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Happy feet: the key roles of
podosomes and invadopodia in
trophoblast invasion at the
maternal-fetal interface
Padma Murthi1,2*, Emily Overton1,2, Shaun P. Brennecke1,2

and Rosemary J. Keogh1,2

1Department of Maternal Fetal Medicine, Pregnancy Research Centre, Royal Women’s Hospital,
Parkville, Australia, 2Department of Obstetrics, Gynaecology and Newborn Health, University of
Melbourne, Parkville, Australia
Cells move by forming specialized projections or invasive feet known as

podosomes in normal invasive cells and invadopodia in transformed and

cancer cells. An understanding of invasive projections of trophoblasts at the

maternal-fetal interface and their formation is important for developing novel

therapies for pregnancy complications where invasion is abnormal, in instances

where over- or under-invasion of cells manifests as serious pregnancy

pathologies such as accreta or preeclampsia. Podosomes and invadopodia

have distinctive morphological and molecular features that are used to

distinguish them from each other. Despite this, there is still debate and

uncertainty around how to definitively classify them. Analyses of novel models

of cell invasion have demonstrated the existence of hybrid structures that are

neither true podosomes nor invadopodia but which display features of both. This

raises the question as to whether the classification of invasive structures

needs redefining.
KEYWORDS

cell invasion, cell migration, invasive projection, podosome, invadopodia, cancer,
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Introduction

In order for cells to invade into tissue they must interact with and digest the

extracellular matrix. This normal physiological process can lead to serious disease

pathologies when it is defective with cancer being the best known and researched

example. Understanding cell invasion is thus critically important to gain insights for

developing treatments for diseases where it is abnormal. Invasive cells form specialized

projections which make physical contact with the extracellular matrix and secrete

proteases, thus enabling them to adhere, migrate and invade. Known as podosomes in

non-transformed cells and invadopodia in transformed and cancer cells, these invasive
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projections each have distinctive characteristics (1–4). Despite a

growing body of knowledge on podosomes and invadopodia, there

are still many unknowns. There is much debate about whether they

are different structures, whether one is a precursor of the other or

whether they are merely two representations of the same structure

altered by the in vivo environment where it forms (5–9). In order to

address this, it is important to study novel models of cell invasion.

This will help to define if podosomes and invadopodia are two

extremes of a continuum of structures or if they are of independent

origin and will help to refine the current theories on how invasive

projections are classified. These vitally important insights will

impact current studies targeting the control of cell invasion as a

therapeutic strategy.
Podosomes and invadopodia

Morphological features

Cells make contact with their surroundings via several types of

specialized structures which enable them to either adhere to, or

move through, the extracellular environment (10). Focal adhesions

and focal contacts are points of adherence which attach cells to the

substratum and can act as mechanosenors (11–13). They anchor

stable cross-linked bundles of actin filaments at sites of integrin

clustering. In order for cells to be able to move and invade they must

form structures that can be rapidly assembled and dis-assembled

and which can digest the extracellular matrix. For this purpose,
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actin-rich membrane protrusions known as podosomes and

invadopodia are formed. These invasive feet extend from cells

and are associated with sites where there is digestion of the

extracellular matrix by proteases secreted by the cells. The

similarities and differences between these two structures are the

subject of much discussion although there are morphological and

molecular features that distinguish them (See Figure 1) including

their length, duration of lifespan, number per cell and the proteins

and lipids present in and secreted by the projections (1, 2, 12–14).

Functionally it has been suggested that podosomes act to promote

directed cell movement while invadopodia primarily function to

digest extracellular matrix (15–17).

Podosomes are formed by normal invasive cells including

monocytes, osteoclasts, endothelial cells and vascular smooth

muscle cells and digest matrix via mechanisms involving

membrane type-matrix metalloproteinase (MT1-MMP) and the

urokinase receptor uPAR (6, 18, 19). They are typically less than

2 µm in length, have a lifespan measured in minutes and 20–100

form per cell (1, 2). Podosome adhesions are dot-like in nature and

have a core of actin and associated proteins embedded in a ring of

adhesion plaque proteins including paxillin, talin or vinculin (1, 6).

Invadopodia is the name given to invasive projections formed by

cancerous and transformed cells (2). They use matrix

metalloproteinase 2 (MMP2), MMP9 and MT1-MMP to digest

the extracellular matrix and are able to degrade matrix to a greater

extent than podosomes (2, 20). Invadopodia are typically greater

than 2 µm in length, have a lifespan of hours and less than 10 are

usually present on a cell (1). The rigidity of the extracellular matrix
FIGURE 1

The structure of the invasive projections of a cell. Distinct and common features of a podosome and invadopodia of an invasive cell is depicted in
Image 1. As shown the structure of invasive projections of podosomes and invadopodia are characterized by high actin polymerization activity and
short, disorganized actin cores surrounded by a ring of adhesion structures. While the podosome cores are dynamic and have a turnover rate of
minutes, invadopodia can remain stable for several hours. Invadopodia also extend into and invade the extracellular matrix to a greater depth
through aggressive matrix degradation. ARP2/3, actin related protein 2/3 complex; N-WASP, Neural Wiskott-Aldrich syndrome protein; WIPF1,
WASP-interacting protein; TKS5 tyrosine kinase substrate with five SH3 domains; Nck, non-catalytic region of tyrosine kinase; GRB2, growth factor
receptor-bound protein 2; PtdIns(3,4,5)P3, phosphatidylinositol-3,4,5-triphosphate; PtdIns(3,4)P2, phosphatidylinositol-3,4-bisphosphate; PtdIns(3)P,
phosphatidylinositol-3-phosphate.
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is an important determinant of invadapodia formation with more

rigid matrices promoting their formation (21). Invadopodia appear

as puncta with small clusters of a few large actin-rich dots (15).
Molecular features

Many proteins, including tyrosine kinases, proteases and

adapter proteins are involved in the assembly and maturation of

invasive projections. Figure 1 depicts the structure of invasive

projections of a cell with specific structural and common

molecular features of a podosome and an invadopodia. Many

proteins have been found in, or associated with, both structures.

As described in Table 1, while many studies have focused on

determining components that are unique to either podosomes or

invadopodia in various cell types, in order to definitively identify

these structures, to date, no specific marker has been identified that

distinguishes invadopodia from podosomes. Despite this, some

distinct patterns of protein localization have been demonstrated.

The presence of vinculin has been proposed to be a marker for a

podosome (5) while the localization patterns of the adaptor proteins

Nck1 and Grb2 have been reported to distinguish invadopodia from

podosomes (22).

Key proteins in the formation of both podosomes and

invadopodia are those associated with actin nucleation, actin

binding, kinases and scaffold proteins that regulate the actin

organization within the structures (2, 23). Podosomes are rich in

F-actin (localized to their core) and proteins that regulate the actin

cytoskeleton assembly and disassembly. These include actin related

protein 2/3 complex (ARP2/3), cortactin, gelsolin, Neural Wiskott-

Aldrich syndrome protein (N-WASP) and WASP-interacting

protein (WIP). Invadopodia are also rich in actin filaments and

proteins that regulate components of the actin cytoskeleton. In the

initial stages, tyrosine kinase substrate with five SH3 domains

(TKS5) co-localizes with cortactin in precursors of invadosomes,

suggesting that TKS5 recruits cortactin in a crucial initiation step of

formation (24). TKS5 also recruits and interacts with many other

proteins both directly and indirectly, including growth factor

receptor-bound protein 2 (GRB2) and the actin regulators Nck1,

Nck2 and N-WASP (25). Cortactin is also associated with and/or

regulated by many other proteins. These include the ARP2/3

complex, WASP-interacting protein (WIPF1), and dynamin. All

of these are key players in the formation of both podosomes and

invadopodia (5). Cortactin can be phosphorylated by PAK1,

regulating its interactions with the aforementioned proteins (15).

The co-localization of cortactin with phosphotyrosine is a key

marker of matrix-degrading invadopodia (26). In regards to

matrix degradation, TKS4 has been shown to regulate the

localization of MMPs, while cortactin controls the secretion of

these proteases (21, 23, 27).

While they share some proteins, the way these proteins function

may differ between podosomes and invadopodia. For example, it

has been shown that invadopodia formation is dependent on the

actin cytoskeleton and does not require microtubules or vimentin
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intermediate filaments (28). Podosome function on the other hand

has been found to require intact microtubules (1, 29).

As well as proteins, the membranes that surround podosomes

and invadopodia have differing lipid composition. Specifically,

podosomes and invadopodia differ in their predominant

phosphatidylinositol (PI) phosphate composition. Podosomes are

rich in phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P3),

wh i l e invadopod i a exh ib i t a h i ghe r abundance o f

phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P2) and

phosphatidylinositol-3-phosphate (PtdIns(3)P) (2, 30). These

lipids play a key role in the recruitment and activation of the

signaling intermediates which are localized to invasive projections

(30). Furthermore, invadopodia formation has been demonstrated

to be dependent on the availability of cholesterol, with invadopodia

having the properties of cholesterol-rich lipid rafts (31).

The matrix-associated surface of podosomes is rich in integrins

which anchor the structure to the extracellular matrix (6). There are

two main classes of proteases present in podosomes and

invadopodia that facilitate ECM degradation (27). These include

zinc-regulated metalloproteinases MMP2, MMP9 and MT1MMP

(21), and the ADAM (a disintigrin and metalloproteinase) family,

including ADAM12, ADAM 15 and ADAM19 (1). MMPs as well as

the ADAM family are markers of a highly invasive phenotype and

are highly expressed in invadopodia-forming cells (32).

The formation of invasive projections has been shown to be

dependent on the activity of several different signaling pathways.

Formation of invadopodia has been shown to depend on the activity

of the tyrosine kinases Tsk5 (33) and c-Abl (34). The adaptor

protein Tks5, a substrate for Src kinase, localizes to invadopodia

and has been shown to be necessary for invadopodia formation and

invasive behavior in several cancer cell lines (33). Abl kinase has

recently been shown to be an essential regulator of invadopodia

assembly and function (34).
Novel models of cell invasion

It was initially hypothesized that cell type determined which

structures were produced, with podosomes exclusive to normally

invasive cells (i.e. macrophages, endothelial cells, smooth muscle

cells), and invadopodia only formed by highly invasive carcinoma

cells. However, a study showed that podosomes were formed by

non-invasive oral squamous cell carcinoma (SCC) cells, but after

these cells underwent epithelial-mesenchymal transition and

became invasive, they began to produce invadopodia (35). These

podosomes that were found on non-invasive SCC cells were atypical

from classically described podosomes, in that they all formed de

novo, where usually new podosomes form by fragmenting off pre-

existing podosomes. They also had a longer lasting life span, with

life span being more comparable to that of invadopodia (35).

Another example of podosomes behaving similarly to

invadopodia is seen in osteoclasts during bone remodeling.

During this process, osteoclasts turn from a migratory phenotype

to one with resorptive activity, remaining stationary where sites of
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TABLE 1 Depicts protein characterization identified in podosomes and invadopodia in various cell types.

Feature/Protein Description Cell Type Studied Found In Reference

Cortactin Actin-binding protein involved in
cytoskeletal organization

MDA-MB-231 breast cancer cells Invadopodia (70)

N-WASP Regulates actin polymerization and
cytoskeletal dynamics

MDA-MB-231 breast cancer cells Invadopodia (71)

Arp2/3 Complex Actin nucleation factor that
promotes branching

MDA-MB-231 breast cancer cells Both podosomes and invadopodia (72)

TKS5 Scaffolding protein essential for
invadopodia formation

MDA-MB-231 breast cancer cells Both podosomes and invadopodia (73)

MT1-MMP Matrix metalloproteinase involved in
ECM degradation

MDA-MB-231 breast cancer cells Invadopodia (74)

Fascin Actin-bundling protein associated with
invasive potential

MDA-MB-231 breast cancer cells Invadopodia (75)

Integrins (e.g., b1, aV) Cell adhesion receptors mediating
ECM interactions

Endothelial cells Both podosomes and invadopodia (76)

Paxillin Focal adhesion protein involved in
signal transduction

Osteoclasts Podosomes (77)

Vinculin Actin-binding protein that stabilizes
cell adhesion

Osteoclasts Podosomes (78)

Talin Links integrins to the
actin cytoskeleton

Osteoclasts Podosomes (79)

MMP-2 Matrix metalloproteinase involved in
ECM remodeling

Trabecular meshwork cells Podosomes (80)

MMP-14 Matrix metalloproteinase critical for
ECM degradation

Trabecular meshwork cells Both podosomes and invadopodia (81)

Cdc42 Small GTPase regulating
actin cytoskeleton

MDA-MB-231 breast cancer cells Invadopodia (82)

Caldesmon Actin-binding protein regulating
actomyosin interactions

A7r5 aortic smooth muscle cells Podosomes (83)

a-Actinin Actin cross-linking protein stabilizing
cytoskeletal structures

Osteoclasts, MDA-MB-231 breast
cancer cells

Both podosomes and invadopodia (84)

Fibronectin ECM glycoprotein involved in cell
adhesion and migration

Trabecular meshwork cells Podosomes (85)

Versican ECM proteoglycan involved in cell
adhesion and proliferation

Trabecular meshwork cells Podosomes (86)

WASP Actin nucleation-promoting factor MDA-MB-231 breast cancer cells Both podosomes and invadopodia (87)

Tyrosine
Kinase Substrate

Adapter protein involved in
invadopodia signaling

MDA-MB-231 breast cancer cells Both podosomes and invadopodia (88)

Actin Filaments Structural filaments forming
the cytoskeleton

Osteoclasts, MDA-MB-231 breast
cancer cells

Both podosomes and invadopodia (89)

Src Kinase Tyrosine kinase involved in
invadopodia formation

MDA-MB-231 breast cancer cells Invadopodia (90)

Dynamin GTPase involved in vesicle trafficking
and invadopodia turnover

MDA-MB-231 breast cancer cells Invadopodia (91)

b-Actin Cytoskeletal protein essential for
invadopodia structure

Fibrosarcoma Both podosomes and invadopodia (92)

Filamin A Actin-binding protein that cross-
links filaments

MCF-7-ErbB2, MDA-231, MDA-231-
ErbB2, and BT-20 Breast cancer cells

Invadopodia (93)
F
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bone-matrix degradation are situated. It is well documented that

MMP14 localizes to both podosomes and invadopodia, and it had

recently been found that MMP14 also localizes to osteoclast

podosomes, but the mechanism used is similar to that of

invadopodia (36). In light of these findings, it has been suggested

that podosomes may be a precursor structure to invadopodia, and it

is only when it is required that invadopodia form (36). Following

from this, it was also suggested that invadopodia represent a

physiological form of podosomes that are actively associated with

the localized degradation of the matrix.

Another suggestion is that cells may have an innate ability to form

both podosomes and invadopodia, and the formation of one or the

other may be dependent on the matrix the cells are situated on, as well

as the signaling pathways activated at the time (35). Previous studies

demonstrated the presence of invadopodia and focal adhesions in both

2D and 3D in vitro environments (37–39). Normally, physiological

migration and invasion of cells is tightly regulated, and if the

formation of invadopodia requires specific signaling pathways,

formation will not occur if culture conditions are incorrect.
Trophoblast cell invasion

A critical event early in human pregnancy is the transformation

of the uterine spiral arterioles to create a high flow, low resistance

vasculature. Successful remodeling of the maternal uterine

vasculature facilitates increased maternal blood flow to the

placenta thus ensuring normal fetal growth and development

(40). This requires invasion of trophoblast cells which move from
Frontiers in Endocrinology 05
the placenta into the maternal uterine vessels and surrounding

matrix and integrate into the vessel walls (41, 42).

As depicted in Figure 2, the trophoblast cells that carry out the

remodeling process are characterized by a gain of invasive ability.

This phenotypic change enables them to move away from the tips of

the placental villi and migrate into the maternal tissue (43–45). In

order to become invasive, a subset of trophoblast cells must begin to

secrete matrix metalloproteinases (MMPs) (44, 45). The ability to

express the gelatinases MMP-2, MMP-9 and MMP-12 (46, 47)

confers these trophoblast cells with the capacity to degrade elastin,

collagens and laminin, thus enabling them to invade through the

extracellular matrix of the uterine decidual stroma and integrate into

the walls of the spiral arterioles. The remodeling process occurs in a

very defined time frame and space, commencing early in the first

trimester of pregnancy and continuing into the second trimester

before ceasing at around 16–20 weeks of gestation with cells invading

only as deep as the first third of the myometriumm (42, 45, 48).

As depicted in Table 2, the invasion of trophoblast cells during

human pregnancy is often considered analagous to the invasion of

malignant cancer cells as both are highly invasive, the adhesion

molecules and proteases involved are similar and the cells use

similar strategies to evade the host immune system (49).

However, the major difference is that trophoblast cell invasion is

very tightly controlled and regulated by the complex interplay of

growth factors, cytokines, endocrine factors, oxygen concentrations

and haemodynamics at the maternal-fetal interface. These act both

temporally and spatially to initially promote and then limit the

extent of trophoblast cell invasion (43, 50). While the similarities

between invasive trophoblast cells and cancerous cells have been
FIGURE 2

Trophoblast invasion at the maternal-fetal interface. Extravillous trophoblasts (EVT) originating from the trophoblastic shell of the anchoring villi
proliferate in the cell column, migrate to the decidua and subsequently invade the myometrial stroma (41), by displaying podosomes and
invadopodia-like features. Subsequently, invade the lumen of the arterioles to replace the endothelium of the maternal vessels (94). Figure adapted
and modified from Lunghi et al. (2007) (95).
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described, particularly their ability to digest matrix via secretion of

MMPs, only one recent study (51) has examined whether

trophoblast cells form podosomes similar to other non-cancerous

cells or whether they form invasive projections that are

invadopodia-like. The evidence suggests that trophoblast cells

form atypical invasive projections that are neither podosomes or

invadopodia but that exhibit features of both structures (51).

Furthermore, the focal adhesion molecules that are mission

control for trophoblast invasion, regulates adhesion, signaling,

cytoskeletal changes, and ECM interaction to ensure that invasion

is precise, regulated, and adaptive (52–54). Focal adhesion

molecules also allow trophoblasts to “sense” mechanical cues,

oxygen levels, and ECM stiffness that are essential for them adapt

to their invasion depth. In low oxygen, for example, certain

pathways (e.g. hypoxia inducible factor-1, HIF-1a) are triggered,

modulating focal adhesion signaling and promoting invasion early

in pregnancy (55). Unlike cancer cells, trophoblasts need to attach

just enough to anchor maternal decidua, but also stay mobile

enough to invade. Focal adhesion dynamics control this balance

through turnover and recycling of adhesions.

Freshly isolated primary first trimester trophoblast cells grown

on Matrigel for 48 hours to promote acquisition of the invasive

phenotype leads to expression of mRNA for key proteolytic

enzymes, known to be associated with invadopodia. Expression of

mRNAs for the gelatinases MMP2, MMP9, MT1-MMP (MMP14

precursor) and MMP14 have all been detected (56). These enzymes

are secreted by mature invadopodia and enable them to digest

extracellular matrix to a greater extent than podosomes. In addition,

expression of mRNAs for the membrane bound metalloproteinases

ADAM8, ADAM12, ADAM15 and ADAM19 can also be detected

(57). While a role for ADAMs in invadopodia is less well defined,

ADAM12, ADAM15 and ADAM19 have been shown to interact

with the Tks5 adaptor protein which localizes to invadopodia and

ADAM8 has also been detected in podosomes (51). This suggests

that components associated with invadopodia rather than

podosomes are present in first trimester trophoblast.
Frontiers in Endocrinology 06
Invasive projections as therapeutic
targets

Invasive projections represent a new and exciting therapeutic

target. Recent studies highlight the proteomic and transcriptomic

profiling of invasive cells, with an emphasis on proteins associated

with invadopodia and their structures (58) (59). Inhibition or

stimulation of invasive projection formation can be the basis for

disease therapy where cell invasion is abnormal. Potentially,

invasive projections present two paths that can be exploited in

the therapeutic arena. First, matrix degradation in vitro by invasive

projections can, and is, being used to test the effect of lead

compounds and to screen drug libraries (60). Secondly, invasive

projections can be a target for therapy where disruption or

stimulation of their formation is beneficial. The development of

novel therapies is hindered by a lack of knowledge of podosome or

invadopodia-specific components. Thus, there is an urgent need to

define the composition of invasive projections on cells of differing

origins and invasive potentials (14).
Over-invasion

In cancer biology, inhibition of invadopodia formation has been

proposed as a strategy for treating breast, lung and pancreatic

cancers (2, 61–63). This approach is considered appealing as cell

viability is not affected by targeting invadopodia thus therapies

based on this strategy would be anticipated to have fewer side effects

than current therapies (64). In addition, a therapy targeting

invadopodia formation will only target the cancer cell population

thus vastly improving drug selectivity (65).

Abnormal trophoblast cell invasion is associated with very

serious pregnancy complications that can be life-threatening for the

mother and have serious health consequences for the baby which is

often born premature. Over invasion results in complications
TABLE 2 Invasive projections of trophoblasts and cancer cells.

Feature Trophoblast Projections Cancer Cell Projections

Types of projections Podosomes, invadopodia-like structures
Invadopodia, filopodia (thin, exploratory projections), lamellipodia
(broad ruffling edges), microtentacles for migration and invasion.

Function
Penetrate maternal penetrate the decidua and remodel spiral
arteries to establish a physiological placental interface

Degrade ECM for invasion and metastasis of aggressive cancer

Actin Organization Organized, often podosome-like (actin core with adhesion ring) Invadopodia: actin-rich core, MMP-rich zone

MMP Expression Regulated expression of MMP-2, MMP-9 Over expression of MMP-2, MMP-9, MT1-MMP

Stability Transient, tightly regulated Longer-lived, more stable in invasive cells

Regulation
Hormonal (e.g., hCG), cytokines, maternal signals including
modulation by maternal immune cells

Oncogenes (e.g., Src, Ras), hypoxia, inflammation

Polarity Directed, guided invasion Multidirectional and unguided invasion

Outcome
Controlled invasion for placental anchoring and nutrient exchange
for physiological adaptation

Uncontrolled invasion leading to metastasis.
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including placenta percreta, increta and accreta, where cells invade

into maternal tissues beyond the uterine wall (66), and gestational

trophoblastic diseases such as choriocarcinoma and invasive mole

with highly invasive, metastatic tumors (67). It could be envisaged

that a therapy targeting a unique property of the invasive projections

formed by trophoblast cells could be employed to treat

these conditions.
Under-invasion

Switching cell invasion on could also be beneficial in some

instances. Transient activation of invasive projection formation has

been suggested as potentially useful in the treatment of skeletal

anomalies, where mutations in podosome proteins cause several

distinct craniofacial defects (2, 68). Several serious pregnancy

complications are characterized by under invasion of trophoblast

cells. Shallow trophoblast cell invasion is associated with pre-term

delivery, pre-eclampsia and fetal growth restriction (41, 45), and

possibly some instances of miscarriage (69). These represent

pathologies where there are currently no effective therapies other

than delivery of the baby which is undesirable pre-term. Just as for

pregnancy complications with over-invasive cells, targeting the

invasive projections formed by trophoblast cells could be a new

and novel therapeutic strategy.
Conclusions

Though sharing similarities with cancer cell invasion,

trophoblast cell invasion is highly regulated compared to the

dysregulated invasion seen in cancer. Trophoblast cells form

invasive structures with unique properties (51) but little is known

about their molecular characteristics or regulation. Evidence

suggests the structures formed by trophoblasts are atypical, being

neither a true podosome nor invadopodia. Comparing trophoblast

cell and cancer cell invasion, as well as other novel models of cell

invasion, will contribute to a better understanding of the

classification and regulation of podosomes and invadopodia,

which will ultimately inform and improve disease treatment

strategies that aim to modify cell invasion. The identification of

the similarities and differences could provide novel targets for the

diagnosis and treatment of pathological pregnancies, cancer and
Frontiers in Endocrinology 07
other diseases where cell invasion is abnormal, enabling the

translation of basic research discoveries into clinical applications.
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