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Gestational diabetes mellitus (GDM) represents a prevalent metabolic disorder 
related to pregnancy, posing significant risks to both the expecting mother and 
the developing fetus. Recent research indicates a potential connection between 
bile acids (BAs) and GDM, such as lithocholic acid (LCA), b-muricholic acid (b-
MCA), and 6,7-diketolithocholic acid (6,7-diketoLCA), have been found to be 
significantly increased in GDM individuals, thereby with the potential to reveal 
their involvement in glucose metabolism and the underlying mechanisms of 
GDM development. Additionally, BAs have emerged as vital signaling molecules 
that regulate glucose and lipid metabolism by interacting with Farnesoid X 
receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5), highlighting 
their potential as novel therapeutic targets for GDM management. The aim of this 
manuscript is to comprehensively review the current understanding of the 
relationship between BAs and GDM, delving into their potential mechanistic 
roles, diagnostic significance, and possible therapeutic applications. 
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1 Introduction 

Gestational diabetes mellitus (GDM) classically denotes abnormal glucose tolerance that 
manifests or is first identified during pregnancy, featuring glycemia and insulin disorders (1). 
The worldwide prevalence of GDM is escalating at a rapid pace (2). This condition is not only 
linked to adverse perinatal outcomes (3) but also increases women’s long-term risk of 
developing type 2 diabetes mellitus (T2DM) (4, 5) and metabolic syndrome (5, 6). Moreover, 
children born to mothers with GDM face a heightened risk of obesity, metabolic syndrome, 
future type diabetes (7), and brain development issues (8–10). 

In recent years, numerous studies have delved deeper into the etiology and 
pathophysiology of GDM (11, 12). Emerging research has revealed a potential 
connection between bile acids (BAs) and GDM (13, 14) recently. BAs, amphipathic 
molecules synthesized in the liver from cholesterol and forming a crucial bile 
component (15), have traditionally been recognized for their role in the digestion and 
  01 frontiersin.org 

https://www.frontiersin.org/articles/10.3389/fendo.2025.1574228/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1574228/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1574228/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2025.1574228&domain=pdf&date_stamp=2025-07-10
mailto:leixiaoping2020@swmu.edu.cn
https://doi.org/10.3389/fendo.2025.1574228
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2025.1574228
https://www.frontiersin.org/journals/endocrinology


    Lu et al. 10.3389/fendo.2025.1574228 
         
   

       
        

         
      

         

absorption of dietary fats (16). However, modern perspectives view 
BAs as more versatile  molecules with diverse  functions (17), 
including promoting intestinal epithelial regeneration (18, 19), 
regulating gene expression (20, 21), influencing insulin secretion 
(22, 23), epigenetic mechanisms (24, 25), fibrogenesis (26), lipid 
metabolism (27)and glucose metabolism (28). Consequently, 
alterations in BAs are strongly linked to metabolic disorders. 
    

         
           
           

         
          

          
           

        
         

        
          

        
        
          

          
     

           
        

       
       

       
        
        
          

      
        

  

2 Bile acid metabolism 

BAs encompass both primary and secondary types, as outlined 
in Table 1. The biosynthesis of BAs commences with the formation 
of primary BAs, predominantly in the liver. This process involves a 
sequence of 17 enzymes, including cytochrome p450, which alter 
the steroid ring of cholesterol. These enzymes eliminate the short 
aliphatic side chain and conjugate it primarily with glycine (75%) 
and taurine (25%). The end result is the conjugated primary BAs, 
specifically cholic acid (CA) and chenodeoxycholic acid (CDCA) 
(29, 30). Secondary BAs come into being through enzymatic 
modification of primary BAs by colon-dwelling bacteria, which 
utilize them as substrates for microbial metabolism (31). The BA 
pool, encompassing all BAs circulating within the enterohepatic 
circulation, comprises BAs present in the intestine (~85%–90%), 
gallbladder (~10%–15%), and liver (<1%) (32). The ratio of glycine 
(G)- to taurine (T)-conjugated BAs stands at approximately 3 to 1, 
establishing a hydrophobic pool (32). 

The synthesis of BAs can commence via several routes (Figure 1). 
The classic pathway involves the metabolism of cholesterol 7a-
hydroxylase (CYP7A1) to form 7a-hydroxycholesterol, which is 
subsequently hydroxylated by sterol 12a-hydroxylase (CYP8B1) or 
sterol 27-hydroxylase (CYP27A1). Alternatively, the second (or 
alternate) pathway sees the formation of 27-hydroxycholesterol from 
cholesterol via CYP27A1, followed by hydroxylation via oxysterol 7a-
hydroxylase (CYP7B1) (30). A third pathway involves the oxidation of 
cholesterol to 24- and 25-hydroxycholesterol by cholesterol 24-
hydroxylase (CYP46A1), an enzyme predominantly expressed in the 
brain (33). 
    Frontiers in Endocrinology 02 
      

         
        

          
           

          
           

           
        
         

        
       

        
      

         
         

         
   
          

          
        

        
         

3 Bile acids and glucose homeostasis 

Recently, BAs have garnered attention due to their involvement 
in glucose metabolism and the secretion of glucoregulatory 
hormones (34, 35). Studies have shown that BAs regulate glucose 
homeostasis by directly interacting with the FXR (36) and the TGR5 
(37, 38), or indirectly by promoting the synthesis of fibroblast 
growth factor 15 (FGF15) in the intestine, which is induced by 
FXR (39, 40). Specifically, certain BAs activate FXR in the intestine, 
triggering the production of FGF15/19 and enhancing the 
expression of pancreatic b cells (41). This mechanism exerts 
diverse effects on hepatic BA metabolism, lipid metabolism, 
protein metabolism, and glucose metabolism (42). Furthermore, 
BA-mediated TGR5 signaling boosts the release of intestinal 
glucagon-like peptide 1 (GLP-1), thereby increasing glucose-
stimulated insulin secretion from pancreatic b cells (43). The 
receptors specific to BAs and the precise molecular mechanisms 
underlying their effects on glucose metabolism will be further 
explored (Table 2). 

Given that different BAs exhibit unique affinities for FXR and 
TGR5, and they play varying roles in glucose metabolism, it 
becomes imperative to investigate whether the BA profile 
undergoes changes in patients with GDM. Determining the 
clinical significance of any such alterations is also crucial. 
       
    

         
          

            
        

        
         

         
           

         
          

         
         

          
         

         
           

       
         

          
           

          
       

         
          
          
       

4 Bile acids in pregnant women with 
GDM and their offspring 

The quantity of BAs differed significantly between mothers with 
GDM and those without. A study revealed that pregnant women 
with GDM had higher serum total bile acid (TBA) levels than their 
non-GDM counterparts during the first trimester (52). Notably, 
elevated serum TBA concentrations during pregnancy have been 
positively correlated with an augmented risk of GDM (13, 
14).Although a causal relationship between GDM and serum TBA 
levels has not been conclusively established, it is apparent that GDM 
is often associated with higher serum TBA levels. Additionally, 
when maternal serum TBA levels surpass 40 mmol/L, the likelihood 
of fetal complications increases by 1%-2% for every additional 
mmol/L (53). Consequently, we postulate that altered serum TBA 
could be a potential influencing factor in the relationship between 
GDM and complications in offspring. However, some studies found 
no significant differences in TBA levels between GDM and non-
GDM groups when measured in the second or third trimester (54). 
The substantial heterogeneity observed across studies, primarily 
attributable to variations in the timing of TBA measurement, 
suggests that the relationship between TBA levels and GDM is 
not straightforward. This indicates that the role of TBA as a 
biomarker for GDM may be highly sensitive to the gestational 
period during which it is measured (55). 

Pregnant women with GDM not only encounter elevated serum 
TBA levels, but also demonstrate alterations in their BA profiles 
when compared to those without GDM. Research indicates that, in 
GDM pregnancies, serum concentrations of glycodeoxycholic acid 
       

 
 

  

  

   
 

 
 

 
 

   
 

 
 

 
 

 
 

 
 

 
 

TABLE 1 The classification of bile acids. 

Unconjugated 
BAs 

Conjugated BAs 

+Taurine +Glycine 

primary BAs CA 
CDCA 

TCA 
TCDCA 

GCA 
GCDCA 

secondary BAs DCA 
LCA 
UDCA 
HDCA 

TDCA 
TLCA 
TUDCA 
THDCA 

GDCA 
GLCA 
GUDCA 
GHDCA 
            
         

          
         

       
        

  

BAs, bile acids; CA, cholic acid; CDCA, chenodeoxycholic acid; TCA, taurocholic acid; 
TCDCA, taurocholic acid; GCA, glycocholic acid; GCDCA, glycochenodeoxycholic acid; 
DCA, deoxycholic acid; LCA, lithocholic acid; UDCA, ursodeoxycholic acid; HDCA, 
hyodeoxycholic acid; TDCA, taurodeoxycholic acid; TLCA, taurolithocholic acid; TUDCA, 
tauroursodeoxycholic acid; THDCA, taurohyodeoxycholic acid; GDCA, glycodeoxycholic 
acid; GLCA, glycolithocholic acid; GUDCA, glycoursodeoxycholic acid; GHDCA, 
glycohyodeoxycholic acid. 
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(GDCA), taurodeoxycholic acid (TDCA), CA, dehydro-lithocholic 
acid (dehydro-LCA), and iso-deoxycholic acid (iso-DCA) are 
notably diminished (56). Conversely, certain BAs, such as 
glycohyodeoxycholic acid (GHDCA), taurohyodeoxycholic acid 
(THDCA), hyodeoxycholic acid (HDCA), LCA, b-MCA, and 6,7-
diketoLCA, have been found to be significantly increased in GDM 
individuals (56). In summary, the modifications in BAs associated 
with GDM are intricate, underscoring the importance of 
understanding these changes to gain further insight into GDM. 

Although numerous studies have established that the serum BA 
profiles of mothers with GDM undergo changes, the impact on fetal/ 
neonatal serum BA profiles remains unclear. Recent studies have 
indicated that a higher prevalence of GDM among women with 
intrahepatic cholestasis of pregnancy (ICP), offering potential insights 
into this issue (57, 58). Previous studies have revealed that umbilical 
cord from ICP pregnancies exhibits elevated levels of CDCA, CA and 
LCA compared to controls (59). Based on these findings, we 
hypothesize that variations in BAs among GDM mothers may also 
lead to alterations in BA metabolism in their offspring. Furthermore, 
a study has documented significant changes in BA metabolism within 
    Frontiers in Endocrinology 03 
         
          

          
         

      

the amniotic fluid (AF) during the second trimester of GDM-

diagnosed pregnancies (60). Given that the AF primarily consists of 
fetal urine, this study lends credence to our hypothesis. However, 
direct evidence remains lacking and further investigation is warranted 
to elucidate the specific changes occurring. 
       

         
           

          
         

         
         

         
        

         
           

          

5 Predictive value of BAs in GDM 

Currently, the oral glucose tolerance test (OGTT) is widely 
regarded as the gold standard for diagnosing GDM (1). However, it 
is important to note that OGTT typically diagnoses GDM between 
24–28 gestational weeks. By this time, irreversible fetal changes, 
such as epigenetic modifications (61), may have already occurred. 
Therefore, the identification of early predictors would be beneficial 
in improving the management of GDM and minimizing adverse 
outcomes for both the mother and the fetus. 

ICP, characterized by elevated TBA levels, is strongly associated 
with an increased vulnerability to GDM (57, 58). This suggests a 
potential link between BA changes and the development of GDM. 
  

                     
                      

                     
                        

       

FIGURE 1 

Bile Acid metabolism in liver. In the liver, cholesterol 7a-hydroxylase (CYP7A1) initiates the classical bile acid synthesis pathway by hydroxylation of 
the steroid rings at 7a-C for further modifications of the steroid rings, followed by steroid side chain oxidation and cleavage, whereas sterol 27-
hydroxylase (CYP27A1) initiates the alternative bile acid synthesis pathway by oxidation of the steroid side chain followed by modifications of the 
steroid rings and cleavage of the side chain in the classic pathway. Cholic acid (CA) and chenodeoxycholic acid (CDCA) are the two major primary 
bile acids synthesized in the human liver. 
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Based on this, we hypothesize that BAs could serve as valuable 
biomarkers for GDM diagnosis and risk stratification. Indeed, studies 
have shown that pregnant women with higher serum TBA levels 
during the first to second trimester face an increased risk of 
developing GDM. This indicates that TBA may represent a new 
risk factor for GDM (13), likely due to its correlation with insulin 
sensitivity (62). However, it’s worth noting that Zhu et al. have found 
TBA levels to remain stable in the GDM group when compared to 
those with normal glucose tolerance (63). This discrepancy could be 
partially attributed to methodological differences, specifically the 
distinction between TBA measured by enzymatic cycling assay and 
individual BAs detected via mass spectrometry (MS). This finding 
underscores the importance of focusing on individual BA 
components related to glucose metabolism. 

Individual BAs have emerged as promising biomarkers for the 
diagnosis and risk stratification of GDM (Table 3). Gao et al. have 
specifically highlighted b-MCA as a potential biomarker that can 
distinguish between GDM patients and healthy controls (54). 
Notably, b-MCA levels are elevated in GDM patients, possibly 
due to enhanced a-muricholic acid (a-MCA) C7-isomerase 
activity. This activity subsequently leads to increases in terminal 
GHDCA and THDCA levels through specific metabolic channels 
(54). GDCA, on the other hand, shows a significant decline in GDM 
patients. Its level is inversely correlated with insulin sensitivity and 
positively correlated with b-cell compensation, making it a valuable 
   Frontiers in Endocrinology 04
         
           

        
         

           
         

       
       

           
         

biomarker candidate for assessing these factors (63). Van Nierop 
et al. have indeed linked GDCA to insulin secretion and resistance, 
with increased GDCA triggering insulin secretion in a GLP-1-
dependent manner (66). This explains why, despite an elevation 
in GDCA levels after glucose intake in GDM patients, the lower 
baseline GDCA levels are insufficient to promote insulin secretion 
via GLP-1, ultimately leading to glycemic dysregulation. 
Importantly, these markers have been identified post-diagnosis, 
and further studies are warranted to determine if they are altered 
in early pregnancy serum samples of women with GDM. 
            

     

    
   

          
   

    

   
         

       
    

          
     

    

           
       

    

        
        

       
     

         
        

  

    

      
   

          
        

        
         
  

       
     

    
 

      
      

  

    

       
      

    

         

TABLE 2 Effects of BAs and receptors on glucose metabolism and mechanisms. 

BA Receptors Function Mechanism References 

FXR Regulating hepatic glucose 
production and reducing 

Suppression of gluconeogenic genes, due to FXR activation of the 
transcriptional repressor SHP 

Ma et al. (36) 

serum glucose levels 
Protection from skeletal muscle lipotoxicity and improvement of peripheral 
insulin sensitivity, via FXR-dependent liver lipid metabolism 

Ma et al. (36) 

Reduced weight gain due to adipose tissue browning, downstream of FXR-
dependent alterations in BA composition 

Fang et al. (44) 

Increased GLP-1 and insulin secretion, due to shifts in gut bacteria 
composition, which increase the TGR5 agonist TLCA 

Pathak et al. (45) 

Increased secretion of FGF15 and/or FGF19, thereby repressing 
gluconeogenesis, and increasing glycogen synthesis and energy expenditure 

Kir et al. (42); Potthoff et al. 
(46); Renga et al. (47) 

Expressed in human pancreatic b-cells and stimulates insulin gene 
transcription producing a positive control on glucose dependent 
insulin secretion 

Renga et al. (47) 

TGR5 TGR5 has a protective role 
in glucose homeostasis 

TGR5 activation in enteroendocrine cells increases the release of GLP-1 
which maintains homeostasis of blood glucose by promoting glucose-
induced insulin secretion, suppressing glucagon release, delaying gastric 
emptying, promoting satiety, and increasing glucose disposal in the 
peripheral tissues 

Cao et al. (48); Kuhre et al. 
(49); Lasalle et al. (50) 

FGF15 and/or FGF19 Maintaining 
normoglycemia 

Reduced hepatic gluconeogenesis, downstream of FGF15- and/or FGF19-
dependent dephosphorylation of the gluconeogenic transcription 
factor CREB 

Potthoff et al. (46) 

Increased hepatic glycogen synthesis, due to FGF15-/FGF19-dependent 
activation of an ERK-GSK3a/b phosphorylation cascade 

Kir et al. (42) 

Reduced body weight and adiposity Lan et al. (51) 
  
                          
                     

    

BAs, bile acids; FXR, farnesoid X receptor; SHP, small heterodimer partner; GLP-1, glucagon like peptide 1; TGR5, takeda G-protein receptor 5; TLCA, taurolithocholic acid; FGF15, fibroblast 
growth factor 15; FGF19, fibroblast growth factor 19; CREB, Cyclic AMP-regulatory element-binding protein; ERK, extracellular signal–regulated protein kinase; GSK3a/b, glycogen synthase 
kinase 3a and 3b. 
         

 
 

   
  

 

      

      

      

      

         

         

TABLE 3 The predictive value of BAs in GDM. 

Predictive 
markers 

The association with 
GDM risk 

References 

b-MCA positive Gao et al. (54) 

GDCA negative Zhu et al. (63) 

TCA positive Wu et al. (64) 

LCA negative Wu et al. (64) 

GUDCA Negative (≤ 0.07 nmol/mL) Li et al. (65) 

DCA Negative (≤ 0.28 nmol/mL) Li et al. (65) 
           
         

     

BAs, bile acids; GDM, gestational diabetes mellitus; b-MCA, b-muricholic acid; GDCA, 
glycodeoxycholic acid; TCA, taurocholic acid; LCA, lithocholic acid; GUDCA, 
glycoursodeoxycholic acid; DCA, deoxycholic acid. 
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Recent evidence also suggests that BAs could serve as early 
diagnostic marker for GDM. Circulating BAs levels during early 
pregnancy are associated with GDM risk. Specifically, taurocholic 
acid (TCA) is positively, while LCA negatively associated with GDM 
risk (64). Additionally, low serum levels of glycoursodeoxycholic acid 
(GUDCA) and deoxycholic acid (DCA) during early pregnancy are 
independently linked to an increased risk of GDM development (65). 
Secondary BAs are converted from primary BAs by gut microbiota 
(22), and an abnormal gut microbiome may reduce this conversion, 
particularly of GUDCA and DCA, which may contribute to the 
etiology of GDM. Furthermore, in a rodent model, an elevated serum 
CA concentration, coupled with reduced BA receptors, such as FXR 
and TGR5, is associated with GDM (67). Therefore, further validating 
the diagnostic value of these BA metabolites in the early stages of 
GDM through animal experiments holds significant promise for early 
and timely intervention in GDM, potentially reducing 
poor outcomes. 
      
   

        
        

        
       
          
        

       
        

       
          

          
          
          

         
         

          
         

            
           

           
        

        
         
          

       
          

         
         

        
          

        
       

6 Potential values for BA intervention 
in the GDM 

The treatment of GDM primarily aims to normalize 
hyperglycemia and mitigate the risk of unfavorable pregnancy 
outcomes. A crucial aspect of GDM management involves 
lifestyle interventions, such as dietary adjustments, physical 
activity, and weight control. If glycemic targets are not achieved 
through these interventions, it is necessary to introduce glucose-
lowering pharmacologic therapy (68, 69). Although these 
treatments offer short-term benefits, their long-term effects on 
children exposed to antidiabetic medication during pregnancy 
remain uncertain. Hence, there is an urgent need for therapies 
that can improve both maternal and fetal glucose metabolism. BAs 
have emerged as vital signaling molecules that regulate glucose and 
lipid metabolism by interacting with FXR and TGR5 receptors (70– 
73). This suggests that therapeutic approaches targeting BAs could 
potentially be a powerful new strategy for GDM management. 

The FXR agonist obeticholic acid (OCA) has been found to 
improve dyslipidemia and reduces the impact of pregnancy on 
insulin resistance in a mouse model of GDM, although it does not 
affect glucose tolerance (74). However, the limited effects of OCA in 
pregnant mice indicate that its agonistic action alone may not fully 
counteract the metabolic consequences of reduced FXR activity 
during pregnancy. Therefore, when considering FXR agonists for 
treating metabolic disorders during pregnancy, it is essential to 
consider the potential inhibition of FXR activity during gestation to 
ensure the safety of the pharmaceutical agent. 

Studies have indicated that lower levels of GDCA are associated 
with increased risk of adverse pregnancy outcomes in GDM 
patients (63). Based on this, we hypothesize that GDCA 
supplementation may reduce these adverse outcomes, but further 
research is required to validate this hypothesis. Notably, UDCA has 
been shown to significantly lower fasting plasma glucose, 
hemoglobin A1c (HbA1c), and insulin concentrations, indicating 
    Frontiers in Endocrinology 05 
         
          

          
         

        
           

          
         

           
         

         
          

  
       

        
          

      
       
        

        
            

           
           

        
        

          
       

        
      

         
         

          
         
         

      
           

       
         

       
       

       

a beneficial effect on glucose homeostasis (75). Preliminary data 
from studies involving UDCA treatment in women with ICP also 
suggest a reduction in insulin resistance (76). The study emphasizes 
that UDCA’s potential as an effective therapy for improving 
maternal glycemia in GDM. Although direct evidence supporting 
UDCA’s use in GDM treatment is lacking, some trial protocols have 
been designed (77), paving the way for future studies. Furthermore, 
animal studies have provided additional insights. For instance, mice 
fed a high-fat diet (HFD) exhibit elevated fasting glucose and a 
reduced BA pool size, but supplementation with CA improves 
insulin resistance (78). Another study found that secondary BAs 
exert a protective effect on pancreatic islet b-cells in diabetic 
rats (79). 

BA sequestrants, which effectively disrupt the enterohepatic 
circulation of BAs and significantly reduce plasma cholesterol 
levels, provide evidence for a connection between BA and glucose 
metabolism (80). Numerous lipid-lowering studies have 
demonstrated that BA sequestrants, exemplified by colesevelam 
hydrochloride (81), cholestyramine (82) and colestilan (83), can 
also decrease plasma glucose and glycosylated hemoglobin levels. 
This suggests a potential role for these agents in the treatment of 
T2DM. Given the application of BAs in managing T2DM, it is 
reasonable to postulate that BAs may also hold promise in treating 
GDM. However, direct evidence supporting this hypothesis is 
currently lacking. Thus, further exploration into the therapeutic 
benefits of BA metabolites for GDM is crucial. While BA 
sequestrants demonstrate proven efficacy in T2DM management 
through TGR5/GLP-1 pathway (84, 85), their application in 
pregnancy warrants meticulous investigation. The placental 
transfer potential of BA sequestrants derivatives and their effects 
on fetal BA circulation remain undefined. The present study 
indicates that the use of BA sequestrants can impede the 
absorption of fat-soluble vitamins, such as vitamin K, potentially 
increasing the risk of neonatal cerebral bleeding (86), emphasizing 
the need for trimester-specific therapeutic development. 

In summary, a novel approach to the treatment of GDM with 
BA has demonstrated significant potential. Evidently, future 
research should be directed towards three primary areas: first, 
conducting research on longitudinal BA profiling; second, 
performing randomized controlled trials (RCTs) of BA 
modulators; and third, investigating microbiome - BA interactions. 
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