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Energy landscape analysis of
health checkup data clarified
multiple pathways to diabetes
development in obese and
non-obese subjects
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Masataka Shikata5, Tsuyoshi Teramoto6, Daisuke Chujo6,
Minoru Iwata5,7, Shiho Fujisaka5, Yoshiki Nagata8,
Takashi Yamagami8, Makoto Kadowaki2, Kazuyuki Tobe2,
Shigeru Saito2 and Keiichi Ueda2,3*

1Graduate School of Science and Engineering, University of Toyama, Toyama, Japan, 2Research
Center for Pre-Disease Science, University of Toyama, Toyama, Japan, 3Faculty of Science, University
of Toyama, Toyama, Japan, 4Faculty of Sustainable Design, University of Toyama, Toyama, Japan,
5First Department of Internal Medicine, University of Toyama, Toyama, Japan, 6Center for Clinical and
Translational Research, Toyama University Hospital, Toyama, Japan, 7Second Department of Human
Science, Faculty of Medicine, University of Toyama, Toyama, Japan, 8Laboratory of Preventive
Medicine, Hokuriku Health Service Association, Toyama, Japan
Aims: To clarify the pathways from a healthy state to the diabetes onset via pre-

disease states, we applied energy landscape analysis (ELA) to Specific Health

Checkup data in Japan.

Methods: This retrospective and observational cohort study analyzed data from

4,928 males aged 56.0 ± 3.2 years, including 242 individuals with diabetes, over a

period of 5.26 ± 3.21 years. A total of 22,326 records were examined using six

features: hemoglobin A1c, plasma glucose, high-density lipoprotein-cholesterol,

body mass index (BMI), uric acid, and alanine aminotransferase. ELA was also

applied to subdata from the 242 individuals with diabetes.

Results: ELA revealed three stable states: healthy, intermediate, and unhealthy

(pre-diabetes) states. The intermediate state was characterized by obesity. Obese

individuals with BMI ≥ 25 kg/m2 (n = 1,460) preferred a pathway via the

intermediate state, whereas non-obese individuals with BMI < 25 kg/m2 (n =

3,468) preferred to transit directly to the unhealthy state. There was a significant

difference between the preferences of the two groups (p = 0.0085, chi-squared

test). Two distinct pathways were also observed for obese and non-obese

individuals with diabetes.

Conclusions: We demonstrated that ELA could indicate different pathways of

diabetes development in obese and non-obese individuals in a data-driven
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manner. These insights could inform more targeted diabetes prevention

measures, such as reducing visceral fat in obese individuals and protecting

beta-cells in non-obese individuals.
KEYWORDS

energy landscape analysis, multiple pathways, pre-disease state, specific health
checkup data, diabetes, obesity
1 Introduction

The number of individuals with diabetes is on the rise around

the world (1, 2), and the increasing medical expenses associated

with it have become a significant concern. Diabetes can be

prevented by implementing appropriate interventions before its

onset (3–5). A state between a healthy state and a disease state is

generally called a pre-disease state (6–8), and the pre-disease state of

diabetes includes pre-diabetes and earlier stages broadly. Early

detection of individuals in the pre-disease state having a high risk

of diabetes and providing suitable interventions are expected to help

control the increase in the number of individuals with diabetes.

The Industrial Safety and Health Act in Japan mandates regular

health checkups at least once a year (9). Japanese-style regular

health checkups, also known as “Specific Health Checkups,” are

basically targeted at all employees aged 40 or over of all companies,

and do not focus on high-risk groups for any particular disease.

Therefore, oral glucose tolerance test and insulin measurement are

not performed due to cost-benefit tradeoffs. On the other hand, an

important advantage of Specific Health Checkups is that they allow

the longitudinal measurement of many features, such as body mass

index (BMI) and plasma glucose (PG) levels, for a large number of

individuals. Thus, the time-series data from these health checkups is

expected to be useful for early detection of individuals at high risk

of diabetes.

Machine learning (ML)-based approaches have been proposed

for predicting diabetes (10–19). However, predicting diabetes alone

is not enough for effective interventions. It is also necessary to

clarify the detailed pathways before the diabetes onset. Currently,

methods for extracting such features from health checkup data are

not well-established.

Energy landscape analysis (ELA) has been proposed as a

technique for understanding state transitions in multidimensional

time-series data, and it has been applied to various datasets (20–26).
rtate aminotransferase;

blood pressure; ELA,

moglobin A1c/glycated

l; Ht, hematocrit; LDL-

learning; PG, plasma

ting characteristic; SBP,

WBC, white blood cell

speptidase.

02
ELA identifies multiple stable states corresponding to energy valleys

in the data and represents the difficulty of transitions between states

as the height of the energy barrier. Therefore, ELA was expected to

be suitable for revealing the important states and pathways before

the diabetes onset. Each state is composed of multiple microstates,

which are referred to as “patterns” henceforth. Each pattern is

assigned a virtual energy level; the lower the energy, the more

frequently the pattern will occur. The minimum energy pattern

(also called the local minimum pattern) for each state is the most

frequent and representative pattern for that state.

As a metaphor, the energy landscape is often explained as a ball

on an uneven terrain. Without noise, the ball falls down a slope and

reaches the bottom of a valley. With noise, the ball can climb a

slope, and there is a small probability that the ball escapes from the

current valley and moves to another one. The vertical axis of the

terrain corresponds to the virtual energy. However, it should be

noted that the “terrain” considered in ELA is not continuous but

consists of discrete patterns.

What is unique about ELA is that the value of each feature is

converted to 0 or 1 depending on whether the original value is

below or above a threshold. Therefore, each pattern corresponds to

a sequence of 0 and 1, such as “010111”, meaning the first feature is

low, the second feature is high, and so on. This binarization process

is believed to help ELA capture the global structure of the data.

In the present study, we applied ELA to Specific Health

Checkup data in Toyama Prefecture in Japan to clarify the

pathways from a healthy state to the diabetes onset via pre-

disease states.
2 Materials and methods

2.1 Definition of diabetes and obesity

In the present study, an individual was diagnosed with diabetes

based on the health checkup data if the individual fulfilled any of the

following four conditions according to the diagnostic criteria of the

Japanese Clinical Practice Guideline for Diabetes (27): (a) fasting

PG ≥ 126 mg/dL and hemoglobin A1c (HbA1c) ≥ 6.5% (48 mmol/

mol), (b) non-fasting PG ≥ 200 mg/dL and HbA1c ≥ 6.5% (48

mmol/mol), (c) responded to the questionnaire to have a history of

diabetes, and (d) responded to the questionnaire to be under
frontiersin.org
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diabetes treatment. Since the questionnaire was administered at

each health checkup, some individuals began to respond that they

had a history of diabetes or were under diabetes treatment from a

certain year. The first year when an individual was diagnosed with

diabetes was taken as the diabetes onset. Although the health

checkup data did not include information to distinguish between

type 1 and type 2 diabetes, such as C-peptide levels, it was expected

that most cases of diabetes in the present study were type 2 diabetes

based on the general prevalence.

The obesity group was defined as individuals with a BMI of 25

kg/m2 or greater at the first measurement according to the

diagnostic criteria of the Japan Society for the Study of Obesity

(28–30). Similarly, the non-obesity group was defined as individuals

with a BMI of less than 25 kg/m2 at the first measurement.
2.2 Study participants

The participants in the present study were 18,373 individuals

aged 55.8 ± 3.3 years (49 to 64 years) who underwent Specific

Health Checkups from April 2012 to March 2021 at Hokuriku

Health Service Association in Toyama Prefecture in Japan. The

anonymized dataset consisted of 108,920 records and 206 features.

Among the 18,373 individuals, 1,192 individuals developed diabetes

by 2020. The background characteristics of the study participants

are shown in Supplementary Table S1. A list of abbreviations is

shown in Supplementary Table S2.
2.3 Research design

Figure 1 shows a flowchart of our study design. Before

performing ELA, we excluded features, individuals, and records in

five steps. In the first step, we excluded redundant or unsuitable
Frontiers in Endocrinology 03
features for ELA: height, weight, categorical variables, and features

with more than 30% missing values, except for HbA1c. Although

HbA1c had 37% missing values, we included it as a clinically

important feature because HbA1c generally reflects long-term

blood glucose levels and plays a complementary role to PG (31).

18 features remained at this step: BMI, waist circumference (WC),

systolic blood pressure (SBP), diastolic blood pressure (DBP),

triglycerides (TG), low-density lipoprotein-cholesterol (LDL-C),

high-density lipoprotein-cholesterol (HDL-C), PG, HbA1c, uric

acid (UA), creatinine (Cre), aspartate aminotransferase (AST),

alanine aminotransferase (ALT), g-glutamyl transpeptidase (g-
GTP), white blood cell count (WBC), red blood cell count (RBC),

hemoglobin (Hb), and hematocrit (Ht).

In the second step, we excluded 7,919 females and their

corresponding 43,592 records. We considered the influence of

estrogen on insulin resistance and conducted the analysis

exclusively on males. In the third step, we excluded records that

met any of the following criteria: (a) records with non-fasting blood

sampling (26,969 records), (b) records at or after the diabetes onset

(2,383 records), and (c) records with any missing values among the

18 features (13,650 records). In the fourth step, we excluded 5,526

males with no data at this stage.

In the fifth step, we excluded features again based on ML

prediction analysis. A random forest model was trained to predict

whether an individual would develop diabetes within three years

when given a single-year record of the individual on the 17 features

except for HbA1c. The top five features that contributed most to

predicting diabetes onset were PG, HDL-C, BMI, UA, and ALT. We

added HbA1c to them as a clinically important feature, and the six

features were selected for the following ELA. The 12 other features

were excluded.

Finally, a subset of 22,326 records and 6 features from 4,928

individuals (males only, aged 56.0 ± 3.2 years) over a period of 5.26

± 3.21 years was obtained and was used for the first ELA. Among
FIGURE 1

Flowchart of the study design. HbA1c, hemoglobin A1c; PG, plasma glucose; HDL-C, high-density lipoprotein-cholesterol; BMI, body mass index;
UA, uric acid; ALT, alanine aminotransferase; ML, machine learning; ELA, energy landscape analysis.
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the 4,928 individuals, 242 developed diabetes by 2020. The second

ELA used the same data as the first ELA but was limited to 766

records from the 242 individuals with diabetes.

Our previous study (Shikata et al., unpublished) analyzed the

same dataset from a completely different perspective. It focused on

weight changes before diabetes onset and did not use ELA,

whereas the present study used ELA to characterize multivariate

transitions before diabetes onset. Therefore, the present study is

complementary to the previous study.
2.4 Energy landscape analysis

The basic steps of ELA are feature selection, data binarization,

Ising model fitting, basin graph calculation, and disconnectivity

graph calculation. Detailed mathematical explanations are provided

in Supplementary Text. In the feature selection step, several features

to be analyzed should be selected. Using a large number of features

not only increases the computational cost, but can lead to unreliable

results. In the data binarization step, the values of the specified six

features were converted to 0 or 1. To represent good health

conditions as 0 and bad health conditions as 1, values less than or

equal to the median of each feature were converted to 0, and all

other values were converted to 1, except for HDL-C. For HDL-C,

the assignment was reversed. After the binarization, the entire

dataset was categorized into 26 = 64 patterns.

In the calculation of a basin graph, each pattern was expressed

in a decimal number. For example, a pattern of “010111” was

transformed to 0 + 16 + 0 + 4 + 2 + 1 = 23. For each pattern or

node, a directed edge was drawn toward the node with the lowest

energy among its neighborhood except for the local minimum

patterns. We regarded each set of connected nodes of the basin

graph as a “state.”

In the calculation of a disconnectivity graph, the height of the

energy barrier for each pair of states was calculated. We also

calculated a modified disconnectivity graph in which visits to

patterns outside the two target states were prohibited.

We also counted the occurrence of state transitions. Two

consecutive years of measurements of the same individual were

analyzed. For example, when an individual was in state 1 in 2012

and changed to state 2 in 2013, the number of transitions from state

1 to state 2 was counted as 1. Transitions to the same state were

included as self-transitions. Transitions between measurements

separated by two years or more due to missing data were

not counted.
2.5 Other statistical analysis

Mann-Whitney’s U-test and chi-squared test were used for

between-group comparisons on numerical and categorical

variables, respectively. Numerical variables were presented as the

mean ± standard deviation. A p-value less than 0.05 was considered

statistically significant.
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2.6 Software

All statistical analyses were performed with Python version 3.10

(Python Software Foundation, Beaverton, OR, USA). We ported the

original MATLAB code of ELA (32) to Python and used it.
2.7 Ethical approval

All procedures of the present study were performed in

accordance with the 1964 Helsinki Declaration, its later

amendments, and the “Ethical Guidelines for Medical and

Biological Research Involving Human Subjects” published by the

Ministry of Health, Labour and Welfare of Japan. The ethics

committee of Toyama University Hospital approved the study

protocol (approval number: R2021070, approved date: 2021/8/19).

The study participants consented to the use of their data for

scientific research.
2.8 Data and resource availability

The datasets generated during and/or analyzed in the current

study are available from the corresponding authors upon reasonable

request. The Python port of the ELA toolbox used in the current

study is available in a GitHub repository https://github.com/

okumakito/elapy under the Apache 2.0 license.
3 Results

3.1 Results of the first ELA

Figure 2 shows the results of the first ELA. The threshold values

for the binarization were as follows: HbA1c, 5.6% (38 mmol/mol);

PG, 95 mg/dL; HDL-C, 58 mg/dL; BMI, 23.3 kg/m2; UA, 6.1 mg/dL;

and ALT, 22 U/L. Figure 2A shows the basin graph, which was

separated into three states. The numbers of patterns belonging to

states 1, 2, and 3 were 33, 5, and 26, respectively. The local

minimum patterns of states 1, 2, and 3 were numbered 0, 15, and

63, respectively. The energy level of pattern 15 was higher than

pattern 0 and pattern 63, indicating that state 2 was less frequent.

Pattern 0 had the lowest energy level, indicating that state 1 was the

most frequent.

Figure 2B shows the local minimum patterns of the three states.

As explained earlier, the binary representations 0 and 1 indicate

relatively good and bad health conditions, respectively. Therefore,

states 1, 2, and 3 corresponded to healthy, intermediate, and

unhealthy states in a relative sense, respectively.

Figure 2C shows the disconnectivity graph, and Figure 2D shows

the energy landscape reconstructed from the disconnectivity graph.

The energy barrier for the transition from state 1 to state 2 or 3 was

higher than the energy barrier between state 2 and state 3, which was

also close to the minimum energy level of state 2. Namely, the
frontiersin.org
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transition from state 1 to state 2 or 3 was more difficult than the

transition between state 2 and state 3.

In addition, the modified disconnectivity graph shown in

Supplementary Figure S1A revealed that the energy barrier

between state 1 and state 3 increased when visits to state 2 were

prohibited. Therefore, the direct transition from state 1 to state 3 (1-

3 pathway) required to pass through a pattern with higher energy

(i.e., a lower frequency of occurrence) than the transition from state

1 to state 3 via state 2 (1-2-3 pathway).

Figure 2E shows the state transition counts. The numbers of

self-transitions of states 1, 2, and 3 were 6927, 681, and 4172,

respectively, which were consistent with the numbers of patterns

belonging to each state, as shown in Figure 2A. The numbers of

transitions from state 1 to state 2 and from state 2 to state 3, which

corresponded to the 1-2-3 pathway, were 288 and 423, respectively.

Interestingly, the number of transitions directly from state 1 to state

3 was 973, which was more than twice the occurrences of the 1-2-3

pathway. Focusing on state 2, the number of transitions from state 2

to state 3 was higher than transitions from state 2 to state 1, which

was also consistent with the disconnectivity graph, as shown

in Figure 2C.

To identify the features contributing to the choice between the

1-2-3 pathway and the 1-3 pathway, we compared the values of each

feature in the year before the transition for each type of state
Frontiers in Endocrinology 05
transition, as shown in Table 1. In the comparison between the

transition from state 1 to state 2 and the transition from state 1 to

state 3, significant differences were observed in BMI (24.0 ± 2.3 kg/

m2 vs 23.3 ± 2.3 kg/m2, p ≤ 0.0001), WC (85.9 ± 6.8 cm vs 84.6 ± 6.7

cm, p ≤ 0.05), HDL-C (57.0 ± 10.9 mg/dL vs 60.5 ± 12.9 mg/dL, p ≤

0.001), PG (88.5 ± 6.3 mg/dL vs 97.0 ± 9.7 mg/dL, p ≤ 0.0001),

HbA1c (5.37 ± 0.19% (35.2 ± 2.1 mmol/mol) vs 5.69 ± 0.29% (38.7

± 3.2 mmol/mol), p ≤ 0.0001), Cre (0.87 ± 0.13 mg/dL vs 0.86 ± 0.25

mg/dL, p ≤ 0.05), ALT (23.2 ± 11.1 U/L vs 21.2 ± 9.2 U/L, p ≤

0.001), Hb (15.3 ± 1.0 g/dL vs 15.0 ± 1.0 g/dL, p ≤ 0.0001), and Ht

(45.3 ± 2.6% vs 44.7 ± 2.8%, p ≤ 0.01).

In the comparison between the transition from state 1 to state 3

and the transition from state 2 to state 3 (Table 1), significant

differences were observed in BMI (23.3 ± 2.3 kg/m2 vs 25.8 ± 2.7 kg/

m2, p ≤ 0.0001), WC (84.6 ± 6.7 cm vs 90.2 ± 7.6 cm, p ≤ 0.0001),

SBP (127.1 ± 15.0 mmHg vs 129.2 ± 14.9 mmHg, p ≤ 0.01), DBP

(79.8 ± 10.6 mmHg vs 81.6 ± 11.3 mmHg, p ≤ 0.01), TG (122.1 ±

83.7 mg/dL vs 162.6 ± 111.3 mg/dL, p ≤ 0.0001), HDL-C (60.5 ±

12.9 mg/dL vs 50.9 ± 11.3 mg/dL, p ≤ 0.0001), PG (97.0 ± 9.7 mg/dL

vs 90.1 ± 4.4 mg/dL, p ≤ 0.0001), HbA1c (5.69 ± 0.29% (38.7 ± 3.2

mmol/mol) vs 5.47 ± 0.16% (36.3 ± 1.7 mmol/mol), p ≤ 0.0001), UA

(6.02 ± 1.2 mg/dL vs 6.81 ± 1.11 mg/dL, p ≤ 0.0001), Cre (0.86 ±

0.25 mg/dL vs 0.90 ± 0.15 mg/dL, p ≤ 0.0001), AST (22.7 ± 7.6 U/L

vs 26.8 ± 9.7 U/L, p ≤ 0.0001), ALT (21.2 ± 9.2 U/L vs 32.8 ± 16.0 U/
FIGURE 2

Results of the first energy landscape analysis. (A) Basin graph. The node number indicates the decimal representation of each binary pattern (see
detail in the main text). The node color indicates the energy level of the node. Edges are drawn toward the minimum energy node within each
node’s neighborhood. (B) Local minimum patterns of each state. 0 and 1 indicate relatively good and bad health conditions, respectively. (C)
Disconnectivity graph. The height of paths connecting states indicates the height of energy barriers between states. The energy value for each state
indicates the energy of the local minimum pattern of the state. (D) Energy landscape reconstructed from the disconnectivity graph. Movement is
only allowed on the white lines. (E) State transition counts. The numbers in the figure indicate the total numbers of the events. HbA1c, hemoglobin
A1c; PG, plasma glucose; HDL-C, high-density lipoprotein-cholesterol; BMI, body mass index; UA, uric acid; ALT, alanine aminotransferase.
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L, p ≤ 0.0001), g-GTP (51.5 ± 52.6 U/L vs 62.6 ± 53.7 U/L, p ≤

0.0001), RBC (484.6 ± 37.5 × 104/mL vs 495.8 ± 37.8 × 104/mL, p ≤

0.0001), Hb (15.0 ± 1.0 g/dL vs 15.4 ± 1.0 g/dL, p ≤ 0.0001), and Ht

(44.7 ± 2.8% vs 45.5 ± 2.7%, p ≤ 0.0001). Interestingly, PG and

HbA1c levels were significantly higher in the transition from state 1

to 3 (1-3 pathway) than the transition from state 2 to 3 (1-2-

3 pathway).

In addition, we compared the transition from state 2 to state 1

and the transition from state 2 to state 3 to identify features

contributing to whether individuals in state 2 return to state 1 or

worsen to state 3, as shown in Table 1. In that comparison,

significant differences were observed in BMI (24.2 ± 2.3 kg/m2 vs

25.8 ± 2.7 kg/m2, p ≤ 0.0001), WC (86.6 ± 6.6 cm vs 90.2 ± 7.6 cm,

p ≤ 0.0001), SBP (126.8 ± 13.6 mmHg vs 129.2 ± 14.9 mmHg,

p ≤ 0.05), HDL-C (53.1 ± 10.1 mg/dL vs 50.9 ± 11.3 mg/dL,

p ≤ 0.0001), PG (88.2 ± 4.9 mg/dL vs 90.1 ± 4.4 mg/dL, p ≤ 0.0001),

HbA1c (5.37 ± 0.2% (35.2 ± 2.2 mmol/mol) vs 5.47 ± 0.16% (36.3 ±
Frontiers in Endocrinology 06
1.7 mmol/mol), p ≤ 0.0001), Cre (0.88 ± 0.13 mg/dL vs 0.90 ± 0.15 mg/

dL, p ≤ 0.05), and ALT (27.8 ± 11.0 U/L vs 32.8 ± 16.0 U/L, p ≤ 0.0001).

Because BMI was identified as one of the main factors

determining the direction of state transitions, we stratified

the individuals into the obese group with BMI ≥ 25 kg/m2

(n = 1,460) and the non-obese group with BMI < 25 kg/m2 (n =

3,468). Supplementary Figure S2 shows the state transition counts for

the obese and non-obese groups. For the obese group, the numbers of

transitions from state 1 to state 2, state 2 to state 3, and state 1 to state

3 were 78, 222, and 191, respectively. For the non-obese group, the

numbers of transitions from state 1 to state 2, state 2 to state 3, and

state 1 to state 3 were 210, 201, and 782, respectively. The obese group

significantly preferred the transition from state 1 to state 2 over the

transition from state 1 to state 3 than the non-obese group (p =

0.0085). The obese group also significantly preferred the transition

from state 2 to state 3 over the transition from state 1 to state 3 than

the non-obese group (p < 0.0001).
TABLE 1 Comparison of feature values in the year before the transition for the first ELA
†
.

Feature state 1 to 2
(healthy to
intermediate

state)

state 1 to 3
(healthy to
unhealthy

state, direct)

state 2 to 1
(intermediate
to healthy

state, recovering)

state 2 to 3
(intermediate
to unhealthy

state)

p-value
(state 1 to
2 vs state
1 to 3)

p-value
(state 1 to
3 vs state
2 to 3)

p-value
(state 2 to
1 vs state
2 to 3)

BMI (kg/m2) 24.0 ± 2.3 23.3 ± 2.3 24.2 ± 2.3 25.8 ± 2.7 ≤ 0.0001 ≤ 0.0001 ≤ 0.0001

WC (cm) 85.9 ± 6.8 84.6 ± 6.7 86.6 ± 6.6 90.2 ± 7.6 ≤ 0.05 ≤ 0.0001 ≤ 0.0001

SBP (mmHg) 126.1 ± 14.6 127.1 ± 15.0 126.8 ± 13.6 129.2 ± 14.9 0.44 ≤ 0.01 ≤ 0.05

DBP (mmHg) 79.9 ± 11.0 79.8 ± 10.6 80.8 ± 10.6 81.6 ± 11.3 0.69 ≤ 0.01 0.42

TG (mg/dL) 131.9 ± 103.0 122.1 ± 83.7 171.8 ± 222.0 162.6 ± 111.3 0.06 ≤ 0.0001 0.10

LDL-C (mg/dL) 130.1 ± 27.1 129.9 ± 30.3 128.4 ± 33.1 132.0 ± 32.1 0.75 0.21 0.12

HDL-C (mg/dL) 57.0 ± 10.9 60.5 ± 12.9 53.1 ± 10.1 50.9 ± 11.3 ≤ 0.001 ≤ 0.0001 ≤ 0.0001

PG (mg/dL) 88.5 ± 6.3 97.0 ± 9.7 88.2 ± 4.9 90.1 ± 4.4 ≤ 0.0001 ≤ 0.0001 ≤ 0.0001

HbA1c (%) 5.37 ± 0.19 5.69 ± 0.29 5.37 ± 0.2 5.47 ± 0.16 ≤ 0.0001 ≤ 0.0001 ≤ 0.0001

HbA1c (mmol/mol) 35.2 ± 2.1 38.7 ± 3.2 35.2 ± 2.2 36.3 ± 1.7 ≤ 0.0001 ≤ 0.0001 ≤ 0.0001

UA (mg/dL) 6.16 ± 1.07 6.02 ± 1.2 6.72 ± 1.03 6.81 ± 1.11 0.055 ≤ 0.0001 0.39

Cre (mg/dL) 0.87 ± 0.13 0.86 ± 0.25 0.88 ± 0.13 0.90 ± 0.15 ≤ 0.05 ≤ 0.0001 ≤ 0.05

AST (U/L) 24.3 ± 15.6 22.7 ± 7.6 26.1 ± 10.7 26.8 ± 9.7 0.49 ≤ 0.0001 0.12

ALT (U/L) 23.2 ± 11.1 21.2 ± 9.2 27.8 ± 11.0 32.8 ± 16.0 ≤ 0.001 ≤ 0.0001 ≤ 0.0001

g-GTP (U/L) 55.6 ± 78.5 51.5 ± 52.6 65.1 ± 85.6 62.6 ± 53.7 0.15 ≤ 0.0001 0.10

WBC (1/mL) 6186 ± 1737 6096 ± 1632 6191 ± 1744 6225 ± 1552 0.52 0.07 0.43

RBC (10k/mL) 489.0 ± 34.6 484.6 ± 37.5 493.9 ± 35.6 495.8 ± 37.8 0.11 ≤ 0.0001 0.39

Hb (g/dL) 15.3 ± 1.0 15.0 ± 1.0 15.4 ± 1.0 15.4 ± 1.0 ≤ 0.0001 ≤ 0.0001 0.97

Ht (%) 45.3 ± 2.6 44.7 ± 2.8 45.6 ± 2.9 45.5 ± 2.7 ≤ 0.01 ≤ 0.0001 0.97
†Numerical variables were presented as the mean ± standard deviation. BMI, Body mass index; WC, Waist circumference; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; TG,
Triglyceride; LDL-C, Low-density lipoprotein-cholesterol, HDL-C, High-density lipoprotein-cholesterol; PG, Plasma glucose; HbA1c, Hemoglobin A1c/Glycated hemoglobin; UA, Uric acid;
Cre, Creatinine; AST, Aspartate aminotransferase; ALT, Alanine aminotransferase; g-GTP, g-glutamyl transpeptidase, WBC,White blood cell count; RBC, Red blood cell count; Hb, Hemoglobin;
Ht, Hematocrit; ELA, energy landscape analysis.
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3.2 Results of the second ELA limited to
individuals with diabetes

The second ELA targeted only the data of the 242 individuals

who developed diabetes by 2020. As with the first ELA, all records at

or after the diabetes onset were excluded to focus on the period

before diabetes onset. Figure 3 shows the results of the second ELA.

The threshold values for the data binarization were as follows:

HbA1c, 6.2% (44 mmol/mol); PG, 112 mg/dL; HDL-C, 49 mg/dL;

BMI, 25.8 kg/m2; UA, 6.1 mg/dL; and ALT, 33 U/L. It should be

noted that the meanings of patterns with the same numbers in

Figures 2, 3 are quantitatively different.

Figure 3A shows the basin graph, which was separated into four

states. The numbers of patterns belonging to states 1, 2, 3, and 4

were 27, 13, 6, and 18, respectively. The local minimum patterns of

states 1, 2, 3, and 4 were numbered 0, 15, 48, and 63, respectively.

Figure 3B shows the local minimum patterns of the four states.

State 1 and state 4 corresponded to healthy and unhealthy states in a

relative sense. State 2 and state 3 seemingly corresponded to

different types of intermediate states between state 1 and state 4.

However, state 3 had high HbA1c and PG levels, and there were not

many transitions from state 3 to state 4, indicating that there were
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direct transitions from state 3 to diabetes. Only state 3 was not

found in the first ELA.

Figure 3C shows the disconnectivity graph, and Figure 3D shows

the energy landscape reconstructed from the disconnectivity graph.

The energy barriers between state 1 and state 3 and between state 2

and state 4 were much lower than the energy barrier for the transition

from state 1 or 3 to state 2 or 4. In other words, state 1 was more likely

to transition to state 3, and state 2 was more likely to transition to

state 4 compared to other states. In both the transition from state 1 to

state 3 (1-3 pathway) and the transition from state 2 to state 4 (2-4

pathway), HbA1c and PG increased and exceeded the binarization

thresholds, whereas the other four features did not change beyond the

binarization thresholds. The modified disconnectivity graph shown

in Supplementary Figure S1B revealed that the energy barrier

between state 1 and state 4 increased when visits to state 2 and

state 3 were prohibited.

Figure 3E shows the state transition counts. The self-transitions

of states 1, 2, 3, and 4 were 152, 77, 22, and 53 times, respectively.

Except for the self-transitions, the top two most frequent transitions

were 37 times from state 2 to state 4 and 28 times from state 1 to

state 3, which were consistent with the disconnectivity graph, as

shown in Figure 3C.
FIGURE 3

Results of the second energy landscape analysis. (A) Basin graph. The node number indicates the decimal representation of each binary pattern (see
detail in the main text). The node color indicates the energy level of the node. Edges are drawn toward the minimum energy node within each
node’s neighborhood. (B) Local minimum patterns of each state. 0 and 1 indicate relatively good and bad health conditions, respectively. (C)
Disconnectivity graph. The height of paths connecting states indicates the height of energy barriers between states. The energy value for each state
indicates the energy of the local minimum pattern of the state. (D) Energy landscape reconstructed from the disconnectivity graph. Movement is
only allowed on the white lines. (E) State transition counts. The numbers in the figure indicate the total numbers of the events. HbA1c, hemoglobin
A1c; PG, plasma glucose; HDL-C, high-density lipoprotein-cholesterol; BMI, body mass index; UA, uric acid; ALT, alanine aminotransferase.
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To clarify the characteristics of the 1-3 pathway and the 2-4

pathway, we compared the transition from state 1 to state 3 and the

transition from state 2 to state 4, as shown in Supplementary Table

S3. In that comparison, significant differences were observed in BMI

(23.8 ± 2.3 kg/m2 vs 29.3 ± 3.4 kg/m2, p ≤ 0.0001), WC (84.9 ± 5.0

cm vs 99.1 ± 8.9 cm, p ≤ 0.0001), DBP (78.7 ± 10.1 mmHg vs 84.5 ±

9.7 mmHg, p ≤ 0.01), TG (126.7 ± 64.0 mg/dL vs 181.6 ± 91.4 mg/

dL, p ≤ 0.01), HDL-C (55.3 ± 13.0 mg/dL vs 44.6 ± 9.0 mg/dL, p ≤

0.001), PG (112.0 ± 6.6 mg/dL vs 108.6 ± 7.3 mg/dL, p ≤ 0.05), UA

(5.82 ± 1.36 mg/dL vs 7.22 ± 1.22 mg/dL, p ≤ 0.001), AST (23.9 ± 7.5

U/L vs 37.2 ± 16.0 U/L, p ≤ 0.0001), ALT (26.7 ± 15.9 U/L vs 53.0 ±

23.9 U/L, p ≤ 0.0001), and g-GTP (62.0 ± 92.5 U/L vs 76.6 ± 60.9 U/

L, p ≤ 0.01). Interestingly, PG level was significantly higher in the

transition from state 1 to 3 than the transition from state 2 to 4.
4 Discussion

4.1 Summary of key findings

The present study demonstrated that ELA could indicate

different pathways of diabetes development in obese and non-

obese individuals in a data-driven manner. Previous studies

reported that type 2 diabetes can be divided into five subgroups

using machine learning methods (33–36). It was also reported that

type 2 diabetes can be classified into eight subgroups using genome-

wide association studies (37). Our findings suggest that the recently

emerging idea that diabetes is more heterogeneous than previously

thought applies even before onset. Specifically, we found that obese

individuals significantly preferred to visit an intermediate state with

increased BMI and deteriorated HDL-C, UA, and ALT levels. We

also found that non-obese individuals were at risk for elevated PG

and HbA1c without passing through the intermediate state. These

insights could inform more targeted diabetes prevention measures,

such as reducing visceral fat in obese individuals and protecting

beta-cells in non-obese individuals. Detailed discussion is

given below.
4.2 Comparison of ELA and other methods

Our findings suggest that ELA is a powerful tool for

investigating trajectories before the diabetes onset. A previous

study used a linear mixed model to analyze trajectories of BMI

and WC before the diabetes onset (38). It reported that individuals

who progressed from pre-diabetes to diabetes showed significantly

greater pre-onset increases in both BMI and WC compared to

individuals who remained in pre-diabetes. Another previous study

used a latent class trajectory analysis, in which a linear mixed model

was used, to analyze BMI trajectories before the diabetes onset (39).

It reported that even in the normoglycemic group, an increasing

BMI trend was associated with the risk of type 2 diabetes. In

contrast to these linear models, ELA can capture nonlinear

trajectories, such as multiple transitions between a healthy state

and a pre-disease state, i.e., repeated declines and recoveries in
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health status. Therefore, ELA is expected to work as a

complementary tool to existing linear models and contribute to

adding new insights.

Cluster analysis is another powerful method. Using it, previous

studies successfully identified novel subgroups of diabetes in a data-

driven manner (33, 34). Although there have been no studies

comparing cluster analysis and ELA in detail, cluster analysis may

be able to detect multiple stable states before the diabetes onset,

similar to ELA. However, it is generally believed that ELA is suitable

for cases where the status of the target system (for example, an

individual’s health status) switches between multiple states over

time (20–26). Another difference is that the data binarization in

ELA may improve noise tolerance at the expense of loss of

quantitative information. It is an important future work to clarify

the advantages and disadvantages of ELA against cluster analysis as

well as other existing methods.
4.3 Interpretation of the pre-disease states
identified in the first ELA

The results of the first ELA suggest that multiple pre-disease

states exist between the healthy state and the diabetes onset. It

should be noted that the unhealthy state does not correspond to

diabetes because we removed all records at or after the diabetes

onset from the analysis. We expect that the unhealthy state mainly

corresponds to pre-diabetes, which is impaired fasting glucose

(IFG) and/or impaired glucose tolerance (IGT). Pre-diabetes is a

well-known pre-disease state of diabetes with established diagnostic

criteria (27, 40). It is natural that the unhealthy state corresponding

to pre-diabetes was detected as a distinct pre-disease state in

our analysis.

On the other hand, the intermediate state (another pre-disease

state) had fasting PG less than 95 mg/dL and HbA1c less than 5.6%

(38 mmol/mol), and thus it is at least not IFG, and probably not

IGT either. Previous studies reported that even before pre-diabetes,

higher fasting PG was associated with a higher risk of type 2

diabetes (41). The idea that the stages before pre-diabetes are also

clinically important is consistent with our results. Previous studies

also reported that UA and ALT were risk factors for diabetes (42,

43), which is consistent with our results. Because we detected the

intermediate state using a data-driven approach without a priori

assumptions, our findings suggest the importance of further

research on such early stages.
4.4 Interpretation of the multiple pathways
identified in the first ELA

Next, our results suggest that obese individuals with visceral fat

accumulation tended to visit the intermediate state (1-2-3 pathway),

whereas non-obese individuals with relatively high PG and HbA1c

levels tended to directly transit to the unhealthy state (1-3 pathway).

A possible explanation is that the individuals who visited the

intermediate state had higher potential capacity for insulin
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secretion than the others. Insulin secretion generally promotes

blood glucose uptake by muscle and adipose tissues (44), lowering

PG immediately and HbA1c over a longer time scale. The glucose

taken up by the adipose tissues was converted to TG for storage,

contributing to the increases in BMI andWC. As abdominal obesity

progresses, insulin resistance occurs, and insulin secretion increases

due to the compensatory response of beta-cells (45, 46). Taken

together, the intermediate state with high BMI and relatively low

PG and HbA1c levels may correspond to a state with mild insulin

resistance before reaching the maximum capacity of

insulin secretion.

In contrast, individuals with insufficient insulin secretion

capacity should have relatively high PG and HbA1c, but at the

same time, adipose tissue hypertrophy may be suppressed. Non-

obese people generally have lower potential insulin secretion

capacity than obese people (47). In addition, previous studies

have revealed that insulin sensitivity and insulin secretion are

inversely related (45, 46).

Therefore, the 1-2-3 and 1-3 pathways may be relatively

associated with insulin resistance and beta-cell dysfunction,

respectively. This interpretation is consistent with the drug

selection algorithm for patients with type 2 diabetes in Japan that

basically assumes insulin resistance in obese patients and insulin

secretion deficiency in non-obese patients (48). Our study

demonstrated in a data-driven manner that the widely recognized

differences between obese and non-obese patients with diabetes also

apply before the onset.

Previous studies also reported that East Asians including

Japanese have lower insulin secretion capacity than Caucasian,

and the decline of insulin secretion capacity is a major factor in

the development and progression of glucose intolerance in Japanese

people even at an early stage (49–54). This may explain why more

individuals took the 1-3 pathway than the 1-2-3 pathway.
4.5 Interpretation of the results of the
second ELA

The results of the second ELA suggest that obese and non-obese

individuals tended to take different pathways, which is consistent

with the first ELA. The 1-2-3 and 1-3 pathways of the first ELA may

primarily correspond to the 2-4 and 1-3 pathways of the second

ELA, respectively. An important finding is that non-obese

individuals may exhibit increases in HbA1c and PG without

remarkable changes in HDL-C, BMI, UA, and ALT. As we argued

for the first ELA, such a pathway would be mainly associated with

beta-cell dysfunction, which is common in Japanese people.
4.6 Clinical implications

In the first ELA, we found that those who could return from

the intermediate state to the healthy state had significantly

lower BMI and WC than those who deteriorated from the
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intermediate state to the unhealthy state. This suggests that

reducing body weight and visceral fat in the intermediate state

through lifestyle guidance and administration of anti-obesity

drugs is effective for diabetes prevention, which is consistent

with common understanding.

In both the first ELA and second ELA, we found that non-obese

individuals preferred to transition directly to a state of elevated

HbA1c and PG levels, which corresponds to a pre-disease state of

diabetes. Therefore, non-obese individuals should also be careful

about their HbA1c and PG levels, and when their HbA1c and PG

levels become high, they are recommended to improve their lifestyle

habits such as exercise and diet to protect beta-cells and prevent

diabetes. It has also been reported that changing the order of meals,

such as taking dietary fiber before carbohydrates, effectively

suppresses postprandial hyperglycemia (55), which damages

beta-cells.
4.7 Limitations

The present study has several limitations. First, the present

study focused on men aged 55.8 ± 3.3 years who underwent Specific

Health Checkups in Toyama Prefecture from April 2012 to March

2021. This selection bias must be considered when interpreting the

results. Recent studies have highlighted the importance of diabetes

not only for older men but also for women and young people (56,

57). Second, the average observation period was about five years,

which is shorter than the typical period from a healthy state without

visceral fat accumulation to metabolic syndrome and ultimately

diabetes. Our findings should be limited to phenomena relatively

close to the diabetes onset. Third, the health checkup data analyzed

in the present study did not contain data on insulin, race, family

health history, and accurate diagnosis including discrimination

between type 1 and type 2 diabetes as well as more detailed

stratification (34–37). Fourth, the results of the ELA were based

on only six features. This is a general limitation of ELA in that

increasing the number of features remarkably reduces the reliability

of the results.

It is future tasks to apply ELA to females, younger or elder

individuals, data from other regions, long-term data, detailed

clinical data, and different combinations of features relevant to

other lifestyle diseases. In particular, prospective studies in relatively

small populations including oral glucose tolerance test and insulin

measurements would be useful to verify the clinical relevance of

our findings.
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