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Research progress on the
adverse effects of high-altitude
environment to the male
reproductive system:
a review study
Dong-Dong Meng, Yin-Dong Kang* and De-Hui Chang*

Department of Urology, The 940th Hospital of Joint Service Support Force of Chinese People's
Liberation Army, Lanzhou, Gansu, China
An increasing number of people are being exposed to high-altitude

environments as they become more important in economic development,

resource exploitation, and other areas. This review is focused on the impact of

the high-altitude environment on the male reproductive system. In high-altitude

areas, the unique conditions lead to complex and significant changes in male

reproductive hormone levels. The secretion of GnRH is inhibited, which in turn

affects the levels of FSH and LH, ultimately influencing testosterone synthesis and

secretion, thus disrupting the normal endocrine regulatory network. Testicular

tissue also shows marked morphological changes. The seminiferous tubule

structure becomes disordered, and the number and function of spermatogenic

and interstitial cells are damaged. These alterations have a direct impact on

sperm quality, resulting in a decrease in sperm density and motility, an increase in

the deformity rate, and damage to genetic material integrity. Additionally, sexual

function is affected, with symptoms such as decreased libido and erectile

dysfunction being common. The underlying mechanisms involve oxidative

stress damage, an abnormal increase in apoptosis, and enhanced autophagy.

Nevertheless, current research, especially human-based studies, is restricted by

small sample sizes and insufficiently in-depth exploration of these mechanisms.
KEYWORDS

high-altitude environment, male reproductive system, reproductive hormones,
testicular tissue, sperm quality
1 Introduction

In the progression of global economic and social development, high-altitude areas have

assumed increasing importance in mineral exploitation (1), tourism expansion (2), military

garrisoning (3), and numerous other fields due to their abundant natural resources and

distinctive geographical strategic positions. In recent years, with mineral development

projects in high-altitude regions continuously growing, more and more people are settling
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or frequently traveling in high-altitude areas. The environment in

high-altitude regions is characterized by low atmospheric pressure

(4), low oxygen partial pressure (5), low temperature (6), and

intense ultraviolet radiation (7), posing formidable challenges to

human physiological functions.

In high-altitude areas, the atmospheric pressure and the closely

related oxygen partial pressure drop significantly with increasing

altitude (8). Hypoxia is common in high-altitude regions like the

Qinghai-Tibet Plateau and the Andes Mountains, having a

profound impact on human physiological functions by affecting

energy metabolism, reducing low-temperature tolerance, and

interacting with strong ultraviolet radiation (9). There is a highly

significant negative correlation between air temperature and

altitude in high-altitude areas (10), and this low-temperature

environment affects various aspects of the human body including

basal metabolism and physiological functions. Also, due to the thin

air, ultraviolet radiation attenuation is much lower than in low-

altitude regions (11), resulting in a substantial increase in ultraviolet

radiation intensity, and excessive ultraviolet irradiation can damage

biomacromolecules and skin tissues (12).

The male reproductive system, being a crucial physiological

system for maintaining human reproduction and individual quality

of life, has attracted significant attention regarding its health status

in high-altitude environments (13–15). Male reproductive health is

not only directly related to an individual’s fertility but also plays an

essential role in family stability and the optimization of the social

population structure (16). Therefore, delving deeply into the

potential effects and mechanisms of the high-altitude

environment on the male reproductive system is of great

significance for effectively safeguarding the reproductive health of

men in high-altitude areas, scientifically formulating targeted

protection strategies, and promoting the advancement of research

in related fields.
2 Impacts of high-altitude
environment on the male
reproductive system

2.1 Impact on reproductive hormone levels

Long-term exposure to the high-altitude hypoxic environment

induces intricate and clinically significant changes in male

reproductive hormone levels (17). Gonadotropin-releasing

hormone (GnRH), a pivotal hormone secreted by the

hypothalamus, plays a crucial “directing” role in the reproductive

endocrine regulatory network, and its secretion process is notably

inhibited by the hypoxic environment (18, 19).

The neurons in the hypothalamus are highly sensitive to oxygen

partial pressure. In a hypoxic state, the normal metabolism and

signal transduction processes of neurons are severely disrupted,

resulting in the suppression of GnRH synthesis and release.

Previous studies have demonstrated that in a specific high-

altitude environment, such as at an altitude of 4350 meters, the

FSH level in 8 healthy male subjects decreased by 17% (19). In
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another study involving 40 healthy subjects (21 men) within the

altitude range of 550 meters to 7050 meters, the results revealed that

the male FSH level continuously declined from 5.8 ± 5.9 mU/L at

550 meters (baseline level) with increasing altitude, reaching 3.3 ±

2.1 mU/L at 7050 meters, with a reduction of up to 40%.

Simultaneously, LH also decreased significantly from the baseline

to 7050 meters, by approximately 50% (20).

The decline in GnRH secretion further affects the pituitary’s

secretion of follicle-stimulating hormone (FSH) and luteinizing

hormone (LH), and FSH and LH are essential for testicular

spermatogenesis and testosterone synthesis and secretion (21, 22).

FSH primarily acts on the Sertoli cells in the seminiferous tubules of

the testis to promote their maintenance of normal function and

provide necessary nutrition and support for the spermatogenic

process (23–25). LH mainly acts on the Leydig cells of the testis

to stimulate their synthesis and secretion of testosterone (26–29).

Hence, when the levels of FSH and LH decrease, the functions of the

Sertoli cells and Leydig cells in the seminiferous tubules of the testis

are damaged to varying degrees, thereby influencing sperm

production and testosterone secretion (22, 30, 31).

Testosterone, as the core hormone of male reproductive

function, is also affected by multiple factors in its synthesis and

secretion (32, 33). In von Wolff et al.’s study, testosterone

concentration remained relatively stable at most altitudes, with

minimal fluctuations. However, at 7050 m, testosterone

concentration decreased significantly, paralleling the decline in

LH concentration (20). Previous research by Benso et al. also

reported a significant reduction in testosterone concentrations in

eight mountaineers at the 5200-m base camp post-Mount Everest

climb (34). Nevertheless, due to the small sample size and

confounding effect of excessive exertion, the interpretability of

those results was limited. In summary, as altitude rises,

particularly at extreme altitudes, testosterone concentration is

significantly affected and generally decreases. This change is likely

associated with alterations in other hormone levels and altitude-

related environmental factors (35).
2.2 Impact on testicular tissue morphology

Animal experiments have provided crucial evidence for

elucidating the morphological changes of testicular tissue in a

high-altitude environment. For example, in the experiment by Li

et al., 3-week-old male Wistar rats were housed in a temperature-

and humidity-controlled animal room, and a low-pressure hypoxic

environment simulating an altitude of 5000 meters was created

using a hypobaric hypoxia chamber (36, 37). The experimental

outcomes showed that compared with the control rats in the normal

environment, the seminiferous tubule structure of the rats in the

low-pressure hypoxic group was significantly disordered, the

arrangement of spermatogenic epithelial cells lost its normal

order, and the number of spermatogenic cells at all levels

decreased sharply, especially the number of spermatocytes and

spermatids. Additionally, Li et al.’s study also confirmed that the

testosterone levels in the low-pressure hypoxic group were
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significantly lower than those in the normal environment

group (13).

Hypoxia is closely related to the testis and significantly affects

testicular function and reproductive health (38, 39). In high-altitude

environments, except for certain indigenous populations, human

reproductive function is affected (40–42). Animal experiments show

that hypoxia can change the morphology of testicular tissue and

testosterone levels (43, 44). When the testis is hypoxic, HIF-1a
accumulates (45, 46), triggering vascular changes, including

angiogenesis. The effect of hypoxia on testicular steroidogenesis is

complex, with testosterone levels rising first (47) and then falling

(34). Chronic intermittent hypobaric hypoxia damages testicular

tissue, reduces sperm quality, and decreases testosterone levels (42).

Hypoxia also increases testicular temperature, generates ROS (48),

causes oxidative stress, and damages sperm cells (49).
2.3 Impact on sperm quality

The high-altitude environment has multiple adverse effects on

sperm quality, encompassing key indicators such as sperm density,

motility, deformity rate, and genetic material integrity (15, 50).

Previous research shows sperm density in high-altitude areas is

lower. Gasco et al. studied male rats at 4340-meter altitude, finding

epididymal sperm count decreased from the 7th day (51). Verratti

et al. studied 5 Italian men before and after a 19-day high-altitude
Frontiers in Endocrinology 03
trek in the Himalayas, showing sperm concentration decreased (50).

Their study has clinical value but needs a larger sample size.

Sperm motility, crucial for fertilization, significantly drops in

high-altitude environments, reducing the chance of conception

(15). The sperm deformity rate also increases, with head and tail

deformities affecting sperm function. Luo et al. found altitude

impacts sperm genetic material. Sperm mtDNA copy number and

nDNA integrity vary with altitude and residence time (52).

Verratti et al. also noted that high-altitude trekking causes

oxidative stress imbalance in semen. This imbalance leads to an

increase in ROS production. ROS, with its strong oxidative activity,

attacks the unsaturated fatty acids on the sperm cell membrane,

triggering lipid peroxidation reactions (53). As a result, not only is

the integrity and fluidity of the sperm membrane damaged,

impairing sperm membrane function and thus affecting sperm

motility and fertilization ability, but additionally, the membrane’s

barrier function is weakened. This makes it easier for harmful

substances to enter the sperm. Furthermore, ROS directly attacks

the DNA in the nucleus, causing damage such as DNA strand

breaks and base modifications. This affects the integrity of sperm

genetic material and severely damages sperm quality (50).

Figure 1 shows the impact of high-altitude environment on

spermatogenesis and sperm quality. In high-altitude conditions,

normal spermatogenesis from spermatogonium to sperm is

disrupted. Mitochondria are damaged, affecting energy supply.

Sperm DNA and cell membranes are also damaged, leading to
FIGURE 1

Impact of high altitude on spermatogenic cell development and sperm integrity.
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abnormal sperm vitality and a large number of defective

sperm, which seriously impairs sperm quality and male

reproductive function.
2.4 Impact on sexual function

Sexual dysfunction problems are relatively prevalent among

men residing in high-altitude areas for long periods, primarily

manifested as decreased libido and erectile dysfunction (50). This

phenomenon is caused by the combined action of multiple factors.

From the perspective of the endocrine and reproductive organs,

the fluctuations in reproductive hormone levels and testicular tissue

damage play a key role in the occurrence of male sexual dysfunction

(54–56). Testosterone, as an important hormone for maintaining

male libido and sexual response, the decrease in its level will directly

weaken male sexual impulse and sexual ability (57, 58). When men

are in a high-altitude environment, due to factors such as hypoxia,

the synthesis and secretion of testosterone decrease, resulting in a

decline in the level of testosterone in the body, which in turn affects

sexual function (35, 59). At the same time, testicular tissue damage

caused by the high-altitude environment will disrupt the normal

physiological function of the reproductive organs, making it difficult

to maintain the erectile function in a normal state (17, 60). The

testis is an important part of the male reproductive system, and its

normal function is of great significance for maintaining erectile

function. Testicular tissue damage may affect multiple aspects such

as nerve conduction and vascular function, leading to erectile

dysfunction (61–63).

The adaptive changes of the nervous system in the high-altitude

environment also have a significant impact on sexual function.

Verratti et al. conducted a study on three climbers and found that

when the altitude rose above 4450 meters, sleep-related erections

(SREs) became abnormal, and there was a lack of erections in the

hardness ranges of 80-100% and 60-79%. Moreover, the average

hardness percentage and the duration of 80-100% hardness gradually

decreased with the increase in altitude (64). The underlying

mechanism is that nitric oxide (NO) plays a crucial role in the

process of penile erection. Under normal nerve stimulation, nerve

endings and endothelial cells release NO, which activates guanylate

cyclase and promotes the relaxation of penile smooth muscle, thus

achieving erection (65, 66). However, in the high-altitude hypoxic

environment, the above process is disrupted (67). Hypoxia

significantly inhibits the activity of NO synthase (68), resulting in a

significant decrease in NO synthesis, and may also reduce the

responsiveness of target cells (smooth muscle) to NO, further

hindering the relaxation of trabecular smooth muscle and thus

inhibiting erectile function (69, 70). In addition, acute hypoxia

enhances sympathetic nerve afferent activation and exacerbates

vasoconstriction activity (71). Even after the human body has

adapted to the high-altitude environment to a certain extent, the

excited state of the sympathetic nerve may still persist (72). This

continuous excitement will interfere with the normal nerve regulation

function and hinder the conduction of sexual excitement, having an

adverse impact on the normal performance of sexual function (64).
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The Table 1 presents a comprehensive summary of the specific

effects of high-altitude environments on different aspects of the

male reproductive system, along with relevant research cases that

support these findings.
3 Possible mechanisms of high-
altitude environment affecting the
male reproductive system

3.1 Oxidative stress damage

The hypoxic environment in high-altitude areas is one of the

key inducers of oxidative stress (73). When the body is in a hypoxic

state, the function of the mitochondrial respiratory chain in cells is

severely damaged, and the electron transfer process is abnormal,

resulting in the massive production of reactive oxygen species

(ROS) (74). Under normal circumstances, the body maintains the

balance of ROS through its own antioxidant defense system.

However, in the high-altitude hypoxic environment, when the

production of ROS exceeds the limit of the body’s antioxidant

defense capacity, oxidative stress occurs (75–77).

In the male reproductive system, oxidative stress causes

particularly serious damage to testicular tissue and sperm (78,

79). ROS has strong oxidizing properties and can attack the

unsaturated fatty acids on the sperm cell membrane, triggering

lipid peroxidation reactions (53). The products of lipid peroxidation

will damage the integrity and fluidity of the sperm membrane,
TABLE 1 Effects of high-altitude environments on the male
reproductive system.

Reproductive System Specific Effects

Reproductive Hormone Levels - GnRH secretion is inhibited.
- FSH and LH levels decrease.
- Testosterone synthesis and secretion are
affected, and generally decrease with
increasing altitude.

Testicular Tissue Morphology - The structure of seminiferous tubules is
disordered.
- The arrangement of spermatogenic
epithelial cells is abnormal.
- The number of spermatogenic cells at all
levels decreases, especially spermatocytes and
spermatids.
- Testosterone levels decrease.

Sperm Quality - Sperm density decreases.
- Sperm motility declines.
- The sperm deformity rate increases.
- The integrity of sperm genetic material is
damaged, and the mtDNA copy number and
nDNA integrity change.
- Oxidative stress imbalance occurs in semen,
with increased ROS, decreased TAC, and
reduced radical
- scavenging activity.

Sexual Function - Libido decreases.
- Erectile dysfunction occurs.
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resulting in the impairment of sperm membrane function and then

affecting sperm motility and fertilization ability (80–82). Because

the integrity of the sperm membrane is crucial for maintaining the

stability of the internal environment of sperm and protecting DNA,

once the sperm membrane is damaged, harmful substances from

the outside are more likely to enter the sperm and cause damage to

DNA, thus affecting sperm quality and function (83–85).

In addition, oxidative stress may also interfere with the DNA

damage repair mechanism of spermatogenic cells, causing the

accumulation of DNA damage in cells and then increasing the

apoptosis of spermatogenic cells (79, 86). The normal proliferation

and differentiation of spermatogenic cells are the basis of sperm

production, and excessive apoptosis of spermatogenic cells will

seriously affect the quantity and quality of sperm produced (87, 88).

In a study of male soldiers in high-altitude areas, it was found that when

they were exposed to a hypoxic environment at an altitude of 5380

meters for 6 months, their total sperm count, sperm density, motility,

and survival rate all decreased significantly, and the semen liquefaction
Frontiers in Endocrinology 05
time was significantly prolonged. After 12 months, the sperm motility,

survival rate, and liquefaction time further deteriorated (15). This may

be due to the increase in spermatogenic cell damage and apoptosis

caused by high-altitude hypoxia-induced oxidative stress, which breaks

the balance between the normal proliferation and apoptosis of

spermatogenic cells, seriously hinders the sperm production process,

and ultimately affects various quality indicators of sperm (89).

Oxidative stress may also affect the secretion of reproductive

hormones (90, 91). In the high-altitude environment, the serum

testosterone level of male mice may increase in the early stage of

hypoxia, which may be a compensatory response of the body to

promote adaptation to the hypoxic environment. However, with the

continuous extension of hypoxia time, ROS gradually accumulates

in testicular cells, leading to damage to Leydig cells and then

reducing the secretion of testosterone. This indicates that

oxidative stress may affect the function of Leydig cells and

interfere with the normal secretion process of reproductive

hormones, thus further affecting male reproductive function (92).
FIGURE 2

Cellular signaling pathways triggered by ultraviolet radiation and hypoxia in high-altitude areas.
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Moreover, as shown in Figure 2, hypoxia (93) and ultraviolet

radiation (94) can lead to the generation of ROS, which is an

important part of the oxidative stress mechanism. Ultraviolet

radiation directly inflicts DNA damage (95), activating key

signaling molecules ATM and ATR (96). These molecules

phosphorylate CHK1 and CHK2 (97), ultimately activating P53

(98). Activated P53 can trigger multiple cellular responses,

including apoptosis, cell cycle arrest, and DNA repair (99). In the

context of oxidative stress in the male reproductive system, the

activation of these pathways may disrupt the normal development

and function of spermatogenic cells. Excessive activation of the

apoptosis pathway may lead to an increased number of apoptotic

spermatogenic cells, reducing sperm production (100). The

disruption of the cell cycle arrest and DNA repair pathways may

result in the accumulation of damaged DNA in sperm, affecting

sperm quality (101).
3.2 Apoptosis

The abnormal increase in apoptosis leads to a decrease in the

number of spermatogenic cells, seriously disrupting the process of

sperm production and development (102). Under normal

physiological conditions, the proliferation and apoptosis of

spermatogenic cells are in a dynamic balance to maintain the

stability of sperm production (103–105). However, in a high-

altitude environment, multiple factors lead to an abnormal

increase in spermatogenic cell apoptosis, breaking this balance

and significantly reducing the number of spermatogenic cells

(106, 107). Spermatogenic cells are the basis of sperm production,

and the decrease in their number will inevitably affect sperm

production and development, resulting in a decrease in sperm

quantity and quality and ultimately affecting male reproductive

ability (108, 109).

In the testis, apoptosis is an important physiological process,

and its functions include maintaining the appropriate ratio of

spermatogenic cells to Sertoli cells, clearing abnormal

spermatogenic cells, and ensuring quality control of sperm

production (110). However, in a high-altitude environment, the

abnormal increase in apoptosis caused by factors such as hypoxia

greatly disrupts this normal physiological balance (111, 112).

Excessive apoptosis of spermatogenic cells leads to a sharp

reduction in the number of spermatogenic cells, unable to provide

sufficient basal cells for sperm production, resulting in insufficient

sperm production. At the same time, a series of biochemical and

molecular level changes may occur during apoptosis, which will

have a negative impact on the morphology, structure and function

of sperm, resulting in a decrease in sperm quality, such as reduced

sperm motility and increased deformity rate, and ultimately

affecting male reproductive ability (113, 114).

As shown in Figure 2, hypoxia and ultraviolet radiation engage

with death receptors, spurring the activation of Pro-caspase-8 and

Pro-caspase-10 (115). These then activate downstream Caspase-3

and Caspase-7, driving the process of apoptosis (116). The BCL-2

family proteins play a critical role in regulating mitochondrial outer
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membrane permeabilization (MOMP). When MOMP occurs,

cytochrome C is released, forming an azotosome with APAF-1,

which activates Caspase-9 and intensifies apoptosis (117). In

spermatogenic cells, the imbalance of these apoptotic regulatory

factors in the high-altitude environment leads to excessive

apoptosis, further exacerbating the damage to male reproductive

function (118, 119).
3.3 Increase in autophagy

Autophagy is a highly conserved catabolic process in cells (120).

Its main function is to wrap damaged proteins, organelles and other

substances in the cell through the formation of autophagosomes

and transport them to lysosomes for degradation, thereby realizing

the recycling of intracellular substances and maintaining the

stability of the intracellular environment (121). In the high-

altitude environment, the change of autophagy is particularly

significant (122, 123).

This increase in autophagy is regulated by multiple signaling

pathways (124). The AMP-activated protein kinase (AMPK)

pathway is one of the key regulatory pathways (125). In a high-

altitude environment, the decrease in oxygen availability leads to a

decrease in cellular ATP levels. As a result, AMPK is activated,

which in turn promotes the initiation of autophagy (126).

Moreover, the mammalian target of rapamycin (mTOR)

signaling pathway also plays a crucial role (127). Under normal

conditions, mTOR acts as a negative regulator of autophagy (128).

However, in high-altitude environments, the mTOR pathway is

inhibited, which releases the suppression of autophagy, thus further

promoting the increase of autophagy levels (126, 129, 130).

Autophagy in the high-altitude environment is a double-edged

sword. Initially, it serves as a self-protective mechanism for cells. By

forming autophagosomes to engulf damaged proteins and

organelles and transporting them to lysosomes for degradation, it

helps maintain the stability of the intracellular environment, which

is beneficial for cells to adapt to the harsh high-altitude

environment to a certain extent (131, 132). However, excessive

autophagy is detrimental. It can lead to the over-degradation of

crucial proteins and organelles in spermatogenic cells (133).

Moreover, excessive autophagy may trigger apoptosis in

spermatogenic cells, ultimately reducing sperm quality and

quantity and impairing male reproductive function. Excessive

autophagy may lead to the over-degradation of important

proteins and organelles in spermatogenic cells. The over-

degradation of mitochondria in spermatogenic cells can disrupt

the normal energy metabolism of cells, affecting the process of

spermatogenesis (134, 135). This complex behavior of autophagy,

with its potential for both protection and harm, is closely related to

the regulatory pathways that govern it.

Figure 2 shows that the PI3K/AKT pathway and autophagy-

related protein Beclin-1 are involved in the cellular stress response and

interact with apoptosis-related pathways (136, 137). In high-altitude

settings, PI3K/AKT activation may regulate autophagy via Beclin-1,

influencing its expression and activity (138). This interaction further
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complicates autophagy regulation in male reproductive cells, and its

dysregulation may harm male reproductive function. Further research

is needed to comprehensively understand the molecular mechanisms

of this interplay and its impact on male reproduction.
4 Research status and prospects

At present, research on the damage of the high-altitude

environment to the male reproductive system has made certain

progress in several aspects. In the field of animal experiments, many

studies have observed the impact of the high-altitude environment on

the animal reproductive system through simulating the high-altitude

environment or directly conducting experiments in high-altitude areas,

providing important evidence for revealing relevant mechanisms (13).

However, there are still many deficiencies in existing research.

In human studies, large-scale epidemiological investigations on the

reproductive health of people in high-altitude areas are scarce. Most

studies have small sample sizes, usually involving only a limited

number of participants. This makes it hard to cover the wide range

of genetic, lifestyle, and environmental differences among high-

altitude populations. As a result, the findings may not be applicable

to the general high-altitude population. Also, the short observation

periods in these studies mean they can’t fully assess the long-term

effects on the male reproductive system. Regarding mechanism

research, although studies on oxidative stress, apoptosis, and

autophagy have been done, many molecular mechanisms remain

unclear. The intracellular signaling pathways in high-altitude

conditions are complex and interconnected. For instance, the

relationship between autophagy and the endoplasmic reticulum

stress response in spermatogenic cells under high-altitude stress is

not well-understood. When cells are exposed to high-altitude

stressors, the endoplasmic reticulum may experience stress, which

could potentially trigger autophagy as a compensatory mechanism.

However, it’s unclear how the autophagy process is precisely

regulated during this endoplasmic reticulum stress response and

what the long-term consequences are for spermatogenesis.

Additionally, individual differences in adaptability to high-altitude

environments are often overlooked. Some people may be more

resilient due to genetic factors or healthy lifestyles, but research

rarely takes these into account. Research models, both animal and

cell models, also have limitations. Animal models can’t completely

replicate the human body’s response, and cell models lack the

complex environment of the whole organism, making it difficult to

accurately reflect the real-world situation.

Future research on the male reproductive system in high-altitude

environments should be multi-faceted. It should involve large-scale,

multi-center longitudinal epidemiological studies across diverse high-

altitude regions, using a unified questionnaire and comprehensive

detection indicators that cover reproductive hormones, sperm

quality, sexual function, and lifestyle/environmental factors. Long-

term follow-up of participants will help observe long-term effects on
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the male reproductive system, identify damage-related factors, and

provide reliable data. Meanwhile, modern molecular biology

techniques like gene chips, proteomics, and single-cell sequencing

should be used to explore the molecular mechanisms of oxidative

stress, apoptosis, and autophagy in the male reproductive system. By

analyzing the gene and protein expression profiles of relevant cells,

key molecular targets can be uncovered, which is essential for

understanding the causes of male reproductive damage and

developing new therapies. Finally, based on the results of

epidemiological and molecular mechanism research, practical

protective and treatment methods should be developed. This

includes exploring antioxidant-based interventions for oxidative

stress damage and designing regulatory drugs or inhibitors for

autophagy and apoptosis. These interventions should first be tested

in pre-clinical models and then translated into clinical applications to

safeguard the male reproductive system in high-altitude areas and

enhance men’s reproductive health.
5 Conclusions

In summary, the special environmental factors in high-altitude

areas, such as hypoxia, low temperature, and strong ultraviolet

radiation, cause extensive and serious damage to the male

reproductive system through multiple pathways such as oxidative

stress damage, apoptosis, and autophagy. From the disorder of

reproductive hormone levels, the change of testicular tissue

morphology, to the decline of sperm quality and the appearance of

sexual dysfunction, these damages seriously threaten the reproductive

health of men in high-altitude areas. Although certain achievements

have been made in this field of research, there are still many problems

to be solved. In the future, more in-depth and systematic research is

needed, strengthen epidemiological investigations of the population,

reveal molecular mechanisms, and develop protective and treatment

methods to effectively ensure the reproductive health of men in high-

altitude areas, promote the sustainable development of high-altitude

areas, and provide strong support for human survival and

reproduction in high-altitude environments.
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