weight

(Figure 1B), with no significant differences observed in relative

body weight changes (Figure 1C). However, under a high-fat diet,

BPAF and BPS treatments, but not BPF, led to increased body

weight (Figure 1D), although the relative body weight remained

unchanged (Figure 1E).
3.2 BPAF induced fat accumulation in
white adipose tissue

Given the pronounced effects of BPAF on body weight gain, we

further investigated its role in fat accumulation. BPAF treatment

exhibited a significant increase in eWAT under normal chow diet

condition (Figure 2A). Conversely, no discernible effect was

observed on the weight of sWAT (Figure 2A). However, mice fed
Frontiers in Endocrinology 04
a high-fat diet displayed increased fat deposition in both eWAT and

sWAT following BPAF exposure (Figure 2B). Consistently,

histological analysis confirmed that adipocytes in eWAT were

larger in the BPAF-treated group of mice than in the control

mice, both under normal and high-fat diet conditions

(Figure 2C). Additionally, DNA content in sWAT and eWAT

exhibited no significant differences in mice subjected to either

normal diet or high-fat diet with BPAF treatment (Figures 2D, E).

This suggests that BPAF exposure did not cause an increase in the

number of adipocytes in WAT of mice. Collectively, our

mechanistic analyses establish that BPAF exposure drived fat

deposition in eWAT through adipocyte hypertrophy-mediated

pathways, rather than hyperplastic expansion.
3.3 Impact of BPAF exposure on energy
homeostasis

Imbalances in energy homeostasis play a pivotal role in fat

accumulation (4). To evaluate the effects of BPAF on energy intake,

we treated different nutritional mice with BPAF, and results showed

that BPAF exposure had no influence on the total energy intake
FIGURE 1

Effects of BPAF, BPF and BPS on body weight under ND and HFD conditions. C57BL/6j mice fed with ND or HFD were gavaged with 100 mg/kg of
BPAF, BPF, or BPS for five months every other day, and body weights were measured weekly. (A) design of animal experiments in this study; (B) body
weight of ND mice; (C) relative body weight change of ND mice; (D) body weight of HFD mice; (E) relative body weight change of HFD mice. N=8,
data were expressed as means ± SE, one-way analysis of variance followed by Student-Newman-Keuls test, * means p <0.05.
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from food (Figure 3A). Rectal temperatures in the resting state were

significantly lower in the ND-BPAF group of mice at one month

and five months from the start of the experiment compared to the

ND-CON group of mice (Figure 3B). Compared with HFD-CON

mice, rectal temperatures in the resting state of mice were

measured to be lower at 3 and 5 months after BPAF exposure

(Figure 3C). The hypothalamus, as a neuroendocrine regulatory

center, plays a crucial role in the development of obesity (36). We

evaluated the expression levels of key factors regulating feeding

behavior and energy metabolism in hypothalamus, including

proopiomelanocortin (POMC), neuropeptide (NPY), agouti-

related protein (AGRP), cocaine and amphetamine-regulated

transcript (CART), thyrotropin releasing hormone (TRH),

corticotropin releasing hormone (CRH), and suppressor of

cytokine signaling 3 (SOCS3) (36). Under normal diet condition,

POMC expression was significantly increased (Figure 3D), while no

changes were observed in HFD mice (Figure 3E) after BPAF

treatment. The thermogenic function of BAT is not only involved

in body temperature maintenance, but also influences obesity by

regulating energy distribution balance (37, 38). We found that

BPAF exposure decreased the expression levels of genes

associated with thermoregulation, including uncoupling protein 1

(UCP1), peroxisome proliferator-activated receptor gamma co-

activator-1 alpha (PGC1a) and PR domain containing 16

(PRDM16) (39) in BAT of mice subjected to normal diet

(Figure 3F), although UCP1 protein expression was not changed

(Figure 3G). Only PGC1a gene expression exhibited a significant
Frontiers in Endocrinology 05
decrease, while UCP1 and PRDM16 showed no significant

differences in HFD mice after BPAF treatment (Figures 3H, I).
3.4 Impact of BPAF exposure on lipid
metabolites

Disorders of lipid metabolism are commonly associated with

obesity in a subset of obese patients. To elucidate the role of BPAF in

lipid metabolism regulation, we first analyzed liver and serum lipids

levels in mice. Under normal diet condition, serum TG levels were

decreased while liver TG levels remained unchanged (Figure 4A).

Serum TC levels showed no differences, whereas liver TC levels were

decreased in BPAF-treated mice (Figure 4C). Serum and liver FFA

levels exhibited no significant changes (Figure 4E). Conversely, under

high-fat diet condition, BPAF-treated mice displayed elevated liver

TG, TC, and FFA levels, as well as increased serum FFA levels, with

no differences observed in serum TG and TC levels compared to

BPAF untreated mice (Figures 4B, D, F). Additionally, we performed

metabolomic analysis of liver tissue, Partial Least Squares

Discriminant Analysis (PLS-DA) score plots showed clear

separation of control and BPAF, both in ND and HFD mice

(Figures 4G, H), suggesting that BPAF exposure disrupted hepatic

metabolic profiles. Alterations in liver lipid metabolites were also

quantified, with a distinct profile of unregulated and downregulated

metabolites in both normal diet and high-fat diet mice following

BPAF exposure. In ND mice, there were 1 metabolite up-regulated
FIGURE 2

BPAF induced white adipose tissue fat accumulation. C57BL/6j mice fed with ND or HFD were gavaged with 100 mg/kg of BPAF for five months
every other day, followed by examination of DNA content in eWAT and sWAT, weighing of eWAT and sWAT, detection of adipocyte size in eWAT.
(A) sWAT and eWAT tissue weight (ratio) of ND mice treated with BPAF; (B) sWAT and eWAT tissue weight (ratio) of HFD mice treated with BPAF;
(C) adipocyte size in eWAT of BPAF treated ND and HFD mice; top, representative images of H & E staining scale bar is 50 mm; bottom, area statistics
of adipocyte; (D) DNA content per unit of tissue in sWAT and eWAT of BPAF treated ND mice; (E) DNA content per unit of tissue in sWAT and eWAT
of BPAF treated HFD mice. N=6, data were expressed as means ± SE, two-tailed Student’s t test were used to analyze the difference between CON
and BPAF group, * means p <0.05, ** means p <0.01.
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and 13 metabolites down-regulated (Figure 4G) and in HFD mice,

there were 3 metabolites up-regulated and 4 metabolites down-

regulated (Figure 4H). Detailed of differential lipid metabolites were

presented in Tables 1, 2. These changed molecules indicated the

regulated role of BPAF on lipid metabolism homeostasis.
3.5 Impact of BPAF exposure on lipid
metabolism in WAT

Furthermore, we assessed the expression levels of lipid

metabolism-related factors in WAT. Under normal diet

condition, genes associated with enzymes related to lipogenesis

(40), including fatty acid synthase (FAS), stearoyl-Coenzyme A

desaturase 1(SCD1) and acetyl-CoA carboxylase (ACC) were

upregulated in sWAT following BPAF treatment (Figure 5A).

Genes related to fatty acid oxidation and lipolysis (41, 42),

peroxisome proliferator-activated receptor alpha (PPARa) and

adrenergic receptor bata 3 (ADRB3) was not changed

(Figure 5A). However, the gene of adipose triglyceride lipase

(ATGL), which is involved in lipolysis, also exhibited increased

expression in BPAF exposure mice (Figure 5A). In eWAT, only the
Frontiers in Endocrinology 06
gene expression of fatty acid uptake-associatedcluster of

differentiation 36 molecule (CD36) was downregulated

(Figure 5B). HFD mice displayed no changes in gene expressions

in sWAT(Figure 5C), while BPAF treatment resulted in significant

decreases in the expression of genes associated with lipid synthesis

(SCD1), lipolysis (ATGL, ADRB3 and lipoprotein lipase (LPL)),

and fatty acid transport (fatty acid transport protein (FATP)) in

eWAT (Figure 5D). Protein expression analysis revealed reduced

levels of phosphorylated hormone-sensitive lipase (p-HSL) in

sWAT of ND mice following BPAF treatment (Figure 5E), while

no changes were observed in HFDmice (Figure 5G). In eWAT,

BPAF treatment led to increased CPT1 protein levels (Figure 5F),

whereas decreased expression levels of SCD1 and p-HSL were

observed in HFD mice (Figure 5H).
4 Discussion

In this study, we firstly examined the effects of BPs exposure on

the weight change of male mice subjected to normal diet or high-fat

diet. Our findings indicate that a relatively low dose of BPAF and

BPS exposure, but not BPF, led to increased body weight in HFD
FIGURE 3

Impact of BPAF exposure on energy homeostasis. C57BL/6j mice fed with ND or HFD were gavaged with 100 mg/kg of BPAF for five months every other
day, and monitored for body temperature and energy intake, followed by examination of gene and protein expression of relevant factors in BAT and
hypothalamus. (A) changes in daily energy intake in ND and HFD mice; (B) rectal temperature of ND mice at different times of the test; (C) rectal
temperature of HFD mice at different times of the test; (D) POMC, NPY, AGRP, CART, TRH, CRH, SOCS3 gene expression in hypothalamus of ND mice;
(E) POMC, NPY, AGRP, CART, TRH, CRH, SOCS3 gene expression in hypothalamus of HFD mice; (F) UCP1, PGC1a, PRDM16 gene expression in BAT of
ND mice; (G) UCP1 protein expression in BAT of ND mice; (H) UCP1, PGC1a, PRDM16 gene expression in BAT of HFD mice; (I) UCP1 protein expression
in BAT of HFD mice. top, western blots; bottom, quantitative measurements of UCP1 protein relative to b-actin protein. N=6, data were expressed as
means ± SE, two-tailed Student’s t test were used to analyze the difference between CON and BPAF group, * means p <0.05.
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mice, with BPAF exhibiting a more pronounced effect compared to

BPS. However, no significant changes were observed in ND mice.

Given that the relationship between BPF and BPS with body weight

in mice has also been measured in our previous studies (43, 44). The
Frontiers in Endocrinology 07
effect of BPAF on obesity, however, remains unclear. Therefore, we

discuss and showed only BPAF results in our study. BPAF exposure

induced fat deposition in sWAT and eWAT of HFD mice and

eWAT of ND mice, accompanied by an increase in adipocyte
FIGURE 4

Impact of BPAF exposure on lipid metabolites. C57BL/6j mice fed with ND or HFD were gavaged with 100 mg/kg of BPAF for five months every other
day, followed by examination of liver and serum TG, TC, FFA levels and analysis of liver metabolomics. (A) serum and liver TG levels in ND mice;
(B) serum and liver TG levels in HFD mice; (C) serum and liver TC levels in ND mice; (D) serum and liver TC levels in HFD mice; (E) serum and liver
FFA levels in ND mice; (F) serum and liver FFA levels in HFD mice; (G) analysis of liver metabolomics in ND mice; (H) analysis of liver metabolomics
in HFD mice. left, PLS-DA score plots; right, volcano plots. N=6, data were expressed as means ± SE, two-tailed Student’s t test were used to
analyze the difference between CON and BPAF group, * means p <0.05.
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volume in eWAT. Altered core temperature in the resting state of

ND and HFD mice, as well as decreased expression of thermogenic

factors in the BAT. Notably, alterations in lipid metabolism were

evident in both liver and WAT following BPAF exposure.

Specifically, hepatic TG, TC, and FFA levels were elevated in

HFD mice after BPAF treatment, accompanied by alterations in

hepatic lipid metabolite profiles. Furthermore, BPAF induced

changes in the expression of factors related to lipogenesis and

hydrolysis that contribute to fat accumulation in eWAT and

sWAT. These findings indicate that BPAF exposure disrupts

metabolic functions of liver and adipose tissue and outline a

possible mechanism that links BPAF to the prevalence of obesity

and other metabolic disorders.Based on the dosage range selected in

the previous studies and the legal dosage limits released by the

government supervision department, we selected the concentration

of BPAF at 100 µg/kg every other day in this study.This dosage is

close to two equivalents of a temporary tolerable daily intake (t-

TDI) of BPA (4 mg/kg bw per day) recommended by European

Food Safety Authority in 2015 (7). In previous researches, the
Frontiers in Endocrinology 08
exposure dosage of BPAF applied in mice experiments ranged from

0.05mg/kg body weight/day to 5mg/kg body weight/day for days or

weeks (28, 32, 45, 46). Some studies investigated the effects of BPAF

on liver lipid metabolism and liver damage (28, 30, 32). Others

explored the role of BPAF in immune system (22, 46), reproductive

system (45) or neurotoxicity (45, 46). Although extensive studies

have shown that BPAF increases the risk of obesity, the specific

effects of sustained exposure to BPAF on the development of obesity

and the mechanism of action remain to be clarified (20, 24, 27, 47).

Our current study systematically reveals that chronic exposure to

bisphenol AF (BPAF) disrupts lipid metabolism thereby leading to

fat accumulation and somewhat reduces energy expenditure, with

this effect being significantly amplified under high-fat

diet conditions.

BPAF-induced obesity in mice might be influenced by multiple

factors, such as the exposure pattern, dosage and duration, and

dietary conditions. In our study, 100 µg/kg every other day of BPAF

exposure for five months resulted in fat accumulation in both ND

and HFD mice, with a significant increase in body weight in HFD

mice. However, in a previous study, mice exposed to 50 mg/kg/day
of BPAF for 8 weeks under high-fat conditions showed no

significant change in body weight (28). In addition, two previous

studies have shown that the sex of the subject and the window of

exposure (perinatal, adolescent, adulthood) are also key

determinants in modulating the hypertrophic effects of BPAF (30,

32). A study using mature human adipocytes also showed that

exposure to bisphenol AF mediates inflammatory signaling

pathways that disrupt adipocyte metabolism (48).

Energy balance, comprising energy intake and expenditure,

plays a crucial role in the development of obesity (4). Previous

studies have found that postweaning exposure to BPAF and other

bisphenol analogs induced an increase in energy intake in subjects,
TABLE 1 Differential hepatic lipid metabolites (mM/g).

Metabolites ND-CON ND-BPAF Change

Myristoleic acid 0.0085 ± 0.0008 0.0114 ± 0.0020 up

L-Alpha-Aminobutyric
acid 0.0106 ± 0.0083 0.0030 ± 0.0009

down

Citraconic acid 0.0012 ± 0.0005 0.0006 ± 0.0001 down

Adipoylcarnitine 0.0035 ± 0.0011 0.0011 ± 0.0002 down

2-Hydroxybutyric acid 0.1463 ± 0.0399 0.0756 ± 0.0216 down

Fumaric acid 0.0075 ± 0.0017 0.0048 ± 0.0012 down

Octanoylcarnitine 2.17E-05 ± 7.53E-06 8.2E-06 ± 4.02E-06 down

DPAn-6 1.0266 ± 0.3209 0.5777 ± 0.0814 down

2-Methylbutyroylcarnitine 0.0013 ± 0.0004 0.0006 ± 0.0002 down

Decanoylcarnitine 8.33E-05 ± 4.23E-05 3.00E-05 ± 8.37E-06 down

Glutarylcarnitine 0.1220 ± 0.0042 0.0065 ± 0.0019 down

L-Homocitrulline 0.0025 ± 0.0003 0.0021 ± 0.0001 down

2-Methyl-4-pentenoic acid 0.0011 ± 0.0002 0.0007 ± 0.0002 down

Maleic acid 0.0212 ± 0.0063 0.0123 ± 0.0040 down
TABLE 2 Differential hepatic lipid metabolites in HFD mice (mM/g).

Metabolites HFD-CON HFD-BPAF Change

L-pipecolic acid 0.0070 ± 0.0014 0.0087 ± 0.0006 up

Azelaic acid 0.0009 ± 0.0001 0.0011 ± 0.0002 up

Rhamnose 0.0181 ± 0.0031 0.0215 ± 0.0033 up

DPAn-6 1.1505 ± 0.4334 0.5831 ± 0.1444 down

10,13-Nonadecadienoic acid 0.0289 ± 0.0067 0.0177 ± 0.0076 down

Glycylproline 0.0479 ± 0.0051 0.0374 ± 0.0082 down

Murocholic acid 0.0009 ± 0.0004 0.0004 ± 0.0003 down
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but this phenomenon was not observed in the present study, which

may be related to the specificity of BPAF as well as the different age

of exposure (33, 49). Appetite and feeding behavior are controlled

by metabolic signaling pathway as well as neuroendocrine system

(36). The expression of neuropeptide in the hypothalamus were

investigated, including the anorexigenic neuropeptides POMC and

CART, the appetite-stimulating neuropeptides AgRP and NPY, two

neuroendocrine hormones, TRH and CRH, as well as the leptin-

associated factor SOCS3 (36). The results showed that BPAF

induced elevated expression of the anorexigenic neuropeptide

POMC in ND mice, but no significant changes in other factors.

Another study also showed that BPAF upregulates the expression of

POMC, which induced sWAT browning, a means of maintaining

body temperature and regulating energy metabolism in mice (46).

Consequently, it can be concluded that the neuroendocrine

disrupting effects of low-dose BPAF exposure should not be
Frontiers in Endocrinology 09
disregarded. In addition, the thermogenic function of BAT is

critical for energy expenditure and maintenance of resting body

temperature (37, 38). However, core body temperature decreased in

both ND and HFD mice after BPAF exposure. Meanwhile, the

expression of UCP1, PGC-1a, and PRDM16 in the BAT, critical

thermogenic tissue, was decreased, indicating that its thermogenic

function was inhibited. BPAF may impair energy expenditure in

mice to some extent, thereby contributing to the development of fat

accumulation and obesity.

Lipids are important biomolecules that play key biophysical

roles in material metabolism, energy balance, and physiological

signal transduction (50).The effects of BPAF exposure on hepatic

and serum lipid homeostasis appear to be inconsistent across

dietary conditions. We found that BPAF exposure downregulated

hepatic TC and serum TG levels in ND mice but upregulated

hepatic TG, TC and FFA levels as well as serum FFA levels in HFD
FIGURE 5

Impact of BPAF exposure on lipid metabolism in WAT. C57BL/6j mice fed with ND or HFD were gavaged with 100 mg/kg of BPAF for five months
every other day, followed by examination of gene and protein expression of factors related to lipogenesis and lipolysis in eWAT and sWAT. (A) FAS,
SCD1, ACC, PPARa, ATGL, ADRB3 gene expression in sWAT of ND mice; (B) FAS, SCD1, ACC, PPARa, ATGL, ADRB3, LPL, CD36, FATP, FABP4 gene
expression in eWAT of ND mice; (C) FAS, SCD1, ACC, PPARa, ATGL, ADRB3 gene expression in sWAT of HFD mice; (D) FAS, SCD1, ACC, PPARa,
ATGL, ADRB3, LPL, CD36, FATP, FABP4 gene expression in eWAT of HFD mice; (E) FAS, CPT1, p-HSL (Ser660) protein expression in sWAT of ND
mice; (F) FAS, SCD1, CPT1, p-HSL (Ser660) protein expression in eWAT of ND mice; (G) FAS, CPT1, p-HSL(Ser660) protein expression in sWAT of
HFD mice; (H) FAS, SCD1, CPT1, p-HSL (Ser660) protein expression in eWAT of HFD mice. left, western blots; right, quantitative measurements of
FAS, SCD1, CPT1 protein relative to b-actin protein, quantitative measurements of p-HSL protein relative to t-HSL protein. N=6, data were expressed
as means ± SE, two-tailed Student’s t test were used to analyze the difference between CON and BPAF group, * means p <0.05.
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mice. Another study in which mice were treated with BPAF at 0.05

mg/kg bw/day for 8 weeks showed a decrease in hepatic TG and TC

levels in HFD mice, but transcriptomics results showed up-

regulation of differentiated expressed genes (DEGs) involved in

lipogenesis and down-regulation of DEGs involved in the lipolytic

pathway (28). This discrepancy might be largely ascribed to

different exposure doses, durations and frequencies. However,

there is no doubt that BPAF treatment interferes with hepatic

lipid metabolism. In vitro experiments have also demonstrated

that BPAF interferes with intracellular lipid homeostasis, with

lower concentrations of BPAF maximizing intracellular lipid

levels during adipocyte differentiation. In contrast, BPAF-

glucuronide, the main metabolite of BPAF in vivo, has a different

mode of action, increasing lipid accumulation in a dose-dependent

manner (51, 52).

Dysregulation of hepatic lipid metabolism is a key factor in

distinguishing between healthy and metabolically diseased obesity

and suggests a mechanism by which BPAF induces obesity (4, 53).

In this study, we examined hepatic metabolites using UPLC-MS/

MS, and a total of more than 200 lipid metabolites were detected.

The hepatic lipid metabolite profiles in ND and HFD mice were

significantly changed after BPAF treatment. Almost all altered

hepatic lipid metabolites were down-regulated in BPAF exposed

ND mice, whereas altered hepatic lipid metabolites in HFD mice

were either up-regulated or down-regulated. Docosapentaenoic acid

(22n-6) (DPAn-6) was the lipid metabolite co-reduced in the livers

of ND and HFD mice. DPAn-6 is able to increase the activity of

lipolysis-related enzymes by inhibiting the activity and expression

of lipase-producing enzymes in mouse livers, which in turn

attenuated hepatic steatosis (54). At the same time, DPAn-6 has

significant anti-inflammatory effects (55). The decrease of DPAn-6

might be a result of the abnormalities in lipid metabolism induced

by BPAF.

In addition, we found that several differential hepatic lipid

metabolites in BPAF exposed HFD mice were strongly associated

with obesity pathogenesis, including L-pipecolic acid, Murocholic

acid, Glycylproline and 10,13-Nonadecadienoic acid. In a previous

study, serum etabolite pipecolic acid levels were significantly

increased in obese mice (56), which is consistent with what we

observed in HFD mice treated with BPAF but not in ND mice. This

indicates that lipid metabolism disorders are more likely to be a

synergistic effect induced by BPAF exposure in combination with

high-fat diet consuming. Similarly, it has been shown that

murocholic acid has a positive effect on ameliorating obesity and

metabolic disorders (57), but we found that BPAF exposure led to a

decrease in murocholic acid in HFD mice. A study in male

adolescents showed that urinary glycylproline levels were

negatively correlated with pubertal body mass index (BMI), and a

decrease in this index is a sensitive biomarker of obesity (58).

Furthermore, FP fermentation broth of C. leptum (FPF), which was

rich in glyceroproline, was able to mediate the AMPK pathway to

block hepatic fatty acid synthesis and accelerate the oxidative

catabolism of fatty acids, thus effectively reducing body fat in

obese mice (59). The above results suggest that simultaneous
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exposure to HFD and BPAF may aggravate the burden on hepatic

lipid metabolism and more easily induce obesity.

WAT is a core storage site for fat (mainly TG) and its quality

reflects fat deposition. This energy buffering capacity maintains

systemic energy homeostasis by regulating lipid metabolism. Lipid

synthesis, lipid hydrolysis and lipid oxidation are the basic

processes of lipid metabolism (60). We examined the expression

of factors related to lipid metabolism in different adipose tissues.

BPAF induced up-regulation of the expression of genes related to

fatty acid synthesis (Fas, Scd 1, and Acc) and decreased

phosphorylation of HSL, a key enzyme that promotes lipid

hydrolysis, in sWAT of ND mice. These results indicate that the

risk of fat accumulation was dramatically increased, although the

weight of sWAT in ND mice was not significantly elevated. In

contrast, the expression of the lipolytic enzyme ATGL was

upregulated, which might be an adaptive regulation to maintain

lipid homeostasis. Furthermore, the diminished CD36 expression

and augmented CPT1 expression in eWAT of ND mice imply that

the uptake and transport of long-chain fatty acids is constrained,

and that b-oxidation is augmented, consequently leading to a

reduction in lipid synthesis and accumulation. Other studies have

also observed that perinatal BPAF exposure resulted in up-

regulation of CPT1a expression in the adult liver of offspring

(30). Concomitantly, in conjunction with the elevated weight of

eWAT and the increased adipocyte volume, we conclude that these

changes are negative feedback regulated, reducing lipogenesis and

accelerating lipolysis. The above suggest that some protective

mechanisms exist in ND mice to cope with BPAF-induced lipid

metabolism disorders.

In contrast, BPAF elicited a decrease in the expression of ATGL,

ADRB3, LPL, and FATP, along with a reduction in HSL

phosphorylation (p-HSL) in eWAT of HFD mice, suggesting

inhibition of fatty acid catabolism, transport, and utilization. BPAF

interfered with lipid depletion processes. Whereas the decreased gene

and protein expression of SCD1 was presumably related to a

compensatory mechanism that reduces further lipid synthesis.

However, the elevated eWAT weight indicated this compensation

was not sufficient to completely prevent the occurrence of obesity.

This study has several limitations. First, we did not monitor basal

metabolic rate (BMR) by indirect calorimetry, nor did we perform

hypothalamic thermoregulatory analyses, which limits our

understanding of the neuroendocrine perturbations in the dynamics

of BPAF-induced energy expenditure. Second, the study did not assess

adipose tissue endocrine function, which is also important for energy

intake as well as expenditure. Third, the lack of high-resolution

lipidomics precludes a comprehensive description of tissue-specific

lipid remodeling. Finally, interspecies differences in the toxicokinetics

of BPAF may require more consideration when extrapolating

conclusions. In conclusion, our findings demonstrated that BPAF

exposure disrupted lipid metabolism homeostasis, leading to fat

accumulation in adipose tissue and liver, especially under conditions

of high-fat diet feeding. Metabolomics analysis further elucidated the

relationship between altered lipid metabolism and changes in lipids

levels induced by BPAF exposure. Protein phosphorylation analyses
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suggested that inhibition of the p-HSL signalling pathway might be

responsible for the metabolic disturbances in adipose tissue.

Collectively, this study demonstrated the potential obesogenic risk of

BPAF via disrupting lipid metabolic homeostasis under both ND and

HFD feeding conditions, which would provide scientific evidence for

both the development of precision prevention strategy and promotion

the safe use of BPAF.
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