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Background: Diabetes mellitus significantly increases the risk of complications,

particularly diabetic foot ulcers (DFUs). However, the underlying mechanism

remains unclear. This study aimed to assess the overall therapeutic approach in

diabetic ulcers.

Methods: Using integrated high-throughput multi-omics approaches, including

transcriptomics, proteomics, and metabolomics, we constructed a compound-

reaction-enzyme-gene network to identify the key molecular mechanisms

involved in the pathogenesis of DFUs. Major findings were further validated in

mouse models of diabetic and control ulcers.

Results: Transcriptomics identified 653 differentially expressed genes (DEGs)

between diabetic ulcers and control groups. Pathway analysis indicated that

these genes were mostly related to inflammation, including the cytokine–

cytokine receptor interaction, TNF signaling pathway, and NF-kB signaling

pathway. Proteomics revealed 464 upregulated and 419 downregulated

proteins, indicating many differentially expressed proteins (DEPs). The pathways

with the highest representation of DEPs included diabetic cardiomyopathy, PPAR

signaling pathway, and HIF-1 signaling pathway. Metabolomics identified 1,304

metabolites, predominantly lipids (32.1%) and organic acids (20.2%). Principal

component analysis and partial least squares discriminant analysis confirmed the

model’s effectiveness in distinguishing sample groups, whereas bioinformatics

analysis revealed significant metabolic pathways, particularly amino

acid biosynthesis.
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Conclusion: Our findings identified critical molecular signatures associated with

DFUs and lay the groundwork for developing innovative therapeutic strategies to

improve clinical outcomes in patients with this challenging condition.
KEYWORDS

diabetic foot ulcers, transcriptomics, proteomics, metabolomics, multi-omics
1 Introduction

Diabetes mellitus (DM) arises from a complex interplay of

genetic predisposition, immune dysregulation, infections, lifestyle,

and psychosocial factors, leading to insulin resistance or pancreatic

dysfunction. Currently, the global prevalence of diabetes among

adults aged 20–79 years is estimated at 8.8%, with projections

suggesting a potential increase to 693 million cases by 2045 if

current trends persist (1). DFUs are significant complications

associated with two chronic conditions of diabetes: peripheral

neuropathy (PN) and peripheral arterial disease (PAD). Foot

ulcers are a prominent manifestation of DFUs (2). DFUs affect up

to 15% of individuals with diabetes and are the leading causes of

hospitalization and both minor and major amputations in this

population (2, 3).

Patients with DFUs often encounter precarious situations

because foot ulcers are merely one aspect of a complex clinical

picture. This intricacy includes persistent complications such as PN

andPAD, compounded by comorbidities that collectively undermine

the patient’s overall well-being. Notably, the 5-year mortality rate for

individuals who develop newDFUs has been reported to surpass that

of several cancers by approximately 25–60% (4, 5). Cardiovascular

and renal diseases are leading contributors to mortality in this

population. Patients with diabetic feet exhibit a complex interplay

of inflammatory markers that adversely affects the cardiovascular

system, thereby exacerbating cardiovascular damage and increasing

morbidity. Consequently, effective management of DFU requires

timely treatment of foot ulcers and a thorough assessment of

comorbidities that may influence clinical outcomes (2, 6).
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However, the underlying mechanisms and potential targets of

DFUs require further investigation.

High-throughput multi-omics techniques, including

transcriptomics, proteomics, and metabolomics, hold promise for

uncovering novel pathological mechanisms and identifying potential

therapeutic targets. Transcriptomics enables qualitative and

quantitative assessment of mRNA levels across the genome (7). In

contrast, proteomics centers on elucidating alterations in protein

expression under specific conditions and monitoring dynamic

fluctuations within cellular environments (8). Metabolomics entails

the comprehensive analysis of endogenous small biomolecules,

primarily reflecting the end products of physiological processes

mediated by proteins (9). However, a singular omics approach may

fail to capture the full spectrum of changes associated with DFUs, given

the dynamic and multifaceted nature of the condition. Independent

analyses of extensive high-quality data across various omics levels often

overlook the intricate interactions between different molecular entities,

potentially missing critical biological insights (10). Therefore, a holistic

strategy integrating data frommulti-omics platforms is imperative for a

comprehensive understanding of key pathological processes. Such

integration can reveal new perspectives on complex biological

systems and clarify networks of interactions at the molecular level.

In this study, we developed a comprehensive strategy to

investigate diabetic ulcers, culminating in establishing a compound-

reaction-enzyme-gene network. This network was constructed by

integrating transcriptomic, proteomic, and metabolomic data to

identify key targets and mechanisms for diabetic ulcer treatment.

This approach may facilitate a deeper understanding of the molecular

mechanisms underlying diabetic ulcers. Our findings present a

detailed molecular map of these ulcers, advancing knowledge of

their pathogenesis, and paving the way for exploring novel

therapeutic interventions for affected patients.
2 Experimental methodologies

2.1 Clinical research

2.1.1 Data sources and study population
The National Health and Nutrition Examination Survey

(NHANES) comprises a series of cross-sectional, population-

based studies aimed at evaluating the health and nutritional status

of adults and children in the United States. The National Center for
frontiersin.org
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Health Statistics Research Ethics Review Board approved the

NHANES study protocol, and all participants provided written

informed consent. In accordance with the guidelines issued by the

National Center for Health Statistics (NCHS), secondary use of

NHANES data does not require additional IRB approval. This

cross-sectional analysis utilized NHANES data (www.cdc.gov/

nchs/nhanes/) collected between 1999 and 2004. A flowchart of

the study design is shown in Figure 1A. Exclusion criteria included:

(1) age under 40 years; (2) missing data on triglycerides, fasting

glucose, body mass index (BMI), and waist circumference (WC);

and (3) no DM diagnosis. Ultimately, 31,126 participants were

enrolled, with 1,275 meeting the inclusion criteria. Among these,

100 participants (7.8%) were diagnosed with non-healing lower

extremity ulcers (NHLU).

2.1.2 Predictor and outcome variables
The primary outcome variable for this study was the presence of

NHLU, defined by an affirmative response to the following question:

“Have you had an ulcer or sore on your leg or foot that tookmore than

four weeks to heal?” In recent years, studies have shown that

triglyceride-glucose (TyG) index could be used as a reliable marker

of insulin resistance (11, 12). Meanwhile, some reports have shown

that TyG is associated with stroke and early diabetic nephropathy and

is a reliable predictor of cardiovascular and all-cause mortality in

prediabetes (13–15). The TyG index and its variants, TyG-WC and

TyG-BMI, were calculated as follows: (1) TyG = ln [triglycerides (mg/

dL) × glucose (mg/dL)/2]; (2) TyG-BMI = TyG × BMI; and (3) TyG-

WC = TyG × WC. Additional covariates examined included age, sex,

glycosylated hemoglobin, total cholesterol (TC), HDL, LDL, C-

reactive protein (CRP), BMI, WC, systolic blood pressure (SBP),

diastolic blood pressure, smoking history, and alcohol consumption.
2.2 Animals and regents

Twenty healthy male C57BL/6J mice (age: 8–10 weeks; body

weight: 30–35 g) were purchased from the Beijing Viton Lever

Company and housed in the Medical Research Center animal

facility at the First Affiliated Hospital of Shandong First Medical

University. The mice were divided into three cages, with five mice

per cage. Two cages received a high-sugar, high-fat diet comprising

66.5% rat and mouse maintenance chow, 10% lard, 20% sucrose,

25% cholesterol, and 1% sodium cholate, while one cage received

standard chow. Experiments commenced after a 4-week

acclimatization period. All procedures involving mice followed

the ARRIVE guidelines established by the Animal Protection

Society of the First Affiliated Hospital of Shandong First Medical

University (Approval no. SYDWLS【2021】002).
2.3 Establishment of the diabetic ulcer
mouse model

Ten C57BL/6J mice were fed a high-fat, high-sugar diet for 4

weeks, followed by a 12-h fasting period. They were then
Frontiers in Endocrinology 03
intraperitoneally injected with 2% streptozotocin (STZ) solution

at 35 mg/kg for five consecutive days. Three days post-injection,

blood glucose levels were measured in the tail vein to confirm the

establishment of the diabetic mouse model. Subsequently, an oral

glucose tolerance test was conducted to verify successful diabetes

induction. Following the establishment of diabetes, hyperglycemia

was maintained for an additional 2 weeks.

A skin ulcer model was created using ten diabetic and five

normal mice. Anesthesia was induced through an intraperitoneal

injection of 1% sodium pentobarbital, after which the mice were

depilated and disinfected. Two points were marked on each mouse’s

back, approximately 7 mm from the midline and 4 cm from the base

of the neck, serving as the centers for wound creation. A sterile,

disposable 5 mm biopsy punch was used to delineate the circular

wound, and iris scissors (elbow type) were used to excise the tissue,

creating an ulcer. The duration of wound induction was designated

as 0 h. Afterward, the mice were housed individually, and

photographs were taken and recorded on days 0, 3, and 7

(Figures 1E, F). Ulcer size in each group was observed, and the

wound healing rate was calculated using ImagePro Plus 6.0, with the

formula: wound healing rate (%) = [(initial wound area - wound

area on the observation day)/initial wound area] × 100%. The

diabetic ulcer mouse model and the representative wound healing

photographs are illustrated in Figure 1D.
2.4 Multi-omics experimental phase
investigation

2.4.1 Transcriptomic analysis through RNA
sequencing

To investigate transcriptional changes, high-throughput RNA

sequencing was performed using the Illumina NovaSeq 6000

platform with 150 bp paired-end reads. Total RNA was

extracted and subjected to quality assessment for purity and

integrity using the NanoDrop 2000 (Thermo Fisher Scientific,

USA) and LabChip GX Touch (PerkinElmer, USA). Ribosomal

RNA (rRNA) was depleted using the Ribo-Zero Gold Kit

(Illumina, USA) to enrich for non-rRNA transcripts. Strand-

specific cDNA libraries were then constructed using the

NEBNext Ultra Directional RNA Library Prep Kit (NEB, USA)

following the manufacturer’s protocol. The library preparation

workflow included RNA fragmentation, end repair, adapter

ligation, size selection, and PCR enrichment.

The quality and concentration of the libraries were further

evaluated using Qubit 3.0 (Invitrogen, USA), Agilent 2100

Bioanalyzer (Agilent Technologies, USA), and Bio-RAD CFX96

system (Bio-Rad, USA). Libraries were pooled based on effective

concentration and sequencing depth requirements before being

subjected to sequencing, which employed the sequencing-by-

synthesis principle to generate high-quality reads. Raw

sequencing data were initially processed using FastQC and Trim

Galore to remove adapters, ambiguous reads (N bases), and low-

quality sequences (Qphred ≤ 20 over more than 50% of the read
frontiersin.org
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length). Clean reads were aligned to the human reference genome

(GRCh38) using HISAT2 (v2.2.1). Transcript assembly and

quantification were performed with StringTie, and gene

expression levels were calculated using both FPKM (Fragments
Frontiers in Endocrinology 04
Per Kilobase of transcript per Million mapped reads) and TPM

(Transcripts Per Million).

Differential expression analysis was performed using DESeq2

for samples with biological replicates, applying negative binomial
FIGURE 1

(A) Flowchart illustrating the methodology of this study. (B) Receiver Operating Characteristic (ROC) curves depicting the predictive utility of the TyG
index, TyG-WC, and TyG-BMI for all-cause mortality in NHLU. (C) Smooth curve fitting analysis, with the solid red line representing the fitted curve
between variables, and the blue bands indicating the 95% confidence interval surrounding this fit. (D) Development of a mouse model to study diabetic
ulcers (this figure is created by biorender) and the representative wound healing photographs. (E) Representative images of ulcerated wounds across
three groups of mice. (F) Assessment of dermal thickness among the three groups of mice using hematoxylin and eosin (HE) staining, scale bar = 50 mm.
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distribution models and adjusting P-values through the Benjamini–

Hochberg method. Genes with adjusted P-values ≤ 0.05 were

classified as differentially expressed. DESeq was used for samples

without replicates. Finally, differential gene enrichment analysis was

conducted using ClusterProfiler to identify significant Gene

Ontology (GO) terms and KEGG pathways, applying a threshold

of P-values < 0.05. The transcriptomic data analysis process is

illustrated in Supplementary Figure S1A.

2.4.2 Proteomic analysis
Protein extraction and digestion began with sample lysis using

SDT buffer (4% (w/v) SDS, 100 mM Tris/HCl, pH 7.6, 0.1 M DTT),

followed by protein quantification using a BCA Protein Assay Kit

(Bio-Rad, USA). Proteins were digested according to the filter-aided

sample preparation method described by Mann (16). Specifically,

200 mg of protein was treated with UA buffer (8 M Urea, 150 mM

Tris-HCl, pH 8.0) to eliminate low-molecular-weight components

using Microcon units (10 kD). This was succeeded by treatment

with 100 mL of iodoacetamide (100 mM IAA in UA buffer) to block

cysteine residues. An overnight trypsin digestion was performed,

and the resulting peptides were desalted using Empore™ SPE

Cartridges C18 (standard density, bed I.D. 7 mm, volume 3 mL,

Sigma), concentrated, and reconstituted in 40 μL of 0.1% (v/v)

formic acid. For SDS-PAGE analysis, 20 mg of each sample was

combined with 5X loading buffer and boiled for 5 min.

Proteins were resolved on a 12.5% SDS-PAGE gel, with a

constant current of 14 mA for 90 min, and visualized using

Coomassie Blue R-250 staining. Peptides were then labeled with

tandemmass tag (TMT) reagents (Thermo Scientific) and subjected

to high-pH reversed-phase fractionation using a kit from Thermo

Scientific, resulting in 10 separate peptide fractions. If there are too

many samples, a bridge will be used for correction to reduce the

batch effect. These fractions were desalted on C18 cartridges

(Empore SPE Cartridges C18, standard density, bed I.D. 7 mm,

volume 3 mL, Sigma) and concentrated by vacuum centrifugation.

Liquid chromatography-tandem mass spectrometry (LC-MS/MS)

analysis was performed using a Q Exactive mass spectrometer

(Thermo Scientific), with a linear gradient of acetonitrile for

peptide separation and data acquired in a data-dependent manner

for identification and quantification. Raw MS data were processed

using the MASCOT engine (version 2.2; Matrix Science, London,

UK) in Proteome Discoverer 1.4 for protein identification

and quantification.

After completing these steps, we conducted bioinformatics analysis

to elucidate protein characteristics and interactions. Hierarchical

clustering was performed using Cluster 3.0 (http://bonsai.hgc.jp/

~mdehoon/software/cluster/software.htm) and Java Treeview

software (http://jtreeview.sourceforge.net), with the Euclidean

distance algorithm and average linkage clustering. The results

were presented as heatmaps and dendrograms. Protein subcellular

localization was predicted using the CELLO multiclass SVM

classification system (http://cello.life.nctu.edu.tw/). Domain

annotation was performed using InterProScan to identify the

protein domain signatures from the Pfam database. GO

annotations were derived using NCBI BLAST+ (ncbi-blast-2.2.28
Frontiers in Endocrinology 05
+-win32.exe) and InterProScan, with mapping and visualization

achieved using Blast2GO and R scripts. KEGG annotations

were obtained by blasting proteins against the KEGG database

(http://geneontology.org/) to identify orthologs and associated

pathways. Enrichment analyses were conducted using Fisher’s

exact test and the Benjamini–Hochberg correction for multiple

testing, highlighting functional categories and pathways with P-

values < 0.05. Finally, protein–protein interactions were explored

using the IntAct database (17) (http://www.ebi.ac.uk/intact/)

and STRING (http://string-db.org/), with networks visualized

in Cytoscape (http://www.cytoscape.org/, version 3.2.1) to

assess the significance of each protein within the interaction

network based on degree. The proteomic analysis is illustrated in

Supplementary Figure S1B.

2.4.3 Metabolomic analysis
Chemicals: Ammonium acetate was procured from Sigma

Aldrich, acetonitrile from Merck, and ammonium hydroxide and

methanol from Fisher Scientific. After dissection, mouse tissues

were rapidly frozen in liquid nitrogen. Approximately 80 mg of

tissue was diced on dry ice, placed in a 2 mL Eppendorf tube, and

homogenized with a mixture of 200 mL H2O and five ceramic beads

using a homogenizer. For metabolite extraction, 800 mL of

methanol/acetonitrile (1:1, v/v) solution was added to the

homogenate. The mixture was centrifuged at 14,000 g for 20 min

at 4°C, and the supernatant was dried using a vacuum centrifuge.

For LC-MS analysis, the dried samples were re-dissolved in 100 mL
of a 1:1 (v/v) acetonitrile/water solution and centrifuged again at

14,000 g for 15 min at 4°C, and the supernatant was injected

for analysis.

To ensure the stability and reproducibility of the instrument

analysis, quality control samples were generated by pooling 10 mL
from each sample. In this experiment, the number of peaks with

RSD ≤ 30% in the QC samples accounted for more than 80% of the

total number of peaks in the QC samples, indicating that the

instrument analysis system has good stability and the data can be

used for subsequent analysis. These quality control samples were

incorporated into the analysis at regular intervals and evaluated

after every five samples. Chromatography-mass spectrometry

analysis was performed using a Vanquish ultra-high-performance

liquid chromatography (UHPLC) system with a HILIC column

(Vanquish UHPLC, Thermo Scientific), with samples processed

randomly. A Q Exactive series mass spectrometer was used to

collect both primary and secondary spectra. The raw data were then

converted to mzXML format using ProteoWizard MSConvert. Peak

alignment, retention time correction, and peak area extraction were

conducted using XCMS. The data extracted by XCMS were

subjected to metabolite structure identification and pre-

processing, followed by quality evaluation and subsequent analyses.

After sum normalization, data were analyzed using the R

package (ropls) for multivariate analysis, including principal

component analysis (PCA) and orthogonal partial least-squares

discriminant analysis (OPLS-DA). Model robustness was evaluated

through 7-fold cross-validation and response permutation testing.

Variable importance in projection (VIP) values were calculated to
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http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm
http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm
http://jtreeview.sourceforge.net
http://cello.life.nctu.edu.tw/
http://geneontology.org/
http://www.ebi.ac.uk/intact/
http://string-db.org/
http://www.cytoscape.org/
https://doi.org/10.3389/fendo.2025.1574858
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Lu et al. 10.3389/fendo.2025.1574858
determine each variable’s contribution to classification, with

significant metabolites identified using VIP > 1 and P < 0.05.

Student’s t-test was used to determine significance between

independent sample groups, and Pearson’s correlation analysis

was performed to explore the relationships between variables. The

metabolomic analysis is illustrated in Supplementary Figure S1C.
2.5 Statistical analysis

In this study, continuous variables were presented as means with

standard deviations and categorical variables as counts with their

corresponding proportions. Differences between the two groups were

analyzed using weighted linear regression for quantitative variables and

weighted chi-squared tests for qualitative variables.We utilizedmultiple

logistic regressionmodels to estimate the association of TyG, TyG-BMI,

and TyG-WC with NHLU, with the first group as a reference.

We developed three multivariate models to further elucidate the

clinical implications of the logistic regression findings. Model 1

incorporated TyG, TyG-BMI, and TyG-WC as predictors of NHLU.

Model 2was adjusted for age and sex, whileModel 3 included additional

covariates, including smoking status, alcohol consumption, fasting

blood glucose (FBG), hemoglobin A1c (HbA1c), triglycerides (TG),

TC, CRP, and SBP. Analyses were conducted using EmpowerStats

(http://www.empowerstats.com/cn/) and R. All probability values

were two-sided, with interaction P-values < 0.05 considered

statistically significant.

3 Results

3.1 Clinical characteristics

This study enrolled a total of 1,275 patients with type 2 diabetes

mellitus (T2DM), of whom 100 presented with NHLU. Table 1

shows the clinical characteristics of the participants categorized by

NHLU status. Significant differences were identified in WC, FBG,

TyG index, TyG-WC, and TyG-BMI (all with P < 0.05). Table 2

presents the prevalence of NHLU among patients with T2DM,

stratified by quartiles of TyG index, TyG-WC, and TyG-BMI. The

Q4 group demonstrated the highest prevalence of NHLU across all

three indicators, with significant differences observed in each case

(P < 0.05). Specifically, within the TyG-WC quartiles, NHLU

prevalence was the highest in group Q4, followed by Q3, Q2, and

Q1, all with significant differences (P < 0.05). For the TyG quartiles,

NHLU prevalence was significantly higher in Q4 and Q3 than in Q2

and Q1 (P < 0.05). Additionally, among those grouped by TyG-BMI

quartiles, Q4 exhibited a greater NHLU prevalence than Q1, with

significant differences observed between the groups (P < 0.05).
3.2 Multivariate analysis of determinants of
NHLU in study participants

A multivariate logistic regression model was constructed to

investigate the associations between the TyG index, TyG-WC, TyG-
Frontiers in Endocrinology 06
BMI, and NHLU in patients with DM, as outlined in Table 3.

In Model 1, no adjustments were made for confounding variables.

Elevated levels of the TyG index, TyG-WC, and TyG-BMI (group

Q4) exhibited significant positive correlations with NHLU when

compared to group Q1, yielding odds ratios of 0.59 (95% CI: 0.02–

1.17; P = 0.0440), 0.91 (95% CI: 0.33–1.49; P = 0.0022), and 0.94

(95% CI: 0.33–1.55; P = 0.0023), respectively. In Model 2, adjusted

for age and sex, the associations remained significant. The highest

TyG index, TyG-WC, and TyG-BMI levels in group Q4 remained

positively associated with NHLU compared to the reference group,

with odds ratios of 0.60 (95% CI: 0.02–1.19; P = 0.0441), 1.03 (95%

CI: 0.40–1.65; P = 0.0013), and 1.19 (95% CI: 0.53–1.86; P = 0.0004),

respectively. In Model 3, adjusted for age, sex, smoking status,

alcohol consumption, FBG, HbA1c, TG, TC, CRP, and SBP, the
TABLE 1 Clinical characteristics of participants with and without non-
healing lower extremity ulcers (NHLU).

Characteristics Non-NHLU
(n=1175)

NHLU
(n=100)

P value

Age (years) 63.98 ± 11.09 63.96 ± 11.12 0.98

HbA1c (%) 7.42 ± 1.80 7.37 ± 1.80 0.705

FBG, mg/dL 145.16 ± 72.21 173.88 ± 99.96 <0.001

HDL-C, mg/dL 48.19 ± 13.62 48.02 ± 16.45 0.905

LDL-C, mg/dL 114.88 ± 36.58 105.09 ± 30.02 0.134

TC, mg/dL 201.81 ± 46.41 198.31 ± 43.61 0.468

CRP, mg/dL 0.68 ± 1.53 0.67 ± 0.79 0.933

TG, mg/dL 202.74 ± 220.93 220.98 ± 188.51 0.423

SBP, mmHg 137.59 ± 22.16 138.41 ± 22.35 0.738

DBP, mmHg 68.14 ± 16.64 67.72 ± 19.51 0.824

BMI, kg/m2 30.70 ± 6.34 32.00 ± 6.90 0.050

WC (cm) 105.69 ± 14.16 110.24 ± 15.61 0.002

TyG index 9.27 ± 0.83 9.51 ± 0.89 0.005

TyG.BMI 284.91 ± 65.00 303.66 ± 67.32 0.006

TyG.WC 980.90 ± 162.5 1048.84 ± 176.85 <0.001

Gender (%) 0.177

Male 599 (50.98%) 58 (58.00%)

Female 576 (49.02%) 42 (42.00%)

Smoking (%) 0.882

No 982 (83.57%) 83 (83.00%)

Yes 193 (16.43%) 17 (17.00%)

Alcohol
drinking (%)

0.059

No 980 (83.40%) 76 (76.00%)

Yes 195 (16.60%) 24 (24.00%)
TyG, Triglyceride-Glucose; TG, Triglyceride; WC, waist circumference; FBG, fasting blood
glucose; TyG-WC, Triglyceride glucose-waist circumference; TyG-BMI, Triglyceride glucose-
body mass index; CRP, C-reactive protein; SBP, Systolic blood pressure; DBP, Diastolic blood
pressure; BMI, Body mass index.
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highest TyG-WC and TyG-BMI levels remained positively

associated with NHLU, with odds ratios of 0.93 (95% CI: 0.10–

1.77; P = 0.0289) and 1.25 (95% CI: 0.34–2.15), respectively.

However, no significant relationship was observed between the

TyG index and NHLU.
3.3 Predictive value of TyG-related indices
for NHLU in patients with T2DM

To evaluate the predictive capacity of the TyG index, TyG-WC,

and TyG-BMI for NHLU in patients with DM, we conducted a

receiver operating characteristic (ROC) curve analysis (Figure 1B;

Table 4). The identified cutoff values were as follows: TyG index at

9.43 (sensitivity, 55%; specificity, 61%; area under the curve [AUC],

0.58), TyG-WC at 1150.80 (sensitivity, 34%; specificity, 85%; AUC,

0.61), and TyG-BMI at 307.22 (sensitivity, 46%; specificity, 70%;

AUC, 0.59). The predictive model showed an overall sensitivity of

44.6% and an AUC of 0.607.
3.4 Linear relationship between TyG-WC
and TyG-BMI in DM and NHLU

We conducted a smoothed curve-fitting analysis to assess the

relationship between TyG indices in DM and NHLU (Figure 1C).

After adjusting for all covariates in Model 3, we identified a

significant linear relationship between TyG-WC and TyG-BMI in

the context of DM and NHLU (P < 0.05).
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3.5 Transcriptomic analysis of the diabetic
ulcers mice model

We assessed the expression levels of the samples using the

formula:

FPKM =
103 ∗ F
NL=106

:

The resulting expression density map illustrated gene

expression concentrations within the peak area (Figure 2). A box

plot was generated to illustrate the expression levels across samples

and revealed a consistent trend (Figure 2). Additionally, a saturation

analysis confirmed that the data volume in this study was adequate

for further analysis (Figure 2).

Differential gene screening identified 553 upregulated and 100

downregulated genes in the TC group compared with the TST

group, totaling 653 differentially expressed genes (DEGs) (Figure 2).

DEGs were defined as genes showing statistically significant

differences in expression levels between two comparison groups,

identified using the DESeq2 package with a threshold of |log2 fold

change| > 1 and adjusted p-value < 0.05. A volcano plot was

generated to visually represent the distribution of these DEGs

across groups (Figure 2). To further elucidate gene expression

differences and identify novel functional genes, hierarchical

clustering analysis was performed on all screened DEGs. Genes

exhibiting similar expression patterns across samples were clustered

and visualized using heatmaps (Figure 2; Data S12). Following DEG

identification, we conducted GO functional enrichment and KEGG

pathway enrichment analyses to elucidate the fundamental

molecular mechanisms underlying the biological processes

involved. The GO statistical results, summarized in a bar graph

(Figure 2), indicate that molecular functions were predominantly

enriched in binding, cellular components were primarily associated

with cellular, anatomical entities, and biological processes largely

involved cellular processes and biological regulation. The 30 most

significant GO terms were visualized in bar and bubble charts

(Figures 2H; Data S13). Additionally, a distribution diagram

illustrates the adjusted enrichment significance values across

samples (Figure 2).

Subsequently, we identified the 30 most significant pathways (or

all if fewer than 30) through KEGG enrichment analysis, with

results indicating significant enrichment in pathways such as

cytokine–cytokine receptor interaction, NF-kB signaling, and

TNF signaling (Figures 2K; Data S14). A distribution map

illustrates the adjusted P-values of the enriched pathways across

all comparison groups (Figure 2).

Alternative splicing is a critical regulatory mechanism that

contributes to gene expression diversity and is essential for growth

and development. Using ASProfile software, we analyzed and

quantified the variable splicing events per sample based on known

gene models (Figure 2). Additionally, rMATS was used to classify and

count alternative splicing events for each comparison group

(Figure 2). We also investigated single nucleotide polymorphisms

(SNPs), which represent allele mutations across the genome. Using

SAMtools, we compared the alignment files, post-sorting and PCR
TABLE 2 Clinical characteristics of participants with and without NHLU.

Characteristics Non-
NHLU (n=1175)

NHLU
(n=100)

P
value

TyG index 0.045

Q1 298 (25.36%) 21 (21.00%)

Q2 300 (25.53%) 18 (18.00%)

Q3 294 (25.02%) 25 (25.00%)

Q4 283 (24.09%) 36 (36.00%)

TyG.BMI 0.010

Q1 303 (25.79%) 16 (16.00%)

Q2 294 (25.02%) 24 (24.00%)

Q3 297 (25.28%) 22 (22.00%)

Q4 281 (23.91%) 38 (38.00%)

TyG.WC 0.006

Q1 302 (25.70%) 17 (17.00%)

Q2 298 (25.36%) 20 (20.00%)

Q3 295 (25.11%) 24 (24.00%)

Q4 280 (23.83%) 39 (39.00%)
TyG, Triglyceride-Glucose; TyG-WC, Triglyceride glucose-waist circumference; TyG-BMI,
Triglyceride glucose-body mass index.
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duplication removal against the reference sequence to detect

variations, revealing approximately 3,000 SNP mutations (Figure 2).

We subsequently recorded the frequency and length of each mutation

based on the identified SNP sites (Figure 2; Supplementary Figure S2).

Transcription initiation in eukaryotes is complex and often

involves multiple protein factors. We predicted transcription factors

and compared our findings with the Animal Transcription Factor

Database (AnimalTFDB) to categorize these factors by family.

The distribution of the predicted transcription factors mapped to

their respective protein families is illustrated in Figure 2, with notable

prevalence in the zf-C2H2 and TF_bZIP families. To reflect the

expression patterns of the differentially expressed transcription

factors under varying experimental conditions, we conducted a

hierarchical cluster analysis using R. This analysis revealed that

transcription factors within the same cluster exhibited similar

expression trends under the same experimental conditions (Figure 2).
3.6 Proteomic analysis of diabetic ulcers
mice model

Through proteomic analysis, we generated a total of 811,606

secondary spectra, which included 80,869 spectra matched to the

database, 31,709 peptides (of which 28,252 were unique), and 4,985

identified proteins, of which 4,983 were quantifiable (Supplementary

Figure S3; Data S1 and S2). To investigate differential protein

expression across groups, we applied a 1.2-fold change (FC)

threshold at P < 0.05, identifying 883 differentially expressed

proteins (DEPs) between the PC and PST groups. DEPs refer to

proteins whose abundance significantly varies between experimental
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conditions, as determined from proteomic datasets using Student’s t-

test or ANOVA, with FDR correction applied where appropriate.

These DEPs included 464 upregulated and 419 downregulated

proteins (Figure 3; Data S3).

To identify significant protein differences, we generated a

volcano plot, displaying FC and P-values from t-tests. Proteins

exhibiting substantial downregulation are indicated in blue (FC <

0.83, P < 0.05), whereas significantly upregulated proteins are

indicated in red (FC > 1.2, P < 0.05). Proteins without significant

differences are represented in gray (Figure 3). Subsequent cluster

analysis revealed distinct differences in protein expression between

the PC and PST groups (Figure 3).

Subcellular localization of all DEPswas analyzed using theCELLO

subcellular structure prediction software (18). The results indicated

that most DEPs were localized in the cytoplasm (356 proteins, 46%),

followed by the nucleus (171 proteins, 22%) (Figure 3; Data S4). To

predict DEP domains, we utilized InterProScan to identify the top 20

protein domains, with the most prominent being intermediate

filament proteins, protein kinase domains, and trypsins (Figure 3).

To elucidate the domain enrichment characteristics of the DEPs, we
TABLE 4 Ability of TyG, TyG-BMI, TyG-WC to predict NHLU in
DM patients.

Indicators AUC
(95%CI)

Best
threshold

Specificity Sensitivity

TyG index 0.58 9.43 0.61 0.55

TyG-BMI 0.59 307.22 0.70 0.46

TyG-WC 0.61 1150.80 0.85 0.34
f

TABLE 3 Logistic regression analysis of different indexes on the risk of NHLU in T2DM patients.

Indicators Model 1 b (95% CI) P-value Model 2 b (95% CI) P-value Model 3 b (95% CI) P-value

TyG index

Q1 (7.02 - 8.72) Reference Reference Reference

Q2 (8.72 - 9.20) -0.16 (-0.83, 0.51) 0.64 -0.24 (-0.93, 0.46) 0.51 -0.47 (-1.36, 0.42) 0.31

Q3 (9.20 - 9.78) 0.19 (-0.42, 0.80) 0.55 0.16 (-0.49, 0.80) 0.64 -0.13 (-0.93, 0.68) 0.76

Q4 (9.78 - 13.30) 0.59 (0.02, 1.17) 0.04 0.60 (0.02, 1.19) 0.04 0.16 (-0.89, 1.21) 0.76

TyG-BMI

Q1 (139.50 - 240.46) Reference Reference Reference

Q2 (240.60 - 275.63) 0.44 (-0.17, 1.04) 0.16 0.61 (-0.06, 1.27) 0.07 1.06 (0.24, 1.89) 0.01

Q3 (275.73 - 322.64) 0.34 (-0.31, 0.99) 0.31 0.47 (-0.23, 1.18) 0.18 0.48 (-0.46, 1.43) 0.32

Q4 (323.17 - 602.22) 0.94 (0.33, 1.55) 0.002 1.19 (0.53, 1.86) 0.001 1.25 (0.34, 2.15) 0.007

TyG-WC

Q1 (525.91 - 874.46) Reference Reference Reference

Q2 (874.61 - 972.06) 0.18 (-0.48, 0.84) 0.60 0.35 (-0.35, 1.04) 0.33 0.46 (-0.38, 1.30) 0.29

Q3 (972.43 - 1086.67) 0.37 (-0.25, 0.98) 0.24 0.44 (-0.24, 1.12) 0.20 0.36 (-0.48, 1.19) 0.40

Q4 (1087.22-1616.15) 0.91 (0.33, 1.49) 0.002 1.03 (0.40, 1.65) 0.001 0.93 (0.10, 1.77) 0.029
Model 1: Unadjusted; Model 2: Adjusted for age and gender; Model 3: Adjusted for age, gender, smoking, alcohol consumption, FBG, HbA1c, Triglyceride (TG), Total cholesterol (TC), C-
reactive protein (CRP), and SBP.
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(A) Expression distribution diagram. The horizontal axis is log2(FPKM), which represents the logarithmic value of the gene expression level of each
sample. The higher the value, the higher the gene expression level. The vertical axis is the ratio of the number of genes at the corresponding expression
level to the total number of genes. (B) Box plot of expression level. The horizontal axis is the sample name, and the vertical axis is the logarithmic value
of the gene expression of each sample. From top to bottom, they represent the maximum value, upper quartile, median, lower quartile and minimum
value. (C) Saturation analysis chart. Different colors represent genes classified based on expression levels. The horizontal axis is the ratio of sampled
reads to the total number of reads during random sampling, and the vertical axis represents the percentage of genes whose expression levels could be
accurately estimated through sampled reads. (D) Statistical graph of differentially expressed genes. The horizontal axis represents different sets of
differentially expressed genes, green represents all differentially expressed genes, blue represents upregulated genes, yellow represents downregulated
genes, and the vertical axis represents the number of differentially expressed genes. (E) Volcano plot of DEGs. The horizontal axis represents the
expression fold change of genes in different samples, and the vertical axis represents the statistical significance of the expression change. Blue
represents significantly downregulated genes, yellow represents significantly upregulated genes, and gray represents genes with no significant change in
expression. (F) Differential gene clustering diagram. Behavioral genes are listed as samples. Red indicates high gene expression, and blue indicates low
gene expression. The horizontal axis represents the clustering of samples, and the vertical axis represents the clustering of genes. (G) GO statistical bar
chart of DEGs. The horizontal axis is GO Term, the left vertical axis is the percentage of the number of genes, and the right vertical axis is the number
of genes. (H) GO enrichment bar chart. The vertical axis represents the GO entry, the horizontal axis represents the number of genes enriched in the
entry, and the color represents p.adjust. The redder the color, the more significant it is. (I) GO enrichment bubble chart. The bubble size indicates the
number of genes enriched in this entry. The larger the bubble, the more genes there are. (J) Distribution of p.adjust values of enriched GO terms
(including BP, CC and MF). (K) KEGG enrichment bar chart. (L) KEGG enrichment bubble chart. (M) Distribution of p.adjust values of enriched pathways.
Different colors represent different degrees of enrichment; the redder the color, the more significant the enrichment. (N) Statistics of variable splicing
results. The horizontal axis represents the sample name, and the vertical axis represents the percentage of alternative splicing event types. (O) Statistics
of differential alternative splicing results. (P) Distribution diagram of mutation statistics. The horizontal axis represents the sample name, and the vertical
axis represents the number of mutations. (Q) SNP mutation frequency distribution and InDel length distribution. A>C represents the number of SNP
sites that mutated from A to C. (R) Distribution diagram of differential transcription factor protein families. The vertical axis represents different
transcription factor families, and the horizontal axis represents the number of differentially expressed genes annotated to the transcription factor. (S)
Cluster diagram of differential transcription factors. Red indicates high gene expression, and blue indicates low gene expression. The horizontal axis
represents the clustering of samples, and the vertical axis represents the clustering of genes.

Lu et al. 10.3389/fendo.2025.1574858
conducted domain enrichment analysis using Fisher’s exact test,

revealing significant enrichment in sushi repeat (SCR repeat) and

trypsin domains (Figure 3).

To comprehensively understand the function, localization, and

biological pathways of the proteins, we performed GO functional

annotation using Blast2Go (https://www.blast2go.com/) and assessed

secondary functional annotation levels (Figure 3). Fisher’s exact test

was applied to identify enriched functional categories among DEPs,

revealing significant alterations in key biological processes,

including generating precursor metabolites and energy, defense

responses, and purine nucleotide metabolism. Additionally,

significant changes were observed in molecular functions,

including peptidase and endopeptidase inhibitor activities, actin

binding, and localization within components like the

oxidoreductase complex and extracellular space (Figure 3; Data S5).

To illustrate the hierarchical relationships among GO terms

associated with DEPs, we employed a topGO-directed acyclic

graph. This top-down visualization presents the functional scope,

with branches reflecting inclusion relationships and lower branches

corresponding to more specific functional categories (Supplementary

Figure S4). The proteins were systematically annotated using the

KEGG pathway database (Figure 3), tallying the DEPs associated with

each pathway, and revealing diabetic cardiomyopathy (DCM), the

PPAR signaling pathway, and the HIF-1 signaling pathway as the

most prominent pathways (Figure 3; Data S6). Visual representations

of the PPAR signaling pathway and HIF-1 signaling pathway are

shown in Supplementary Figure S5.

Given that highly aggregated proteins may share similar

functions and that highly connected proteins can act as pivotal

nodes influencing metabolic or signaling pathways, we further

investigated protein–protein interactions. The resulting

interaction network diagram of DEPs in the PST vs. PC group,

along with specific clusters, is presented in Figures 3, L.
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3.7 Metabolomic analysis of diabetic ulcers
mice model

For metabolite identification, we used an in-house database

(19, 20) to match retention times, molecular masses (error margin <

10 ppm), secondary fragmentation spectra, and collision energy data

from biological samples. A rigorous manual validation confirmed that

all identifications achieved a minimum Level 2 classification. After

integrating positive and negative ion modes, 1,304 metabolites were

identified, with the breakdown of metabolites detected in each mode

presented in Table 5 and detailed qualitative and quantitative results in

Data S7. Metabolites were categorized by their chemical taxonomy,

revealing lipids and lipid-like molecules as the largest proportion

(32.055%), followed by organic acids and their derivatives

(20.245%) (Figure 4).

Metabolomic data, characterized by high dimensionality and

strong intervariable correlations, were analyzed using multivariate

statistical methods to integrate univariate analyses with

multidimensional assessments, identifying group differences and

potential biomarkers. Differential analysis included all metabolites

detected in both ion modes and those that remained unidentified,

visualized as volcano plots with significant changes indicated by

FC > 1.5 or < 0.67 and P < 0.05 (Figure 4).We used distinct colors to

visually represent the classification of these differential metabolites,

as depicted in Figure 4.

PCA, an unsupervised method, was employed to linearly

combine all identified metabolites into a new set of variables. This

method aims to reflect as much information as possible from the

original variables while achieving dimensionality reduction. PCA

results provided insights into overall distribution trends and inter-

group differences (Figure 4), with model parameters validated

through a seven-fold cross-validation (Data S8a; b), indicating an

R² value approaching 1, confirming the reliability of our findings.
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FIGURE 3

(A) Bar graph of protein quantification difference results. (B) Volcano plot of the PSTvsPC group. The horizontal axis is the difference fold
(logarithmic transformation with base 2), and the vertical axis is the significant P-value of the difference (logarithmic transformation with base 10).
The red points in the figure are upregulated proteins with significant differential expression, the blue points are downregulated proteins with
significant differential expression, and the gray points are proteins with no difference. (C) PSTvsPC group differentially expressed protein clustering
analysis results. Hierarchical clustering results are presented in a tree-type heatmap, where each column represents a group of samples (the
horizontal axis is sample information), and each row represents a protein (i.e., the vertical axis is the protein with significant differential expression).
(D) Pie chart of subcellular localization of differentially expressed proteins in the PSTvs PC group. (E) PSTvsPC group differentially expressed protein
domain analysis diagram. (F) PSTvsPC group domain enrichment analysis. The horizontal axis in the figure is the enrichment factor (Rich Fator ≤ 1),
which indicates the ratio of differentially expressed proteins annotated to the GO category to the number of all identified proteins annotated to the
category. The vertical axis indicates the statistical results of differential proteins under each domain classification; the color of the bubble indicates
the significance of the enriched domain classification. (G) GO annotation statistics of differentially expressed proteins in the PSTvsPC group (level 2).
(H) GO annotation statistics of the top 20 differentially expressed proteins in the PSTvsPC group. (I) A diagram of biological metabolic processes
showing the relationship between different metabolic processes and the relevant values. (J) KEGG pathway enrichment bubble diagram of PSTvsPC
group. (K) PSTvsPC group differentially expressed protein interaction network diagram. (L) Interaction network diagram for functional classification.
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Subsequently, we established a discriminant model using Partial

Least Squares Discriminant Analysis (PLS-DA) to identify the

differential lipid substances associated with the groups (Figure 4).

The PLS-DA model effectively separated the two sample groups,

with robust stability confirmed by evaluation parameters (R²Y, Q²)

(Data S8c, d). To mitigate the risk of overfitting in the supervised

model, we performed a permutation test (Figure 4). The decreasing

R² and Q² values of the random models confirmed the absence of

overfitting and the model’s robustness.

To enhance the rigor of our analysis, we applied OPLS-DA,

which further distinguished the two sample groups. Circular cross-

validation confirmed model stability and reliability (Figure 4; Data

S8e, f), and a permutation test validated the absence of overfitting

(Figure 4). Following commonmetabolomic practices, we employed

stringent criteria (VIP > 1 and P < 0.05) to screen for significantly

differential metabolites (Figure 4; Data S9). Subsequently, we

performed bioinformatics analyses, including cluster, correlation,

and pathway analyses, on these metabolites.

To comprehensively illustrate sample relationships and

metabolite expression patterns, we clustered and analyzed the

expression levels of all samples with the differential metabolites

(Figure 4). Correlation analysis assessed the metabolic proximity of

significantly different metabolites (VIP > 1, P < 0.05), visualized in

chord and network diagrams derived from the correlation matrix

(Figures 4–M). Various metabolites coordinate their functions

within biological systems, and KEGG pathway analysis further

elucidated their biological roles. Before KEGG pathway

annotation, we merged differential metabolites identified from

both ion modes (Data S10). To facilitate observation of each

differential metabolite expression within the KEGG metabolic

pathways, we selected pathways featuring more than five

differential metabolites and represented them in a heatmap

(Supplementary Figure S6, Data S11). KEGG enrichment analysis

indicated significant enrichment in the amino acid biosynthesis

pathway (Figure 4). Finally, a Differential Abundance Score

pathway-based analysis captured overall metabolic changes, as

presented in Figure 4.
4 Discussion

With the rising prevalence of obesity and an aging population, the

incidence of diabetes has surged, posing a significant public health

challenge (21). Individuals with diabetes frequently encounter a myriad

of complex complications, including chronic pain stemming from

diabetic ulcers and foot conditions, substantially elevating the risks of
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limb amputation and mortality (22). Unlike typical wounds, diabetic

ulcers often progress to chronic, non-healing lesions owing to a

multifaceted inflammatory microenvironment (23), characterized by

factors like excessive ROS accumulation (24) and hypoxia (25). These

elements collectively disrupt skin regeneration. Moreover, the impaired

vasculature associated with diabetic wounds restricts blood flow,

reducing oxygen supply and exacerbating inflammation around the

ulcer (26). Despite available treatments for diabetic ulcers, including

debridement, growth factor therapy, and topical antimicrobials,

effective wound healing remains challenging (27). Further

investigation into the molecular mechanisms underlying these

processes may uncover potential therapeutic targets for enhancing

wound healing in patients with diabetes.

Integrating NHANES database, transcriptomics, proteomics,

and metabolomics has provided profound insights into the

complex mechanisms underlying diabetic ulcer pathogenesis. In

this study, we used normal and diabetic ulcer mice models (n = 4 for

transcriptomics, n = 5 for proteomics, and n = 7 for metabolomics)

to conduct a comprehensive analysis across these multi-omics

platforms, aiming to uncover new dimensions in the healing

landscape of DFUs. It is noteworthy that several estimates

presented in Table 3 exhibit wide confidence intervals (e.g., TyG-

WC Q4: 95% CI, 0.10–1.77), suggesting potential instability in the

effect sizes. This variability may, in part, reflect heterogeneity in

baseline metabolic profiles (e.g., BMI, glycemic status) and lifestyle

factors (e.g., dietary patterns, physical activity) among the study

population. Despite the implementation of stratified analyses and

multivariable adjustments to account for known covariates, the

influence of unmeasured confounders—such as genetic

predispositions or varying environmental exposures—cannot be

fully excluded. Furthermore, while standard metabolic variables

(e.g., age, sex, smoking) were incorporated into the model, certain

relevant factors—including indices of insulin resistance and

systemic inflammation—were not comprehensively adjusted due

to missing data. These limitations may have contributed to residual

confounding, thereby broadening the confidence intervals. Future

investigations should prioritize subgroup analyses to mitigate

population-level heterogeneity and incorporate a more robust

panel of metabolic and inflammatory biomarkers to enhance

model stability and interpretability.

Pathway analysis of the transcriptomic data revealed that

significantly altered signaling pathways were predominantly

associated with endothelial cell-mediated inflammatory responses,

particularly the NF-kB signaling pathway, cytokine–cytokine receptor

interactions, and TNF signaling pathway. Various herbal extracts can

enhance wound healing by modulating the NF-kB pathway. For

instance, balsam pears facilitate diabetic ulcer healing in mouse

models by influencing the RAGE/NF-kB and VEGF/VCAM-1/eNOS

signaling pathways (28). Additionally, scutellarein inhibits NF-kB-
mediated luciferase expression and nuclear translocation, while

reducing the phosphorylation of upstream signaling enzymes. The

significant suppression of Src kinase activity further underscores its

potential as an anti-inflammatory agent (29). The TNF pathway is

crucial in initiating and progressing inflammatory and autoimmune

disorders, cancer, and cardiovascular conditions (27, 30).
TABLE 5 Statistics of metabolites identified in positive and negative
ion modes.

Detection mode Number of metabolites identified

Positive ion mode (Pos) 680

Negative ion mode (Neg) 624
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(A) The proportion of identified metabolites in each chemical category. The blocks of different colors in the figure represent different chemical
classification entries, and the percentage represents the percentage of metabolites in the chemical classification entry to the total number of
identified metabolites. Metabolites without chemical classification are defined as undefined. (B) Volcano plots of positive and negative ion modes.
Upregulated metabolites are represented by rose red, downregulated metabolites are represented by blue, and non-significantly different
metabolites are represented by black. (C) Negative ion mode volcano plot (colors are related to the chemical classification of differential
metabolites). (D) PCA score plots for positive and negative ion modes. t [1] represents principal component 1, t [2] represents principal component
2, and the ellipse represents the 95% confidence interval. Points of the same color represent the biological replicates within the group, and point
distribution reflects the differences between and within the groups. (E) PLS-DA score plots for positive and negative ion modes. (F) PLS-DA
permutation test in positive and negative ion modes. (G) OPLS-DA score plots for positive and negative ion modes. (H) OPLS-DA permutation test
in positive and negative ion modes. (I) Analysis of fold difference in expressing significant differential metabolites in positive and negative ion modes.
(J) Hierarchical clustering heat map of significantly different metabolites in positive and negative ion modes. Each row in the figure represents a
differential metabolite (i.e., the vertical axis is the metabolite with significant differential expression), and each column represents a group of samples
(i.e., the horizontal axis is the sample information). (K) Positive and negative ion mode correlation heatmap. Red indicates a positive correlation, blue
indicates a negative correlation, and white indicates a non-significant correlation. (L) Positive and negative ion mode chord diagram. The starting
point of the inner circle link in the figure represents each significantly different metabolite, and the arc on the outer circle represents the category
to which the significantly different metabolites belong. The colored lines represent the correlation within each metabolite, and the lines are the
same color as the subclasses. The dark gray lines represent the correlation between metabolites of different categories. (M) Positive and negative
ion mode network diagram. The dots in the figure represent significantly different metabolites. The size of the dots is related to the degree of
connectivity. The larger the degree, the larger the dots. The color of the line represents the correlation. Red indicates positive correlation, and blue
indicates negative correlation. The thickness of the line represents the absolute value of the correlation coefficient. The thicker the line, the greater
the correlation. (N) KEGG enrichment pathway diagram (bar graph). The vertical axis in the bar graph represents each KEGG metabolic pathway, and
the horizontal axis represents the number of differentially expressed metabolites contained in each KEGG metabolic pathway. (O) The differential
abundance score map of all enriched metabolic pathways and the score map after classification according to Pathway_Hierarchy.
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Regarding cytokine–cytokine receptor interactions, miRNA-

497 treatment, both in vivo and in vitro, can reduce levels of pro-

inflammatory cytokines such as IL-1b, IL-6, and TNF-a, thereby
promoting DFU healing (31). In our investigation, we identified the

pro-inflammatory gene IGFN1 as significantly differentially

expressed in both the diabetic and normal ulcer mouse models.

IGFN1 was initially characterized as a protein fragment using a

yeast two-hybrid assay, with the KY protein as bait (32). IGFN1-

deficient clones exhibit a reduced fusion index and pronounced

morphological differences compared to C2C12 myotubes,

indicating IGFN1’s role in myoblast fusion and differentiation

(33). Immunohistochemistry confirmed elevated IGFN1

expression in the diabetic ulcer model compared to the normal,

suggesting that IGFN1 may be a critical target in diabetic ulcers.

Consequently, further exploring the pathways through which

IGFN1 influences these changes could have significant

implications for diabetic ulcer prognosis.

Proteomics offers a powerful approach for elucidating the

molecular mechanisms involved in disease progression, utilizing

high-throughput, precise, sensitive, and reproducible techniques.

TMT coupled with LC-MS/MS enables effective protein

identification and quantification in tissue samples (34). In our

proteomic analysis, the results showed significant enrichment of

proteins related to DCM, oxidative phosphorylation, the PPAR

signaling pathway, and the HIF-1 signaling pathway, suggesting the

potential roles of these proteins in diabetic ulcers. Advanced DCM

is often accompanied by severe PAD. However, effective therapeutic

targets or treatments remain lacking for patients with these

conditions. Therefore, discovering effective targets for DFUs may

also improve DCM prognosis and treatment, representing

important clinical significance. Diabetes-induced oxidative stress

continually damages endothelial cells and impairs wound healing

(35). The significance of HIF-1 inhibition, first noted in diabetic

wound healing (36), is associated with compromised wound healing
Frontiers in Endocrinology 14
in diabetes. Enhancing HIF-1 activity has been shown to facilitate

wound healing by promoting angiogenesis, proliferation, and

migration of fibroblasts in diabetic mouse models (37, 38).

Deferoxamine, an iron-chelating agent commonly used for

treating iron overload, can mitigate oxidative stress and activate

HIF-1, thus expediting diabetic wound healing (37). A recently

optimized topical drug delivery system is set to undergo clinical

trials (ClinicalTrials.gov registration no. NCT03137966) to evaluate

its effectiveness in patients with DFUs. Notably, while HIF-1

signaling plays an important role in diabetic ulcers, a direct link

between the PPAR signaling pathway and diabetic ulcers remains

unexplored, presenting an avenue for future research.

Recent research has increasingly recognized that diabetes

mellitus (DM) and its complications involve profound metabolic

disturbances, which may be driven directly by hyperglycemia or

occur independently through complex regulatory networks (39, 40).

As an integrative reflection of both endogenous and exogenous

factors—including genomic, transcriptomic, and proteomic layers

—metabolomics offers unique insights into disease-specific

molecular phenotypes. In particular, metabolic reprogramming

has emerged as a critical interface between energy homeostasis

and immune-inflammatory responses (41, 42). In our metabolomic

analysis of DFUs, we observed significant enrichment in pathways

related to amino acid biosynthesis, notably involving arginine,

glutamine, and tryptophan. These amino acids are increasingly

recognized as immunomodulatory metabolites. Arginine, for

instance, serves as a substrate for arginase-1 (Arg1), promoting

M2 macrophage polarization and suppressing chronic

inflammation via inhibition of NF-kB–mediated secretion of

proinflammatory cytokines such as TNF-a and IL-6 (43).

Glutamine, a key energy source for lymphocytes and neutrophils,

modulates immune function through the mTOR signaling axis; its

depletion has been associated with impaired immune responses and

enhanced inflammatory cascades (44). Tryptophan catabolism
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yields kynurenine, a ligand for the aryl hydrocarbon receptor

(AhR), which has been shown to suppress NLRP3 inflammasome

activation and mitigate oxidative stress (45).

Consistent with these findings, our data revealed decreased

glutamine levels and increased kynurenine accumulation in DFU

samples, suggesting that altered amino acid metabolism contributes

to immune dysregulation and chronic inflammation in diabetic

wound microenvironments. Moreover, metabolic stress induced by

hyperglycemia and insulin resistance leads to mitochondrial

dysfunction and shifts in cellular energy demands. Under such

stress, hypoxia-inducible factor-1a (HIF-1a) is activated,

promoting the transcription of glycolytic enzymes (e.g., LDHA)

while simultaneously repressing oxidative phosphorylation (46).

Notably, our pathway analysis revealed concurrent enrichment of

HIF-1 signaling and amino acid biosynthesis pathways, implying a

coordinated metabolic adaptation that enables immune cells to

function in hypoxic, nutrient-deprived settings characteristic of

chronic wounds. Taken together, these results highlight the central

role of amino acid metabolic reprogramming in orchestrating

inflammatory and energy responses during DFU pathogenesis.

Recent studies have further revealed the dynamic characteristics

of metabolic reprogramming in DFU. Related studies have shown

that metabolomics has found significant accumulation of

phenylpyruvate in DFUs. Increased phenylpyruvate impairs wound

healing and enhances inflammatory responses, while reducing

phenylpyruvate by restricting phenylalanine in the diet can alleviate

uncontrolled inflammation and benefit diabetic wounds (47). There

are also studies showing that TMAO accumulates in diabetic wounds,

causing macrophages to persist in the pro-inflammatory M1

phenotype, hindering tissue repair. TMAO-targeted anti-

inflammatory agents can reprogram macrophage metabolism by

inhibiting the IRE1a/XBP1/HIF-1a signaling pathway, prompting

it to switch to anti-inflammatory M2, while improving angiogenesis

and reducing oxidative stress (48). These advances together support

the core conclusion of this study—the metabolism-inflammatory axis

is a key target for the treatment of DFU.

Meanwhile, results from the NHANES cohort revealed a

significant positive association between TyG-WC/BMI and the

risk of non-healing lower extremity ulcers (NHLU). TyG-WC and

TyG-BMI have been recognized as sensitive indicators of insulin

resistance and visceral obesity, with elevated levels reflecting lipid

metabolic disorders and a state of chronic low-grade inflammation

(49, 50). Accumulation of visceral adipose tissue has been reported

to promote the secretion of pro-inflammatory cytokines such as IL-

6, thereby activating the NF-kB signaling pathway, impairing

fibroblast migration and angiogenesis, and ultimately delaying

ulcer healing (51–53). n our diabetic mouse model, we observed

significant upregulation of NF-kB–related genes, including TNF

and IL1B, consistent with the inflammatory phenotype observed in

patients with elevated TyG-WC/BMI. These findings suggest that

TyG-WC/BMI may serve as a potential biomarker for identifying

individuals at high risk for NF-kB pathway overactivation and may

aid in guiding the use of anti-inflammatory therapeutic strategies,

such as JAK/STAT inhibitors.
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This study also has a few limitations, the study relies on diabetic

ulcer mouse models, which, while valuable, may not fully replicate

the complexity of diabetic ulcers in humans, limiting the direct

applicability of findings.
5 Conclusion

This study emphasizes the complexity and serious implications

of diabetic ulcers, highlighting their association with significant

comorbidities and elevated mortality rates. The integration of high-

throughput multi-omics techniques—transcriptomics, proteomics,

and metabolomics—enabled the development of a compound-

reaction-enzyme-gene network that elucidates the underlying

molecular mechanisms of diabetic ulcers. This comprehensive

molecular map provides valuable insights into diabetic ulcer

pathogenesis and facilitates the identification of novel therapeutic

targets and strategies for improving patient outcomes.
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