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Lipid metabolism in the
adrenal gland
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Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital
Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
The adrenal gland consists of the medulla and the cortex. The chromaffin cells of

the adrenal medulla release catecholamines via regulated exocytosis. Vesicle

formation, trafficking, maturation and fusion with the plasma membrane are

orchestrated by lipids such as cholesterol, diacylglycerol, phosphatidic acid and

phosphatidylinositol-4,5-bisphosphate. On the other hand, the adrenal cortex is a

highly specialized lipid-metabolizing organ secreting steroid hormones.

Cholesterol, acquired from circulating lipoproteins and de novo biosynthesis, is

mobilized from intracellular stores and transported tomitochondria to be used as a

substrate for steroidogenesis. Steroidogenesis is regulated by free polyunsaturated

fatty acids (PUFA) and an increased PUFA content in phospholipids promotes

steroidogenesis. Cholesterol efflux and lipid-processing macrophages further

contribute to lipid homeostasis in the adrenal gland. Given that lipidomics have

revolutionized our perception of cell function, we anticipate that this will also hold

true for the investigation of adrenocortical function. Such investigations may

pinpoint novel targets for the management of abnormal adrenal function.
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Introduction

The adrenal gland plays a pivotal role in vertebrate physiology and survival, as it

mediates responses to danger and stress. It consists of the medulla, which releases

catecholamines upon activation by splanchnic nerves in the so called ‘fight or flight

response’, and the cortex, which secretes corticoid and other steroid hormones (1–3). Here,

we summarize the role of lipids in the secretory function of chromaffin cells and we review

the role of lipid metabolism in adrenocortical steroidogenesis.
Lipids as regulators of catecholamine secretion

Catecholamines, i.e. adrenaline and nor-adrenaline, are released by chromaffin cells

through a process that involves secretory vesicles budding off the Golgi apparatus, trafficking

to the plasma membrane and their regulated exocytosis (4). Membrane lipid composition

plays a key role in these processes (5). Lipid rafts in the Golgi membrane can guide protein
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clustering required for vesicle formation (5). Diacylglycerol (DAG),

phosphatidic acid (PA), sphingolipids and cholesterol are implicated

in fission of secretory vesicles (5). After formation, granules mature

through acidification and condensation, and associate with actin to be

transported to the plasma membrane, where catecholamines are

secreted via regulated exocytosis (4, 5). Exocytosis requires vesicle

docking, priming and Ca2+-dependent fusion with the plasma

membrane. These processes involve the assembly of soluble N-

ethylmaleimide-sensitive factor attachment protein receptor

(SNARE) proteins, the synaptic vesicle VAMP (synaptobrevin), and

the plasma membrane proteins syntaxin and synaptosomal-

associated protein of 25Kda (SNAP-25) (4). Phospholipids, like

lysophosphatidylcholine (LPC), and cone-shaped lipids, such as

cholesterol, DAG and PA, play a critical role in this process by

regulating protein assembly and driving negative membrane

curvature, which facilitates the opening of the secretory pore (4–8).

Also, increased phosphoinositide (PI) amounts in the plasma

membrane and the secretory granules promote exocytosis.

Particularly phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)

localizes at sites of exocytosis, binds to proteins such as syntaxin-1,

and promotes the actin-mediated conveyance of secretory granules to

the plasma membrane (4, 9–12). Similarly, PA produced from

phospho l ip id s ( such a s phospha t idy l cho l ine (PC) ,

phosphatidylethanolmine (PE), phosphatidylglycerol (PG)) by

phospholipase D1 (PLD1) or from DAG by diacylglycerol kinase,

accumulates at the plasma membrane near exocytotic sites and

contributes to lipid bilayer bending, binds to proteins like syntaxin-

1, and promotes PtdIns(4,5)P2 production (4, 13). While

monounsaturated PA increase the number of exocytotic events by

eventually driving granule docking, polyunsaturated PA regulate

fusion pore stability and expansion (14). DAG primes exocytosis

via activation of protein kinase C and Munc13, which modulate the

function of syntaxin isoforms (15). Polyunsaturated fatty acids

(PUFAs) can also interact with syntaxin isoforms aiding SNARE

complex formation (16, 17). Particularly arachidonic acid (AA)

released from DAG and phospholipids during exocytosis increases

SNARE complex formation and fosters granule docking and

exocytosis (17, 18). During exocytosis, phospholipids are scrambled

in the plasma membrane, with phosphatidylserine (PS) being

externalized to the outer leaflet (19). PS clusters inhibit

synaptotagmin 1 membrane penetration, which is required to

promote fusion pore formation (20). Sphingosine, a releasable

backbone of sphingolipids, activates vesicular synaptobrevin and

promotes granule tethering (21, 22). Moreover, extracellular

sphingosine-1-phosphate promotes exocytosis via activation of S1P

receptors (23) and sphingomyelin derivatives enhance the frequency

of fusion events in chromaffin cells (24). Finally, after completion of

the secretory event, the granule membrane components are entirely

recycled by DAG-driven endocytosis (25).

Steroidogenesis in the adrenal cortex

The adrenal cortex consists of the zona glomerulosa, which

produces aldosterone, and the zona fasciculata that produces
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glucocorticoids (1, 2). In primates, a third inner zone, the zona

reticularis, produces the steroid hormone dehydroepiandrosterone

(DHEA) and its sulfate ester (DHEA-S) (3, 26). Adrenocortical

function is regulated by the hypothalamic–pituitary–adrenal (HPA)

axis. Stress triggers the production of corticotropin-releasing-

hormone (CRH) from the hypothalamus, which induces the

release of adrenocorticotropic hormone (ACTH) from the

anterior pituitary that reaches the adrenal gland via the

circulation and binds to its receptor (melanocortin 2 receptor,

MC2R) inducing corticoid production (27). ACTH is the

exclusive stimulus for glucocorticoid release, while secretion of

aldosterone is mainly induced by the renin-angiotensin-

aldosterone system (RAAS) via angiotensin II and elevated

circulating potassium levels (27, 28).

Corticoid hormones are not stored but synthesized de novo

from cholesterol for immediate secretion. Glucocorticoid

synthesis is triggered by binding of ACTH to MC2R, a G

protein-coupled receptor (GPCR) activating the cyclic adenosine

monophosphate (cAMP)-protein kinase A (PKA) signaling

pathway. PKA activates hormone-sensitive lipase (HSL), which

hydrolyzes cholesterol esters (CEs) stored in lipid droplets. Free

cholesterol is transported through a complex mechanism

involving steroidogenic acute regulatory (StAR) protein into

mitochondria, where it serves as a substrate for steroid

biosynthesis (2, 27). Cholesterol transport into mitochondria is

the rate-limiting step of steroidogenesis (2, 27). Angiotensin II

binds to the angiotensin type 1 receptor (AGT1R), triggering

increase of intracellular calcium levels, which leads to activation of

calmodulin kinase (CaMK). The latter induces StAR activation via

its phosphorylation (29). Once inside the mitochondria,

cholesterol is processed by cytochrome P450scc (P450 side-

chain cleavage or CYP11A1), which cleaves cholesterol’s

aliphatic side-chain, generating pregnenolone. CYP11A1

expression is induced by ACTH and angiotensin II via cAMP

signaling (27, 30). Pregnenolone is transformed into progesterone

by 3b-hydroxysteroid dehydrogenase (3b-HSD). Pregnenolone

and progesterone generated in mitochondria transfer to the

endoplasmatic reticulum (ER), where the next steps of

steroidogenesis take place (31). In humans, progesterone is

converted by CYP21 to 11-deoxycorticosterone, which is further

metabolized to corticosterone by CYP11B1. Corticosterone is

metabolized in the zona glomerulosa by CYP11B2 to

aldosterone. In the zona fasciculata, progesterone is converted

by CYP17 to 17-hydroxyprogesterone, which is processed by

CYP21 to 11-deoxycortisol. In the final step of glucocorticoid

synthesis, CYP11B1 converts 11-deoxycortisol to cortisol (27).

While CYP11B1 is constitutively expressed in the zona fasciculata,

CYP11B2 expression in the zona glomerulosa is regulated by

circulating factors, such as angiotensin II, sodium and

lipoproteins, like low-density lipoproteins (LDL), high-density

lipoproteins (HDL) and very low-density lipoproteins (VLDL)

(32–35). In the zona reticularis, 17-hydroxyprogesterone is

converted by CYP17A1 to DHEA, which can be further

metabolized to sex hormones (27).
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Cholesterol homeostasis in
adrenocortical cells

Cholesterol serves as a precursor for steroid hormone

production (36, 37). Cholesterol availability in adrenocortical cells

is covered by 1. uptake from circulating lipoproteins 2. de novo

synthesis and 3. CEs stored in lipid droplets (30, 37) (Figure 1).

However, the exact contribution of these pathways to

steroidogenesis and the flexibility in switching between them at

baseline or stimulated conditions, are not fully understood. Excess

intracellular cholesterol is transferred to circulating HDL through

cholesterol efflux (38).
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Cholesterol acquisition from lipoproteins

Lipoproteins supply adrenocortical cells with cholesterol for

steroid hormone production. LDL and HDL are internalized via

binding to the LDL receptor (LDLR) and scavenger receptor class B

type I (SCARB1), respectively, followed by endocytosis (37, 39, 40).

Patients deficient for LDLR have normal serum cortisol levels but

show reduced cortisol production in response to ACTH (41).

Similarly, patients with SCARB1 mutation have normal cortisol

concentrations, but reduced cortisol levels upon stimulation with an

ACTH derivative (42). In contrast, LDLR and SCARB1 expression

is increased in the adrenal cortex of patients with primary
FIGURE 1

Lipid metabolism in adrenocortical cells. In adrenocortical cells, cholesterol derives from circulating lipoproteins and de novo biosynthesis. Low-
density lipoproteins (LDLs) are internalized via the LDL receptor (LDLR) and endocytosis, while high-density lipoproteins (HDL) are taken up via
scavenger receptor class B type I (SCARB1) (39, 40). Excess cholesterol is either esterified by SOAT1 and stored in lipid droplets (57) or exported via
Adenosine triphosphate (ATP)-binding cassette transporter G1 (ABCG1) (85). Adrenocorticotropic hormone (ACTH) binding to melanocortin 2
receptor (MC2R) activates protein kinase A (PKA), which induces hormone-sensitive lipase (HSL) phosphorylation and translocation to the lipid
droplets, assisted by perilipin 2 (PLIN2), promoting cholesterol release (66, 67). Angiotensin II (Ang II) binds to the angiotensin type 1 receptor
(AGT1R), triggering the increase of intracellular calcium levels, leading to activation of calmodulin kinase (CaMK), which induces StAR activation (29).
De novo synthesis of cholesterol is regulated by the rate-limiting conversion of acetyl-CoA to mevalonate via hydroxymethylglutaryl-CoA (HMG-
CoA) reductase (HMGCR) (52). Gene expression of HMGCR and other cholesterogenic proteins is induced by Sterol regulatory element-binding
proteins (SREBP) (53, 55). Free cholesterol is transported into mitochondria by steroidogenic acute regulatory (StAR) protein, through a complex
process involving a number of different proteins, such as Voltage-dependent anion channels (VDAC) and translocase of the outer mitochondrial
membrane 40 (TOMM40) (27, 31, 74–76, 107, 108). Cholesterol transfer from the ER to mitochondria is facilitated via ER-mitochondria contact sites,
called mitochondria-associated membranes (MAMs) (31, 75). Fatty acid desaturase 2 (FADS2)-mediated increase in the PUFA content of
mitochondrial phospholipids promotes cholesterol import into mitochondria (59). Moreover, arachidonic acid (AA) released from phospholipids by
acyl-CoA thioesterase 2 (ACOT2) promotes steroidogenesis (96, 97). In mitochondria, steroidogenesis starts with the conversion of cholesterol to
pregnenolone by CYP11A1 (27, 30).
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aldosteronism (43, 44). Accordingly, angiotensin II upregulates the

expression of LDLR and SCARB1 (45). Besides providing

cholesterol, lipoproteins (LDL, HDL, VLDL) trigger signaling

events, including mobilization of intracellular calcium and cAMP

response element binding (CREB) activation, thereby inducing

expression of proteins involved in steroidogenesis, such as

CYP11B2 and StAR (39, 44, 46, 47). LDLR is downregulated with

aging in the adrenal cortex of primates limiting cholesterol uptake

and DHEA-S secretion (48). Intriguingly, cholesterol uptake was

shown to be dependent on autophagy, a mechanism mediating the

degradation of cellular components (49). Autophagy disruption in

Leydig cells leads to down-regulation of SCARB1, inefficient

cholesterol supply and reduced testosterone production (49).

Moreover, in Drosophila, autophagosomes sequester and

transport cholesterol for steroid synthesis, while their disruption

leads to cholesterol accumulation in lipid droplets (50).
Cholesterol synthesis

Along with cholesterol imported from circulating lipoproteins, de

novo biosynthesized cholesterol also fuels adrenocortical

steroidogenesis. Acetyl-CoA, the precursor molecule of cholesterol,

is produced in the cytosol by the ATP citrate lyase (ACLY) (51). The

rate-limiting reaction of cholesterol synthesis is the conversion of

acetyl-CoA to mevalonate by hydroxymethylglutaryl-CoA reductase

(HMGCR) (52). Low sterol concentration is sensed by sterol

regulatory element-binding proteins (SREBPs) that induce HMGCR

expression (53). Through a cascade of reactions mevalonate is

metabolized to squalene, which is processed in the ER membrane

via lanosterol and desmosterol to cholesterol (52, 54). The central

transcriptional activator of steroidogenesis, Steroidogenic Factor 1

(SF-1) binds to the promoter and induces the expression of several

genes encoding for cholesterogenic proteins (55). Peripartum and

lactation-associated adrenal gland plasticity in female rats involves

downregulation of HMGCR expression and depletion of intra-adrenal

cholesterol stores despite increased LDLR and SCARB1 expression;

this is associated with basal hypercorticism and reduced

responsiveness to ACTH, conferring postpartum anxiolysis (56).

These evolutionary adaptations are overridden by feeding with a

high-fat diet (HFD), which prevents the peripartum reduction of

HMGCR expression and cholesterol stores (56).
Cholesterol storage and mobilization

Uptaken or synthesized cholesterol is esterified by sterol O-

acyltransferase 1 (SOAT1) with fatty acids and stored in lipid

droplets, which makes cholesterol rapidly available for

steroidogenesis (57). Inhibition of Acyl-coenzyme A: cholesterol

acyltransferase (ACAT), which converts cholesterol to CE, reduces

aldosterone production via suppression of CYP11B2 expression

(58). Impaired steroidogenesis, as in congenital adrenal lipoid

hyperplasia, or disruption of cholesterol mobilization and

mitochondrial import, for instance due to HSL or StAR
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deficiency, lead to increased accumulation of CEs in lipid droplets

(59–63). On the other hand, depleting the intracellular cholesterol

pool in steroidogenic cells leads to lipid droplet shrinkage (64).

Lipid droplets share contact sites with mitochondria and the ER,

thereby facilitating immediate cholesterol transport to these

organelles (31). Cholesterol mobilization occurs through

lipophagy, where lipid droplets are engulfed by phagosomes

followed by fusion with lysosomes, or through hormonally-

controlled lipolysis mediated by HSL (63, 65). ACTH stimulation

triggers via PKA HSL phosphorylation, which modestly increases

HSL activity and, more importantly, directs HSL to lipid droplets, a

process assisted by perilipin 2 (PLIN2), which resides on the lipid

droplet surface (66, 67). PLIN2 deficiency in mice leads to

pronounced lipid droplet accumulation in adrenocortical cells (67).

Impaired lipid mobilization and enhanced lipid accumulation

in adrenocortical cells is accompanied by increased expression of

macrophage markers, suggesting a role of adrenal gland

macrophages in the local lipid turnover (67, 68). Similarly to

lipid-associated macrophages (LAMs) present in other tissues,

such as the adipose tissue, adrenal gland macrophages are rich in

lipid droplets and present LAM signatures, including expression of

Triggering receptor expressed on myeloid cells 2 (Trem2),

Lipoprotein lipase (Lpl), Cd9 and Cd36 (68–70). Removal of

adrenal gland macrophages causes increased lipid accumulation

in the adrenal cortex (68). Consequently, adrenal gland

macrophages regulate adrenocortical steroidogenesis in acute and

chronic stress conditions, like cold exposure and atherosclerosis,

respectively, through a mechanism dependent on TREM2 and

macrophage-specific TREM2 deletion in mice increases serum

glucocorticoid levels (70). These findings underscore the critical

homeostatic role of macrophages in adrenocortical lipid

metabolism and steroidogenesis.
Cholesterol trafficking

Cholesterol levels are sensed by SREBPs residing in the ER (71).

Cholesterol freed from CEs is transferred from lipid droplets to

mitochondria by StAR. StAR mutations lead to impaired adrenal

steroidogenesis, a condition termed congenital adrenal lipoid

hyperplasia (72). StAR localizes at the outer mitochondrial

membrane (OMM) and unfolds upon cholesterol binding at a C-

terminal domain, a process requiring glucose regulatory protein-78

(GRP78) (73). Subsequently StAR mediates cholesterol transport into

mitochondria through a complex and not entirely understood process

involving a number of different proteins, such as Voltage-dependent

anion channel 1 (VDAC1), VDAC2, mitochondrial transporter

protein (TSPO), translocase of the outer mitochondrial membrane

40 (TOMM40) and GRP78 (27, 74–76). StAR-mediated cholesterol

import depends on the efficiency of the electron transport chain and

ATP production (77, 78). Moreover, cholesterol import into

mitochondria is affected by the polyunsaturated fatty acid (PUFA)

content of mitochondrial phospholipids. Reduced PUFA content in

the phospholipids of mitochondrial membranes associates with

diminished cholesterol import, mitochondrial membrane potential
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and oxidative phosphorylation (59). Accordingly, Acyl-CoA

synthetase 4 (ACSL4), which inserts CoA to PUFAs facilitating their

esterification into phospholipids, is highly expressed in the adrenal

gland and required for steroidogenesis (59, 79). Cholesterol is thought

to be transferred through direct contact sites connecting lipid droplets,

mitochondria, the ER and the plasma membrane. Mitochondria, the

ER, the plasma membrane, ER-mitochondria contact sites, so called

mitochondria-associated membranes (MAMs) and plasma

membrane-associated membranes (PAMs) have all unique and

plastic lipid compositions (80). cAMP signaling triggers the

formation of plasma membrane-ER and ER-mitochondria

contacts (80). Cholesterol and proteins involved in cholesterol

transfer accumulate at MAMs (31, 75). Aster proteins mediate

cholesterol traffic from the plasma membrane to the ER and from

the ER to mitochondria (81, 82). Furthermore, syntaxin (STX)-5 and

a-SNAP mediate delivery of plasma membrane cholesterol to

mitochondria (83, 84).
Cholesterol efflux

Cholesterol levels in adrenocortical cells are regulated by

cholesterol efflux mediated by ATP-binding cassette transporter

G1 (ABCG1) and apolipoprotein E (ApoE) (85). Fasting stress

reduces Apoe and Abcg1 expression inhibiting cholesterol efflux

(38). Adrenocortical ABCG1 deficiency leads to enhanced

glucocorticoid production and, paradoxically, increased

expression of genes encoding for proteins involved in cholesterol

uptake, such as Ldlr, and cholesterol synthesis, such as Hmgcr and

Squalene Epoxidase (Sqle) (85). ApoE-deficient mice present

impaired cholesterol efflux associated with enhanced stress-

induced glucocorticoid secretion (38). In contrast, cholesterol

efflux is increased and adrenocortical steroidogenesis is reduced

by synthetic HDL particles, which promote reverse cholesterol

transport and thereby present a therapeutic strategy against

atherosclerosis (86). Besides cholesterol homeostasis, lipoprotein

release also serves long-range intercellular signaling mediated by

proteins loaded onto lipoproteins. For instance, Sonic hedgehog

(SHH), which is expressed in adrenocortical cells beneath the

adrenal capsule, is released on lipoproteins, along with Hh

pathway inhibitors regulating its long-range effects (87, 88).
Sphingolipids and phospholipids as
regulators of steroidogenesis

Apart from cholesterol metabolism and steroidogenesis, also

other lipid metabolic pathways are dynamically regulated and play

crucial roles in adrenocortical function. The adrenal gland presents

organized spatial lipid distribution of sphingolipids and

phospholipids (89). ACTH and cAMP signaling reduce the

amounts of several sphingolipids, including sphingomyelin,

ceramides, and sphingosine, induce sphingosine kinase activity

and increase released S1P, while the latter promotes StAR, TSPO,

LDLR and SCARB1 expression and glucocorticoid production (90,
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91). Loss-of-function mutations in S1P lyase (SGPL1), lead to

accumulation of sphingolipids in lysosomes and a condition

termed sphingolipidose (92). Accordingly, Sgpl1-/- mice present

disrupted adrenocortical zonation and impaired steroidogenic

protein expression (92).

Moreover, phospholipids can determine the steroidogenic

capacity of adrenocortical cells based on their PUFA content (59).

AA is one of the most abundant acyl chains in PC, PE, PG and PI in

the murine adrenal gland (59). Similarly, AA is among the most

abundant lipids in the human adrenal cortex (59, 93). ACSL4-

mediated esterification of free AA into phospholipids promotes

steroidogenesis (79, 94, 95). On the other hand, hormonal

stimulation and cAMP signaling induce acyl-CoA thioesterase 2

(ACOT2)-mediated release of AA from phospholipids into

mitochondria (96, 97). Moreover, AA is metabolized by

lipoxygenases to lipid mediators, such as hydroxyeicosatetraenoates,

which can also regulate steroidogenesis (96).

The acyl chain composition of phospholipids in the adrenal

gland is under dietary influence. For instance, AA-containing

phospholipids increase in the adrenal gland of mice fed a HFD,

aligning with enhanced corticoid output (59). Fatty acid desaturase

2 (FADS2), the rate-limiting enzyme of PUFA synthesis, is highly

expressed in the adrenal gland and is upregulated in conditions of

elevated corticoid synthesis, such as obesity or adrenal adenomas.

Inhibition of FADS2 perturbs cholesterol transfer into

mitochondria, mitochondrial function and steroidogenesis in

adrenocortical cells, while steroidogenesis is partially restored by

AA supplementation. In accordance, FADS2 deficiency in mice

receiving a low-PUFA diet leads to reduced amounts of AA-

containing phospholipids in the adrenal cortex, reduced

glucocorticoid serum levels, enhanced lipid droplet accumulation

and perturbed mitochondrial structure in adrenocortical cells.

Accordingly, pharmacological inhibition of FADS2 reduces

corticoid production in mice with established obesity (59).

Moreover, the n-3 PUFA eicosapentaenoic acid (EPA) diminishes

FADS2 expression and steroidogenesis in mouse and human

adrenocortical cells and icosapent ethyl, an EPA analog, which is

in clinical use for reduction of cardiovascular disease risk, efficiently

reduces corticosterone and aldosterone serum levels in obese

animals (59). Hence, treatment with dietary adjuncts, such as

icosapent ethyl, could be an appealing strategy to clinically tackle

dysregulated cortisol and aldosterone production.
Diseases of disturbed lipid metabolism
leading to impaired adrenocortical
steroidogenesis

Disturbed lipid metabolism underlies several diseases

manifested by adrenal insufficiency. Cortisol production is

impaired in patients with LDLR deficiency or SCARB1 mutations

(41, 42). Reduced HDL levels due to decreased hepatic lecithin-

cholesterol acyltransferase (LCAT) activity in patients with liver

cirrhosis associate with occurrence of relative adrenal insufficiency

(RAI) (98). X-linked adrenoleukodystrophy (ALD), a disorder
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characterized by primary adrenal insufficiency, hypothyroidism and

neurological symptoms, is caused by pathogenic variants of

ABCD1, a very-long-chain fatty acid (VLCFA) transporter,

leading to VLCFA accumulation in the form of CE (99–101).

SGPL1 mutations are found in patients with steroid-resistant

nephrotic syndrome (SRNS), which is characterized by adrenal

insufficiency and chronic kidney disease (92, 102). Mutations in

lysosomal acid lipase (cholesterol esterase) that hydrolyzes CE, lead

to insufficient free cholesterol available to P450scc and development

of Wolman disease (primary xanthomatosis) featured by adrenal

insufficiency (103). Impaired cholesterol biosynthesis due to defects

in sterol 7-reductase gene, DHCR7, in the Smith-Lemli-Opitz

syndrome may lead to adrenal insufficiency, especially during

times of stress or if LDL is inadequate (30).
Discussion

The study of lipid metabolism has transformed our understanding

of cell function. Lipids lie at the core of adrenal structure and function.

Although the mechanisms involved in lipid metabolism in the adrenal

gland were readily investigated during the past three decades, so far

acquired knowledge has been barely therapeutically harnessed to

clinically modulate adrenal function, for instance treat excessive

cortisol or aldosterone production. However, lipophilic statin use in

hypertensive and diabetic patients was associated with reduced basal

and angiotensin II-stimulated aldosterone levels (104). Statins

suppress HMGCR while they also inhibit caveolin-1-mediate

endocytosis of lipoprotein receptors (104, 105). Hence,

downregulation of aldosterone synthesis due to inhibition of

cholesterol uptake and synthesis in adrenocortical cells may underlie

the anti-hypertensive effect of statins (44). Especially lipophilic statins,

such as simvastatin, which are more readily uptaken in the adrenal

cortex, could be used to reduce aldosterone levels (104). Hence,

preclinical and clinical studies and retrospective clinical analyses

should be performed to elucidate the impact of statins in

aldosterone release. As primary aldosteronism often co-occurs with

cardiovascular disease and metabolic syndrome, combinatorial

treatments with statins and antihypertensives could more potently

reduce aldosterone levels and ameliorate the outcomes of primary

aldosteronism, including ischemic heart disease or stroke (44, 106).

Moreover, modulation of the phospholipid composition of the

adrenal cortex may present a means to control elevated corticoid

production (59). Particularly, lowering the AA content of
Frontiers in Endocrinology 06
phospholipids through regulation of FADS2 by dietary adjuncts,

such as icosapent ethyl, could be a novel strategy to regulate

moderately elevated corticoid production in obesity, a concept

which merits clinical investigation (59). Concluding, investigation

of adrenal function under the prism of lipid metabolism may reveal

new valuable concepts of endocrine regulation in normal and

pathological conditions.
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