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Diabetes and calcific aortic
valve disease: controversy of
clinical outcomes in diabetes
after aortic valve replacement
Feng Liu and Haipeng Cai*

Department of Cardiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
Calcific aortic valve disease (CAVD) is a progressive disease, of which the 2-year

mortality is >50% for symptomatic aortic valve stenosis unless transcatheter

aortic valve replacement (TAVR) or surgical aortic valve replacement (SAVR) is

performed promptly. The prevalence of diabetes among CAVD has increased

rapidly in recent years. The combination of diabetes with its cardio-renal and

metabolic comorbidities, such as hypertension, hyperlipidemia, chronic kidney

disease, and ageing, accelerated the progression of CAVD and increased the

subsequent needs for aortic valve replacement. Clinical data regarding the

impact of diabetes on outcomes of patients undergoing TAVR or SAVR have

exhibited inconsistent results. Compared with non-diabetes, the short-term

mortality after TAVR was not significant in diabetes, while the mid-term

mortality differed from different cohorts. Although there were worse mid-term

and long-term mortalities after SAVR in diabetes, the short-term mortality in

diabetes was disputable. As for complications, there were common worse

manifestations with coronary heart disease, acute kidney injury, heart failure,

and systemic inflammatory response syndrome in diabetes undergoing TAVR or

SAVR. Moreover, diabetes was one of the risk factors for deterioration of

bioprosthetic aortic valves, leading to increased long-term mortality. Based on

the efficacy for CAVD and atherosclerotic cardiovascular disease, glucose-

lowering medications might have potential to inhibit deterioration of

bioprosthetic aortic valves independent of glucose control.
KEYWORDS

calcific aortic valve disease, diabetes, transcatheter aortic valve replacement, surgical
aortic valve replacement, deterioration of bioprosthetic aortic valve
1 Introduction

Calcific aortic valve disease (CAVD) is a progressive disease that has been occurring

with rapidly increasing morbidity because of the ageing of the population (1). With the

progression of aortic valve stenosis (AVS), the extent of cardiac damage gradually increased

from left ventricle to right ventricle (2). Although mortality did not increase when AVS was
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asymptomatic, the 2-year mortality was more than 50% for patients

with symptomatic stenosis (3, 4). Emerging evidence has indicated

that CAVD was an active and regulable pathological process in

which the risk factors, such as diabetes, hypertension, and

hyperlipidemia, were similar to those of other cardiovascular

diseases (5, 6). However, lipid-lowering therapy with atorvastatin,

simvastatin and ezetimibe, or rosuvastatin did not prevent the

progression of CAVD (7–9). There are currently no effective

pharmacotherapies to retard or reverse the progression of CAVD.

Transcatheter aortic valve replacement (TAVR) and surgical aortic

valve replacement (SAVR) are the only effective treatments for end-

stage CAVD.

Patients with diabetes were at increased risk of developing

various cardiovascular diseases, including coronary artery disease

(CAD), stroke, peripheral artery diseases, and CAVD (10).

According to large-scale retrospective observations worldwide, the

prevalence of diabetes in CAVD ranged from 11.4% to 31.6%, and

increased by almost 50% in the recent decade (11–14). It was worth

noting that the prevalence of diabetes in CAVD undergoing TAVR

or SAVR also increased rapidly in recent years (13–16). Diabetes

stood as a major risk factor for developing hypertension,

hyperlipidemia, chronic kidney disease (CKD), and ageing (17),

which were all associated with the initiation of CAVD (Figure 1)

(18). The combination of diabetes with these cardio-renal and

metabolic comorbidities accelerated the progression of CAVD

and increased the subsequent needs for aortic valve replacement

(AVR). The underlying mechanism of diabetes and its
Frontiers in Endocrinology 02
comorbidities involved endothelial dysfunction, immune cell

infiltration, oxidative stress, lipid retention, as well as subsequent

osteogenic and myofibroblastic differentiation of valvular interstitial

cells (VICs) and eventual calcification (18, 19). Once fibrosis and

calcification of the aortic valve initiated, the majority of patients

developed AVS progressively (20).

Diabetes was generally considered as an adverse factor in

patients with cardiovascular diseases needing surgical or invasive

interventions. The impact of diabetes on AVR manifested with

various complications, such as CAD, acute kidney injury (AKI),

heart failure, and systemic inflammatory response syndrome

(SIRS). However, clinical data regarding the impact of diabetes on

outcomes of patients undergoing AVR have exhibited inconsistent

results. The short-termmortality after SAVR was significantly lower

in diabetes according to the Spanish National Hospital Discharge

Database, while another Spanish study found no difference in short-

term mortality between diabetes and non-diabetes patients (14, 21).

Diabetes was found as a risk factor for mid-term mortality after

TAVR in a meta-analysis including 64 studies (22). However,

according to the VARC-2 criteria, diabetic patients did not have

increased mid-term mortality after TAVR compared with non-

diabetic patients (23). There is currently no article that has

summarized the influence of diabetes on clinical outcomes

after AVR.

In this review, we present the prevalence of diabetes in CAVD.

Then, we discuss the underlying mechanisms of diabetes and its

comorbidities in CAVD. Most importantly, we discuss the
FIGURE 1

Risk factor and time course of diabetes concomitant to calcific aortic valve disease. Shown is the relationship among disease stage, risk factor,
molecular link, valve anatomy, stage of cardiac damage, and the age of the patient. The morbidity of aortic valve stenosis (dashed line) increased
rapidly with age. Once in symptomatic stenosis, the mortality of aortic valve stenosis (solid line) increased rapidly. Once with cardiac damage, aortic
valve replacement was the only effective treatment. AGEs, advanced glycation end products; RAGE, receptor for AGEs; LV, left ventricle; LA, left
atrium; RV, right ventricle; RA, right atrium; LVEF, left ventricular ejection fraction; TAVR, transcatheter aortic valve replacement; SAVR, surgical aortic
valve replacement.
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controversies of clinical outcomes in diabetic patients undergoing

TAVR or SAVR. Finally, we summarize updated knowledge about

the influence of diabetes on the deterioration of bioprosthetic aortic

valve (BAV).
2 The prevalence of diabetes in CAVD

With the ageing of the population, the incidence rate of diabetes

concomitant to AVS has increased rapidly by years (Table 1). The

CURRENT AS registry, enrolling 3,815 consecutive patients with

CAVD in Japan between 2003 and 2011, showed that 11.4% of

patients had concomitant diabetes (11). The multi-central,

prospective, observational PRIMID AS study, conducted in 10

hospitals in the United Kingdom between 2012 and 2014, showed

that 14.4% of patients with moderate to severe AVS had

concomitant diabetes (12). Another study, performed in the

Swedish population-based cohort study, showed that the

prevalence of diabetes was 15.8% in severe AVS (24). In recent

decades, the incidence of AVR increased rapidly in CAVD with

diabetes. A retrospective analysis of patients with SAVR between

1987 and 2016 in Netherlands revealed that the prevalence of

diabetes has increased from 7.8% to 17.9% over three decades

(15). Likewise, the retrospective data from Spanish cohorts

(2001–2015) showed that the prevalence of diabetes increased

significantly from 16.7% to 23.5% in patients undergoing SAVR

(14). The MedPAR file, reporting trends in demographic

characteristics associated with isolated AVR in the United States,

showed that the prevalence of diabetes increased from 19.7% to

31.6% between 2009 and 2015 in the SAVR cohort and increased

from 34.2% to 36.8% between 2012 and 2015 in the TAVR cohort

(13). According to the data from the National Inpatient Sample

between 2012 and 2017, hospitalizations of diabetes undergoing

TAVR increased from 0.97 to 7.68/100,000 adults (16). In the

Danish nationwide registers, the prevalence of diabetes
Frontiers in Endocrinology 03
undergoing TAVR significantly increased from 14.2% in 2008–

2010 to 19.4% in 2017–2018 (25). Overall, with the increased

prevalence of diabetes undergoing AVR in recent years, the

influences of diabetes on clinical outcomes after TAVR or SAVR

have been getting more and more attention.
3 Risk factor and molecular link for
CAVD in diabetes

3.1 Hyperglycemia

Diabetes is a chronic disease characterized by hyperglycemia

and manifested by various cardiovascular diseases. Recent research

has found that a hyperglycemia-simulating environment attenuated

experimentally induced osteogenic differentiation of cultured

human VICs (26). To further mimic the events of aortic valve

tissue in diabetic conditions, chronic hyperglycemia was assessed in

valvular endothelial cells (VECs) and VICs via a gelatin

methacrylate 3-dimension model (27). The gene expressions of

MCP-1 and IL-1b were increased both in VECs and VICs after

high-glucose treatment for 14 days, exhibiting changes of

extracellular matrix (ECM) remodeling and inflammation (27).

However, in another dynamic three-dimension aortic valve leaflet

model using a software-governed bioreactor system with controlled

pulsatile flow, hyperglycemia did not exhibit any impact on fibrosis

or calcification on the aortic valve (28). In vivo, LDLR-/-ApoB100/100

mice fed with diabetogenic diet had higher incidence of aortic valve

incrassation and stenosis in comparison with normal chow (29).

This controversial relationship between hyperglycemia and VIC

osteogenesis indicated that there were other complicated

mechanisms of diabetes on developing CAVD beyond sole

hyperglycemia. Exposure to hyperglycemia in diabetes rapidly

accelerated circulating advanced glycation end product (AGE)

formation (30). Extracellular AGEs modified global tissue
TABLE 1 The Prevalence of Diabetes in CAVD.

Study
type

Characteristic Population Conclusion
Ref.

Retrospective CURRENT AS 3,815 11.4% of CAVD had concomitant diabetes. (11)

Prospective PRIMID AS 174 14.4% of patients with moderate to severe AVS had concomitant diabetes. (12)

Retrospective 777 The prevalence of diabetes was 15.8% in severe AVS. (24)

Retrospective 4,404
The prevalence of diabetes has increased from 7.8% to 17.9% over three decades, in Netherlandish
patients undergoing SAVR.

(14)

Retrospective SNHDD 78,223
The prevalence of diabetes increased significantly from 16.7% to 23.5% in Spanish patients
undergoing SAVR.

(15)

Retrospective MedPAR 233,660 The prevalence of diabetes increased from 34.2% to 36.8% between 2012 and 2015 in TAVR cohort. (13)

Retrospective NIS 428,427 The hospitalizations of diabetes undergoing TAVR increased from 0.97 to 7.68/100,000 patients. (16)

Retrospective 6,097
The prevalence of diabetes undergoing TAVR increased from 14.2% in 2008-2010 to 19.4% in
2017-2018.

(25)
frontier
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structure and function by binding to the receptor for AGEs (RAGE)

(31). In a study on 76 patients undergoing AVR, both the plasma

and valvular levels of AGEs were increased in patients with diabetes

(32). Overexpression of valvular AGEs was associated with

increased mean transvalvular pressure gradient , and

overexpression of plasma AGEs was associated with aortic valve

area and max transvalvular pressure gradient (32). In an animal

model of CAVD, RAGE deficiency attenuated morphometric

infiltration, calcification, and AGE accumulation in the aortic

valve (33). In vivo, the knockdown of RAGE in high-cholesterol
Frontiers in Endocrinology 04
diet-fed ApoE-/- mice attenuated the expression of RUNX2 mRNA

via NF-kB/ATF4/CHOP pathway (Figure 2 Panel 5) (34).
3.2 Diabetic complications

3.2.1 Hypertension
Hypertension was the most common complication of diabetes,

and 40–60% patients with diabetes would develop abnormal blood

pressure or hypertension sooner or later (35). Patients with diabetes
FIGURE 2

Pathway and molecular link between diabetes and calcific aortic valve disease. Pathological mechanism of initiation and progression of CAVD in
diabetes was shown as crosstalk of various pathways. Different stimuli induced EndMT and broke the endothelial barrier, resulting in infiltration of
lipoproteins and immune cells. This infiltration was accompanied by the overproduction of ROS via dysregulation of eNOS, and accumulation of
NOX and MitoROS. Oxidative stress could promote the formation of OxLDL and OxPL, which induced osteogenic differentiation of VICs, and
eventual bone formation. Apoptosis of VICs and subsequent diffuse calcification were induced by infiltrated macrophages, T lymphocytes and mast
cells via direct interaction, activation of Ang II, and secretion TGFb, TNFa, IL-1b, and IL-6. Increased circulating AGEs induced the pro-osteogenic
reprogramming via RAGE/NF-kB/ATF4/CHOP pathway. Diffuse calcification accounted for approximately 83% of all calcification deposits, while bone
formation accounted for the other 17%. LDL, low-density lipoprotein; Lp(a), lipoprotein (a); EndMT, endothelial-to-mesenchymal transition; ROS,
reactive oxygen species; eNOS, endothelial nitric oxide synthase; NOX, nicotinamide adenine dinucleotide phosphate oxidase, MitoROS,
mitochondria-generated ROS; OxLDL, oxidized LDL; OxPL, oxidized phospholipids; Ang, angiotensin.
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developed increased arterial resistance caused by vascular

remodeling and increased circulating volume caused by

hyperglycemia, both of which elevated blood pressure (36).

Approximately 70% of the patients with AVS had concomitant

hypertension (37). In a large-scale clinical observation involving a

5.4-million population without known valvular heart disease, long-

term exposure to elevated blood pressure (median follow-up of 9.2

years) was associated with an increased risk of AVS (38).

Specifically, each 20-mmHg increase in systolic blood pressure

was associated with a 41% higher risk of AVS (38). VECs were

the first cells to be affected by hemodynamic changes. There were

pieces of evidence finding that hypertension could accelerate the

progression of CAVD by hemodynamic flow disturbance, which

could cause mechanical damage to the VECs, especially on the

aortic side (39, 40). Under exposure to circulating stimulants, VECs

could differentiate into mesenchymal valve progenitor cells, a

precursor of VICs, in a process called endothelial-to-

mesenchymal transition (EndMT) (19). A relatively high rate of

EndMT led to a destruction of the endothelial barrier due to the loss

of adherent junction (Figure 2 Panel 1) (41). Lymphocyte and

macrophage infiltrated into the aortic valve through a destroyed

endothelial layer and secreted various procalcific and

proinflammatory cytokines (42). TGFb and IL-1b would in turn

stimulate the EndMT of VECs (43, 44). When those pathological

factors constantly existed in the aortic valve, endothelial-derived

VICs could differentiate into the osteoblastic phenotype (19). Once

the osteogenesis has been launched, RUNX2 served as the marker of

calcification. The current hypotheses suggested that the activation

of RUNX2 involved activated STAT3 or STAT5, which, due to

activating inflammatory signaling, translocated into the nucleus and

bound onto STAT binding sites in the promoter region of RUNX2,

leading to the recruitment of additional transcription factors, co-

transcription factors, and chromatin remodelers (45, 46).

3.2.2 Hyperlipidemia
Abnormal lipids metabolism was one of the major

comorbidities in diabetes, which has been recognized as a

hallmark in the early stage of CAVD and could be detected long

before calcium deposits by PET-CT (47). A genome-wide meta-

analysis of 11.6 million variants in 10 cohorts, involving 653,867

European ancestry participants, supported a causal contribution

of lipoprotein (a) (Lp(a)), apolipoprotein B, and low-density

lipoprotein (LDL) to AVS (48). In the Global Lipids Genetics

Consortium, which included 188,577 participants, the odds ratio

for developing AVS per unit increase in lipid parameter was 1.52

for LDL (49), indicating that LDL-lowering medication might be

effective in prevention of CAVD. However, three large-scale

randomized clinical trials (RCT) failed to illustrate any

significant benefit of LDL-lowering medication with statins on

the prevention of AVS (7–9), indicating that further studies were

needed to seek the association of other lipid indexes and CAVD.

Accumulation of reactive oxygen species (ROS) promoted the

transformation of LDL to oxidized LDL (OxLDL) and the

transformation of Lp(a) to oxidized phospholipids (OxPL),

which have been proven to faci l i tate the osteogenic
Frontiers in Endocrinology 05
differentiation of VIC in vitro study (Figure 2 Panel 2) (50, 51).

OxLDL increased the expression of cell adhesion molecules,

including ICAM-1 and VCAM-1, which consequently promoted

RUNX2 expression and calcific remodeling in the aortic valve (52,

53). Liquid chromatography–tandem mass spectrometry

demonstrated that lysophosphatidic acid (LysoPA), the

decomposition production of OxPL catalyzed by autotaxin, was

overexpressed in calcified leaflets in comparison with normal

leaflets (54). Further study has shown that OxPL and LysoPA

could accelerate the osteogenic differentiation of VICs by binding

to LysoPA receptor 1 (LPAR1), levels of which were also increased

in calcified leaflets (55). Inhibition of LPAR1 decelerated the

progression of AVS and calcium deposits in the aortic valve

(56). LPAR1 could instigate a pro-calcific gene program in VICs

via RhoA/NF-kB/BMP2 activation (56).

3.2.3 Chronic kidney disease
As one of the major complications of diabetes, approximately

30–40% of patients with diabetes developed diabetic nephropathy

eventually (57), which progressively caused CKD and was

associated with increased mortality (58). The prevalence of

CAVD ranged from 28% to 85% in patients with CKD (59). Even

in stage 2 and 3 CKD, >30% of the patients were found to have

detectable aortic and/or mitral valve calcification (60). Moreover,

functional AVS was found in 9.5% of patients with CKD in

comparison with 3.5% of the general population (61). Even when

taking account of age, race, sex, diabetes, and hypertension, patients

with CKD had a 1.2- to 1.3-fold increased risk of CAVD (61).

Multiple mediators in CKD, including hyperphosphatemia,

calcium–phosphate product, parathyroid hormone, and

systematic inflammation, have been identified as risk factors of

calcium deposition in the aortic valve (62). By conducting single-

cell RNA sequencing with aortic valve leaflets excised from CAVD

patients, VICs (72.64%) accounted for a major proportion among

all cell types, followed by monocytic cells (19.52%), lymphocytes

(6.23%), VECs (1.28%), and mast cel ls (0.33%) (63).

Immunohistochemistry staining showed chronic immune cells

infiltration on calcified valve leaflets, involving CD68+

macrophages, CD3+ T lymphocytes, and mast cells, while only

few unactivated immune cells were exhibited in healthy valve

leaflets (Figure 2 Panel 4) (64, 65). Monocytes and macrophages

activated the RUNX2 overexpression in VICs through secretion of

TGFb, TNFa, IL-1b, and IL-6 (66). Moreover, the release of

extracellular vesicles from macrophages induced diffuse

calcification due to the release of apoptotic bodies by VIC

apoptosis (67). Likewise, the infiltrated CD8+ cytotoxic

lymphocytes in diseased aortic valve induced apoptosis of VICs

by direct interaction (68). The bulk of mast cells have been activated

to degranulate and release chymase and cathepsin G in the calcified

aortic valve, which both could convert angiotensin I to angiotensin

II (69). Notably, exposure of VICs to angiotensin II promoted the

expression of RUNX2, by binding to the angiotensin II receptor 1

(70). Accordingly, exposure of ApoE-/- mice to high-dose

angiotensin II contributed to myofibroblastic differentiation of

VICs and eventual aortic valve leaflet thickening (71).
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3.2.4 Ageing
Ageing was a powerful independent risk factor for degenerative

aortic valve disease. Diabetes was closely associated with ageing and

was a major risk factor for ageing-associated cardiovascular diseases

(72). Aortic valve calcification used to be viewed as a degenerative

process, where calcification was thought to be the consequence of

physiological ageing (5). Interestingly, a renewed characterization of

the ageing aortic valve has emerged in recent years. Many prior

studies that examined “healthy” elderly valves actually involved valve

leaflets with calcification (73, 74), meaning that those data could not

be used to define the characteristics of a normal, ageing valve. That

was because the majority of samples in these references had come

from individuals over 60 years old, and approaches and techniques

have significantly evolved. Furthermore, while CAVDwas considered

a disease of old people, recent demographics showed that CAVD

could be detected in the twenties, especially in those suffering from

bicuspid aortic valve (75). Thus, diabetes-related pathological ageing

probably participated more in the onset and development of CAVD

compared with physiological ageing. Accelerated oxidative stress was

a common factor in ageing and diabetes (76). Three major sources of

ROS were uncoupled nitric oxide synthases (NOS), reduced

nicotinamide adenine dinucleotide phosphate oxidase (NOX), and

mitochondria-generated ROS (MitoROS) (77). Exposure of VECs to

exogenous TNFa and H2O2 promoted endothelial NOS (eNOS)

uncoupling, leading to increases in endogenous superoxide and

H2O2 levels, which could promote ECM remodeling and calcium

deposition in aortic valve (Figure 2 Panel 3) (78). Recent evidence has

demonstrated that isoform specific NOX-derived ROS might be

involved in the development of CAVD. Intense NOX2

accumulation was found in VIC osteogenesis and in calcified

regions of aortic valve leaflets (79). In hypercholesteremic mice, the

mRNA level of NOX2 was increased in harvested valve leaflets, while

no change was observed for NOX4 (80). Mitochondrion was a critical

organelle responsible for both ROS production via end product from

oxidative phosphorylation and ROS elimination via mitochondrial

superoxide dismutase-mediated dismutation of superoxide (81). Loss

of mitochondria was found in aortic valve leaflets excised from

patients with CAVD and LDLR-/- mice fed with high-cholesterol

chow (82). In cultured human VICs, treatment with Lp(a) promoted

VIC osteogenic differentiation accompanied by MitoROS production

(83). Our recent study revealed that both b-glycerophosphate acid

and TGFb treatment stimulated MitoROS production and RUNX2

expression in VICs, which was accompanied by decreased

mitochondrial biogenesis and mitochondrial dysfunction (82).
3.3 Multifactorial interactions

Apart from direct effects of diabetes (e.g., hyperglycemia, AGEs/

RAGE pathway, oxidative stress, EndMT, and inflammation), there

were multifactorial interactions between those diabetic complications

(e.g., hypertension, hyperlipidemia, CKD, ageing), which participated

jointly in the initiation and progression of CAVD. Hypertension-

induced hemodynamic shear stress on the aortic side induced

endothelial dysfunction and hampered barrier function, which
Frontiers in Endocrinology 06
exacerbated lipid deposition in an aortic valve under a

hyperlipidemic condition (84). CKD caused hypertension through

an interplay of factors, including water–sodium retention, renin–

angiotensin system overactivation, and endothelial dysfunction (85),

which were common pathological factors of CAVD. Hyperglycemia

represented a key cellular stress in the kidney by altering cellular

metabolism in endothelial cells and podocytes (86). Thereafter,

increased oxidative stress and activation of inflammatory pathways

caused progressive kidney function decline and fibrosis (86).

Hyperlipidemia was associated with low-grade systemic

inflammation, which might lead to insulin resistance, insulin

deficiency, and consequent hyperglycemia (87). As two of the

subsets of metabolic syndrome, hyperlipidemia and hyperglycemia

jointly promoted CAVD via oxidative stress and chronic

inflammation (84).
4 Diabetes in transcatheter aortic
valve replacement

TAVR was a percutaneous treatment option for symptomatic

severe aortic valve stenosis, especially among patients at high

surgical risk (88). The prevalence of diabetes was up to a third of

cases in TAVR patients (89–91). However, the association between

diabetes and outcomes after TAVR procedure remained

controversial (Table 2). Some studies described similar rates of

complications (90, 92), while others reported higher (89, 91) or even

lower 1-year mortality rates (93, 94). This controversy was

represented in mortality risk prediction scores, which were based

on data from surgical patients. STS-PROM score included diabetes

as a risk factor (95). However, logistic EuroSCORE did not include

diabetes as a risk factor (96), whereas EuroSCORE II only included

insulin-treated diabetes (97). EuroSCORE II was the most accurate

risk score with slight underestimation of actual mortality, whereas

STS-PROM score and logistic EuroSCORE overestimated observed

mortality (98). A meta-analysis including 64 studies with a total of

38,686 patients found that diabetes was associated with increased 1-

year mortality after TAVR (22). Moreover, although insulin-treated

diabetes was not associated with adverse outcome compared with

orally treated diabetes, elevated HbA1c levels might be associated

with increased mortality during long-term follow-up (99). Stress

hyperglycemia ratio has recently been recognized as an accurate

biomarker that represented true hyperglycemia status (100). In a

prospective single-center study with a median follow-up of 3.9

years, stress hyperglycemia ratio was linearly associated with all-

cause mortality and cardiovascular mortality in patients undergoing

TAVR (101). However, according to the VARC-2 criteria, there

were no significant differences of 30-day and 2-year mortality in

patients undergoing TAVR between diabetes and non-diabetes (23,

99). Moreover, in a propensity matched analysis of multicentral

registry including data from >12,000 patients undergoing

transfemoral TAVR, diabetes was not associated with worse

outcomes within the first year after TAVR, which underscored

the safety of TAVR treatment in diabetes patients (98). Similarly,

according to the data from the Spanish cohorts, diabetic patients
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undergoing TAVR did not exhibit increased in-hospital mortality

compared with non‐diabetic patients (94). Further study has found

some relationship between diabetes and TAVR in a specific cohort.

An observational study of all consecutive patients treated with a

transfemoral TAVR in a single-center cohort revealed that male

patients with diabetes had significantly higher 3-year mortality

compared with males without diabetes and there was no

difference in 3-year mortality for female patients with and

without diabetes, indicating gender-dependent association

between diabetes and mortality after TAVR (102). Nevertheless,

another observational study demonstrated that no influences of

diabetes presence on the risk of 30-day and 1-year mortality after

adjustment for age and gender (103). Anyway, in a post-hoc analysis

of the PARTNER trial, diabetic patients were noted to have

decreased 1-year mortality when treated with TAVR compared to

SAVR (93). Overall, the short-term mortality after TAVR was not

significant between diabetes and non-diabetes, while the mid-term

mortality remained controversial. Taken together, these

observations might tend to favor a transcatheter approach when

either approach would be a reasonable option, particularly in those

with diabetes. There is a need for RCT and large cohorts with long-

term follow-up of diabetes vs. non-diabetes in patients undergoing

TAVR (Figure 3).
4.1 TAVR procedure

The risk factors of CAVD, including diabetes, hypertension,

and CKD, were more involved in the disease development in

patients with tricuspid aortic valves than those with bicuspid

aortic valves (104). In asymptomatic moderate-to-severe AVS,

patients with tricuspid aortic valves were older and had higher

proportion of diabetes, compared with bicuspid aortic valves (104).

However, the in-hospital mortality did not differ between

transfemoral and transapical access in diabetes undergoing TAVR

(105). Transfemoral access was associated with a higher incidence
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of vascular complications and permanent pacemaker implantation

(PPI) implantation than transapical access (105). Especially,

transfemoral access for TAVR was associated with higher

mortality, acute stroke, AKI, hemodialysis, and percutaneous

coronary intervention (PCI) in complicated diabetes with

diabetes-related complications than in non-complicated diabetes

(105). Although balloon pre-dilatation was not associated with

device success or any post-procedural complications in TAVR

procedure, there was less diabetes in pre-dilatation group (106).

There were overall comparable outcomes between balloon-

expandable and self-expanding valve for TAVR (107). In a

subgroup analysis of in-hospital mortality, there was no

significant difference concerning the type of valve in diabetes (108).
4.2 Obesity

The “abnormality” in in-hospital and short-term mortality in

diabetes after TAVR might be attributed to diabetes-related obesity.

The relationship between body mass index (BMI) and

cardiovascular risk prediction was recognized as an “obesity

paradox”. On the one hand, obesity has long been established as a

risk factor for atherosclerotic cardiovascular disease (ASCVD)

(109). On the other hand, increased BMI was found as a

protective factor in patients undergoing cardiovascular surgery or

intervention (110, 111). Similarly, in comparison with normal-

weight patients, patients who were overweight or had obesity had

a lower incidence of 30-day mortality, 1-year mortality, and long-

term mortality after TAVR (112). Obesity was one of the most

common concomitant statuses in patients with diabetes. In patients

undergoing TAVR, increased BMI was associated with increased

rate of diabetes at baseline (113). However, obesity has been

identified as an independent risk factor for vascular

complications, PPI, and AKI in patients undergoing TAVR (114,

115). The association between obesity and other post-TAVR

complications, including cerebrovascular events, new-onset atrial
TABLE 2 Diabetes in TAVR.

Study type Characteristic Population Conclusion Ref.

Retrospective SNHDD 2,141
Diabetes undergoing TAVR did not exhibit increased in-hospital mortality compared with
non‐diabetes.

(94)

Retrospective 586 Diabetes was not associated with an increased 30-day mortality after TAVR. (99)

Prospective VARC-2 443
Diabetes seemed to have similar 30-day and 1-year mortality after TAVR compared with
non-diabetes.

(23,
103)

Prospective OCEAN-TAVI 2,588 Presence of diabetes was significantly associated with higher 2-year mortality after TAVR. (89)

Retrospective STS/ACC TVT 47,643 Diabetes was associated with increased 1-year mortality after TAVR. (91)

Retrospective TAVIK 2,000 Diabetes was not an independent factor associated with 3-year mortality in TAVR. (90)

Retrospective WIN-TAVI 1,012
Insulin-dependent diabetes was not associated with an increased 30-day and 1-year mortality
after TAVR.

(92)

Prospective PARTNER 699 The 1-year mortality after TAVR was lower in diabetes than non-diabetes. (93)
front
CAVD, calcific aortic valve disease; VARC-2, Valve Academic Research Consortium 2; OCEAN-TAVI, Optimized transCathEter vAlvular iNtervention-transcatheter aortic valve implantation;
STS/ACC TVT, Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy; TAVIK, TAVI team Karlsruhe; WIN-TAVI, Women's International Transcatheter
Aortic Valve implantation; PARTNER, Placement of Aortic Transcatheter Valves.
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fibrillation, and myocardial infarction, has received emerging

research attention. Therefore, the nuanced influence of obesity on

TAVR outcomes necessitated deeper exploration, particularly

considering the unique physiological and metabolic profiles

inherent to individuals with obesity.
4.3 Coronary artery disease

CAD and CAVD were frequently concomitant due to similar

risk factors, such as diabetes. About 25% of TAVR recipients have

undergone PCI before TAVR in real-world TAVR registries (116).

However, coronary artery bypass grafting (CABG) at the time of

SAVR has been considered the gold standard in such patients (117).

More and more studies pointed to TAVR+PCI as an alternative

method (118). Patients with prior CABG had higher rate of diabetes

(119), which might be due to higher rate of three-vessel CAD and

higher SYNTAX score in diabetes. As for prior PCI, diabetes was

associated with increased risk of major adverse cardiovascular

events (MACE) (120). However, in stable CAD with diabetes,

completeness of PCI either staged or concomitantly with TAVR

was similar to undergoing TAVR without PCI concerning the all-

cause death and MACE (121). As for acute coronary syndrome after

TAVR, the concomitance with diabetes was associated with a higher

rate of early mortality among patients undergoing urgent or

emergent PCI (122, 123).
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4.4 Acute kidney injury

Adjusted multivariate Cox regression analyses found that AKI

was associated with increased risk of long-term mortality after

TAVR (23). A meta-analysis of 64 studies showed that diabetes

was associated with increased AKI after TAVR (22). Similarly,

based on the data from 410 patients undergoing TAVR, kidney

function improvement after TAVR was lower in diabetes than that

in non-diabetes (124, 125). Among patients with end-stage renal

disease, diabetes was one of the predictors of dialysis and

readmission after TAVR (126–128). Diabetes was known to be a

cause and prognostic factor for patients on dialysis. The influence of

diabetes on kidney function after TAVR was mainly dependent on

the baseline glomerular filtration rate and prior blood glucose

control. Concomitance with diabetic nephropathy, especially with

end-stage renal disease, might be associated with worse outcome

after TAVR in diabetic patients.
4.5 Heart failure

In TAVR, early findings showed that heart-failure-related death

and sudden cardiac death accounted for approximately a third of

total deaths and two-thirds of cardiac related deaths (129, 130).

Among TAVRs with a newer-generation device including the self-

expandable Evolut R/Pro/Pro+ valve and balloon-expandable
FIGURE 3

Clinical outcome and complication of diabetes in transcatheter aortic valve replacement. Compared with non-diabetes, the impact of diabetes on
clinical outcomes and various complications after TAVR.
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SAPIEN S3/ULTRA valve, advanced heart-failure-related deaths

accounted for 11.6% of total deaths and sudden cardiac death

accounted for 7.5% of total deaths (131). Diabetes was

independently associated with an increased risk of sudden cardiac

death in TAVR (131). The several possible mechanisms were silent

myocardial ischemia, QT interval prolongation, diabetic

cardiomyopathy, increased arrhythmogenic potential, and

hypercoagulability (132). Patients with diabetes were at an

increased risk of hospitalization for heart failure at 1-year after

TAVR (133, 134). Most of the patients obtained myocardial

recovery after TAVR due to decreased cardiac afterload. However,

post-TAVR left ventricular ejection fraction recovery was impaired

in patients with diabetes (135, 136). Diabetes was associated with

elevated left ventricular filling pressure and prior right ventricular

dysfunction (137, 138), resulting in more severe heart failure

symptoms and more loop diuretic therapy after TAVR (139).

These residual myocardial injuries might explain the inferior

manifestation of heart failure. The underlying pathophysiologic

mechanisms might include changes in vascular homeostasis with

diminished nitric oxide and increased ROS levels due to prolonged

hyperglycemia, insulin resistance, and hyperinsulinemia, which

activated pro-inflammatory pathways that resulted in the

progression of atherothrombosis and dysfunction of the

myocardium (140). Moreover, diabetes was associated with

chronic and new-onset heart failure through neurohormonal

dysregulation inducing cardiac fibrosis and decreasing cardiac

efficiency (133).
4.6 Stroke

Post-procedural stroke was a devastating complication after

TAVR and was associated with decreased long-term survival and

reduced quality of life (141, 142). The national SWENTRY registry

identified diabetes as one of the pre-disposing factors for stroke

after TAVR (143). Up to 70% of the stroke was presented with

clinically silent stroke or peri-procedural silent brain infarcts, which

might be due to subclinical leaflet thrombosis (144). Meta-

regression found that diabetes was associated with increased risk

of silent brain infarcts (145). In prospective RETORIC trial, diabetes

was an independent predictor of event of subclinical leaflet

thrombosis (146). This should not seem surprising, as diabetes

was independently linked to a higher risk of cerebrovascular disease,

thereby reducing the insult threshold required for an

ischemic event.
4.7 Permanent pacemaker implantation

Intraventricular conduction abnormalities, particularly high-

degree atrioventricular block, requiring PPI were one of the major

complications after TAVR procedure (147). New-onset left bundle

branch block and diabetes independently predicted high-degree

atrioventricular block requiring PPI after TAVR and helped to

identify patients at risk (148–150). Moreover, post-TAVR PPI was
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associated with hospitalization of heart failure and myocardial

infarction (150). However, there was still a literature finding

diabetes as a negative predictor of PPI following TAVR (151).

This contradictory result might be affected by confounders not

included in the multivariate analysis, such as size of implanted valve

and diabetic status.
4.8 Systemic inflammatory response
syndrome

Previous work has reported that approximately one-third of

patients developed an acute inflammatory response within 48 hours

after TAVR (152). Therein, severe SIRS developed in approximately

6% of patients undergoing TAVR (153). This SIRS was manifested

with significantly elevated levels of inflammatory cytokines (such as

IL-6 or IL-8) and C-reactive protein (CRP). The occurrence of SIRS

was shown to be a strong predictor of mortality in patients

undergoing TAVR (153, 154). Previous study found that the

presence of diabetes, increased baseline high sensitivity CRP, and

low baseline Th2 cell counts were multivariate predictors of death

after TAVR (155). Another study found elevated fasting glucose and

CRP level as predictors of increased all-cause mortality after TAVR

(156). As mentioned above, diabetes was associated with systematic

inflammation in patients with CAVD. Plasma proteomics analysis

of the biomarker cohort revealed that IL‐1 receptors, GDF15, and

cathepsin D were significantly elevated and that pathways related to

inflammatory response were enriched in diabetic CAVD patients

(157). Overall, the chronic systemic inflammation status in diabetes

would be activated to some extent in TAVR procedure, and the

evocative severe SIRS was associated with the mortality.
4.9 Bleeding

In order to prevent postoperative thrombosis and delay

artificial valve dysfunction, dual antiplatelet therapy was

routinely required after TAVR procedure. Long-term bleeding

after TAVR was associated with an increased risk of subsequent

mortality (158). Previous study found that patients with high

bleeding risk after TAVR were more frequently presented with

diabetes compared with those with lower bleeding risk (159).

Moreover, there were some research studies finding that patients

with diabetes had a higher risk of major bleedings compared with

those without diabetes after TAVR (91, 160, 161). Nevertheless,

there was another research finding no significant differences in

major bleeding after TAVR between diabetes and non-diabetes

(22). Baseline diabetes was not associated with baseline platelet

reactivity levels in TAVR procedure (162). Similarly, there were

biases against the role of diabetes on bleeding in other

cardiovascular diseases (163). At present, there are no

differences in the antiplatelet therapy strategy following TAVR

between diabetes and non-diabetes. The absolute benefits of

antiplatelet therapy were largely counterbalanced by the

bleeding hazard.
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5 Diabetes in surgical aortic valve
replacement

In recent decades, the incidence of bioprosthetic SAVR

increased significantly in those with diabetes, which might partly

be attributed to an increased prevalence of CAVD and an increased

proportion of diseased patients diagnosed as such with ageing of

population (14, 164). According to a retrospective study from

Spanish cohorts, in‐hospital mortality was significantly lower in

diabetes undergoing bioprosthetic SAVR than non-diabetes, which

might be multifactorial (Table 3) (14). The impact of diabetes on

short-term mortality after SAVR still remained controversial;

diabetes has been found to be significantly and consistently

associated to higher in-hospital mortality in a huge Spanish

population after MACE, and there was no difference in 30-day

mortality between diabetes and non-diabetes (21). However, the

impact of diabetes on mid-term and long-term mortality after

SAVR was consistent in several clinical studies. Long-term (5-

year and 10-year) mortality was significantly higher in diabetes

after SAVR compared with non-diabetes (19.4% vs. 12.9% and

30.3% vs. 23.5%) (165). A post-hoc analysis of the PARTNER trial,

stratified according to the diabetes status of patients randomly

assigned to undergo SAVR, revealed a 1-year mortality rate of

27.4% in diabetes and 23.7% in non-diabetes (93). This association

was stronger among insulin-treated diabetes. In-hospital and long-

term mortality rates were higher in the subgroup of insulin-treated

diabetes compared with the subgroup of non-insulin treated

diabetes (165). Insulin-treated diabetes had more comorbidities

than non-insulin-treated diabetes and was prone to more

revascularization procedures (166). Therefore, the results of

mortality after SAVR in diabetes were partially dependent on the

baseline diabetic status. Overall, the mid-term and long-term

mortality rates after SAVR were higher in patients with diabetes

than non-diabetes, while the short-term mortality remained

controversial. There is a need for RCT and large cohorts with

long-term follow-up of diabetes vs. non-diabetes in patients

undergoing SAVR (Figure 4).
5.1 Obesity

Obesity was more prevalent in diabetes undergoing SAVR,

which might have contributed to the decrease in in‐hospital

mortality (167). The obesity paradox also indeed existed within
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the realm of SAVR. Post-SAVR complications such as myocardial

infarction, stroke, reoperation rates, AKI, new renal failure,

requirement of dialysis, and postoperative bleeding were either

more frequent in patients with higher BMI or equivalent to their

normal BMI counterparts (168, 169). Therefore, the role of obesity

in SAVR was disputable, regarding the integrated consideration of

mortality and postoperative complications. As obesity was a

worldwide problem and surgical techniques were advancing,

identification of the underlying causes of the obesity paradox was

essential to providing optimal care for patients of all body sizes

undergoing SAVR.
5.2 Coronary artery disease

Recent retrospective studies revealed that concomitant SAVR

and CABG were associated with a significantly higher in-hospital

mortality, while there was no additional mid-term or long-term

survival risk compared with isolated SAVR (170–172). In patients

undergoing concomitant SAVR and CABG, diabetes was associated

with 30-day, 180-day, and long-term mortality (170, 173). No RCT

focused on the long-term survival of performing a concomitant

CABG with SAVR are currently available. Long-term mortality was

higher in diabetes vs. non-diabetes, and especially in insulin- vs.

non-insulin-treated diabetes regardless of undergoing PCI or

CABG (174). Although the long-term mortality was not different

in diabetes treated either with PCI or CABG, lower mortality was

observed in CABG in the cohort with three-vessel CAD and high

SYNTAX score (175). Based on the potential organ-protective and

anti-inflammatory effects, a randomized, placebo-controlled clinical

trial for efficacy of glucagon-like peptide-1 (GLP-1) receptor agonist

exenatide and restrictive versus liberal oxygen supply in patients

undergoing CABG with/without SAVR is in progress (176). The

researchers intended to determine whether glucose-lowering

medication could improve the outcomes in such high-risk patients.
5.3 Acute kidney injury

AKI was another serious complication after SAVR and held

increased mortality. Diabetes was significantly associated with the

development of AKI after SAVR (177, 178). Insulin-dependent

diabetes was one of the predictors for post-SAVR renal failure

with hemodialysis (179). Kidney recovery after SAVR was more

frequent than AKI, which was associated with improved secondary
TABLE 3 Diabetes in SAVR.

Study type Characteristic Population Conclusion Ref.

Retrospective SNHDD 78,223
In‐hospital mortality was significantly lower in diabetes undergoing SAVR than non-diabetes in
Spain (2001-2015).

(15)

Retrospective SNHDD 100,854
there was no difference in in-hospital mortality between diabetes and non-diabetes, in patients
undergoing SAVR from 2002 to 2014.

(21)

Prospective PARTNER 699 The 1-year mortality after SAVR was 27.4% in diabetes and 23.7% in non-diabetes. (93)

Retrospective 1,053 Diabetes was an independent predictor for long-term mortality after SAVR. (165)
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clinical outcomes (180). Diabetes was a negative predictor of kidney

recovery after SAVR (125), indicating less reversible kidney injury

in diabetes. Compared with patients undergoing SAVR without

hemodialysis, patients with chronic renal failure on hemodialysis

had diabetes more frequently (181). Moreover, concomitance with

diabetes was associated with increased 30-day mortality in chronic

dialysis patients after SAVR (182). The conclusions in findings

might be related to differences in patients ’ controlled

hyperglycemia, use of medications, and prior glomerular filtration

rate, as diabetes was associated with ischemia and kidney injury.
5.4 Heart failure

Although SAVR resulted in significant improvements of pre-

existing myocardial impairments, concomitance with diabetes

exhibited more residual changes in myocardial structure,

contractile function, and blood flow (135, 183). It might be due to

more cumulative myocardial injuries in diabetes prior to SAVR and

persistent systematic diabetic toxicity after replacement. Therefore,

diabetes was one of the independent risk factors of rehospitalization

for heart failure after SAVR (184). The initiation and development

of myocardial structural/functional abnormalities leading to heart

failure in diabetes included multiple mechanisms, which remained

incompletely elucidated (185). Nevertheless, they encompassed
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common systemic factors with CAVD, including hyperglycemia,

insulin resistance, excessive production of AGEs, and activation of

the renin–angiotensin–aldosterone system (186). Therefore, further

studies are needed to explore the potential efficacy of glucose-

lowering medications in alleviating both diabetic myocardial and

aortic valve injuries.
5.5 Patient–prosthesis mismatch

The concept of patient–prosthetic mismatch (PPM) after SAVR

referred to the clinical situation in which a normally functioning

prosthetic valve did not allow an adequate cardiac output without

an excessive gradient across the aortic valve. The prevalence of

moderate PPM ranged from 20% to 70% and that of severe PPM

ranged from 2% to 20%, respectively (187). Clinical outcomes of

patients with mild and moderate PPM were not significantly

different to those without PPM, while severe PPM was associated

with increased mid-term and long-termmortality after SAVR (188).

Diabetes was one of the predictors of the prevalence of PPM in

patients undergoing SAVR (189, 190). Diabetes was associated with

the occurrence of mild and moderate PPM but did not have a

significant effect on the occurrence of severe PPM (191). As PPM

was only marginally associated with survival, it was not related to

risk of reoperation after SAVR (192).
FIGURE 4

Clinical outcome and complication of diabetes in surgical aortic valve replacement. Compared with non-diabetes, the impact of diabetes on clinical
outcomes and various complications after SAVR.
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5.6 Systemic inflammatory response
syndrome

SIRS developed in 11% of SAVR patients and was associated

with a higher mortality after SAVR (153). Although diabetes was

not associated with an increased risk of SIRS, severe SIRS had a

greater effect on mortality in diabetes (153). Proteomics analysis of

plasma from CAVD with diabetes found that IL-1 receptors,

GDF15, and cathepsin D as well as the pathways associated with

inflammation were significantly elevated (157). This systemic pro-

inflammatory response might account for the worse clinical

outcomes in diabetes undergoing SAVR.
5.7 Infective endocarditis

According to the latest 10-year outcomes of the NOTION trial,

the rate of infective endocarditis was similar for both TAVR and

SAVR (7.2% vs. 7.4%) (193). Once endocarditis occurred, the all-cause

mortality increased rapidly, especially in the SAVR cohort (194, 195).

Among patients with endocarditis, the rate of all-cause 1-year or 5-

year mortality was higher in the SAVR group than that in the TAVR

group (195). In the analysis of pooled statistics of three large RCT,

patients with endocarditis after SAVR had diabetes more frequently at

baseline than those without endocarditis (195). However, in the

PARTNER 1 and PARTNER 2 trials, concomitance with diabetes

was not associated with the occurrence of endocarditis after SAVR

(194). The baseline clinical characteristics of patient population in

different study, including age, previous CABG, and other valvular

heart diseases, were disparate. The difference in those factors might

account for the differences observed. Further RCT are needed to

elucidate whether concomitance with diabetes is associated with the

occurrence of endocarditis after SAVR and related mortality.
6 Diabetes in bioprosthetic aortic
valve deterioration

6.1 Bioprosthetic aortic valve deterioration
after AVR

Structural valve deterioration (SVD), manifested with leaflet

calcification or fibrosis, was one of the pivotal factors limiting the

durability of BAV and the prognosis after transcatheter or surgical

replacement. Non-structural bioprosthetic valve dysfunction

(BVD), defined as any abnormality not intrinsic to the aortic

valve, included PPM and paravalvular regurgitation, which

occurred at the time of SAVR or TAVR procedure and existed

persistently during follow-up, while SVD developed progressively

during follow-up. The durability of BAV is becoming a critical

problem of TAVR, as this procedure is now considered for younger

and lower-risk populations with longer life expectancy (196). In a

propensity-matched analysis of intermediate-risk patients

(PARTNER 2 and PARTNER 2A), the incidence of SVD at 5

years was 3.9% in TAVR with balloon-expandable SAPIEN 3 vs.
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3.5% in SAVR (197). In the PARTNER 3 trial, the incidence of SVD

at 5 years was 4.2% in TAVR with SAPIEN 3 vs. 3.8% in SAVR

among low-risk patients (196). As for self-expanding CoreValve or

Evolut, the CoreValve US High Risk Pivotal and SURTAVI trials

found a lower rate of SVD in intermediate- or high-risk patients

undergoing self-expanding TAVR vs. SAVR at 5 years (1.82% in

TAVR vs. 2.67% in SAVR) (198). The only long-term NOTION

trial revealed similar results in comparison between TAVR with

CoreValve and SAVR (12.5% in TAVR vs. 13.9% in SAVR) (193).

The CHOICE trial compared the first or second generations of

SAPIEN with CoreValve in high-risk patients and found superior

valve hemodynamic performance for self-expanding valves with

lower rate of SVD at 5 years (199). The SMART trial also found that

the self-expanding valve was superior to the balloon-expandable

valve in the aspect of SVD at 1-year among patients with small

aortic annulus (200). The superior performance of the self-

expanding valve in SVD might be due to the supra-annular

design with better hemodynamic properties. Large RCT with long

follow-up are thus needed to compare the durability of different

TAVR prostheses, especially among low-risk populations.
6.2 Bioprosthetic aortic valve deterioration
in diabetes

Although deterioration of BAV has long been considered as a

passive degenerative process, emerging studies revealed that active and

potentially modifiable mechanisms might also participate in the

fibrocalcific process of BAV (201). SVD shared common risk factors

and similar pathological process with CAVD. One of the crucial risk

factors that have been associated with SVD following TAVR or SAVR

was diabetes (197, 198, 201, 202). In the PARTNER 2 trial, diabetes

was associated with SVD at 5 years in the SAPIEN 3 TAVR cohort

(197). In the prospective study of SVD after SAVR, univariate and

multivariate Cox regression analyses found diabetes as one of the risk

factors for deterioration of BAV and all-cause mortality (201). In

another retrospective study, diabetes was associated with

hemodynamic deterioration of BAV, especially at early years (202).

Thus, concomitance with diabetes accelerated the deterioration of

BAV and restricted the durability of BAV after TAVR or SAVR. The

underlying mechanisms of SVD in diabetic conditions might include

inflammation, oxidative stress, lipid retention, endothelial

dysfunction, and AGEs/RAGE, which were similar to the molecular

mechanisms of CAVD concomitant to diabetes as mentioned above.

Diabetes was one of the predictors for the prevalence of PPM (189,

190), which in turn caused BVD after AVR. Bioprosthetic valve

endocarditis was often associated with morphologic and

hemodynamic valve deterioration and might thus lead to SVD

(203). One of the prevalent predisposing conditions of prosthetic

valve endocarditis was diabetes (204). The retrospective cohort study,

conducted in five German cardiac surgery centers, multivariable

analyzed 3,143 patients (73.1%) undergoing surgery for native valve

endocarditis and 1,157 patients (26.9%) for prosthetic valve

endocarditis (205). Patients with prosthetic valve endocarditis

presented with higher proportion of diabetes than native valve
frontiersin.org

https://doi.org/10.3389/fendo.2025.1577762
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu and Cai 10.3389/fendo.2025.1577762
endocarditis (205). Transcatheter valve-in-valve implantation was an

alternative option in inoperable or high-risk patients with severe SVD

(206). Age and diabetes were identified as independent predictors of

all-cause 30-day mortality in patients with transcatheter valve-in-valve

implantation (207). Currently, most of the clinically available BAVs

are fabricated from glutaraldehyde-treated heterogeneous aortic valves

or bovine/porcine pericardium (208). Previous studies have indicated

superior hemodynamic characteristics in bovine pericardial valves

compared to porcine valves (209, 210). Moreover, bovine valves were

associated with better survival than porcine valves in diabetes (211).

However, to date, no vitro or vivo experiments has specifically

investigated the influences of diabetes on different bioprosthetic

pericardial valves. Diabetes and its complications jointly participated

in the deterioration of BAV, leading to increased long-term mortality

and various complications after AVR.
6.3 Glucose-lowering medications in
bioprosthetic aortic valve deterioration

Once SVD developed into bioprosthetic valve failure, the death

rate increased rapidly except in cases of transcatheter valve-in-valve
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implantation or transthoracic reoperation (203). However, there are

currently no medications to prevent or reverse the progression of

BAV deterioration. The peroxisome proliferator-activated receptor

g (PPARg) was a nuclear receptor that participated in various

physiological processes as a transcriptional regulator (212).

Activation of PPARg by specific agonists, thiazolidinediones such

as pioglitazone, has been widely used for lowering glucose via

insulin-sensitizing and pancreatic b-cell preserving effects (213).

Apart from glucose-lowering effect, PPARg agonists have also been

found to have anti-atherogenic and anti-inflammatory effects via

regulating the expression of related genes (214, 215). Single-cell

RNA sequencing analysis found conservation of PPARg in non-

calcified human aortic valve leaflets and activated PPARg pathway
in CD36-positive VECs in hyperlipidemic mice (216). Many vitro

and vivo studies have revealed the anti-calcification effect of PPARg
agonists in the degeneration of native aortic valves (30, 80).

Moreover, its effect on the deterioration of BAV was assessed in

various rat models. In the streptozotocin-induced diabetic rats,

pioglitazone led to an inhibition of BAV deterioration, manifested

with a lower expression of chondro-osteogenic genes and calcium

deposits (217). In the guide wire injury-induced AVS rats as well as

hypercholesterolemic and obese rats, systemic PPARg activation
FIGURE 5

Glucose-lowering medication option for patients with diabetes and deterioration of bioprosthetic aortic valve based on the efficacy for CAVD and
ASCVD. ASCVD, atherosclerotic cardiovascular disease; BAV, bioprosthetic aortic valve; PPARg, peroxisome proliferator-activated receptor g; DPP-4,
dipeptidyl peptidase-4; GLP-1, glucagon-like peptide-1; SGLT-2, sodium–glucose co-transporter-2.
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inhibited inflammation and calcification in heterologous aortic

valve conduits and seemed to inhibit functional impairment of

the implanted aortic valve (218, 219). Overall, based on the

protective effects for CAVD and BAV deterioration in vitro and

vivo, PPARg agonists are currently one of the promising glucose-

lowering medications to inhibit deterioration of BAV probably

independent of glucose control (Figure 5).

Dipeptidyl peptidase-4 (DPP-4) inhibitors have been widely

applied to treat diabetes via inhibiting degradation of GLP-1 to

regulate insulin secretion (220). DPP-4 was widely expressed in the

cardiovascular tissues and participated in the physiopathologic

process of various cardiovascular diseases (221). Although

multiple large-scale clinical studies have demonstrated statistical

non-inferiority but not superiority for the DPP-4 inhibitors in the

primary MACE endpoint (222, 223), recent studies have found that

DPP-4 inhibitors showed benefits on various cardiovascular

diseases, such as hypertension, CAD, and CAVD (224). In vitro,

DPP-4 upregulation by nitric oxide deprivation-dependent NF-kB
activation resulted in osteogenic differentiation of VICs (225). In

vivo, DPP-4 inhibitors markedly reduced calcification of aortic

valve in eNOS-deficient mice and rabbit fed with cholesterol-

enriched diet and vitamin D (225, 226). DPP-4 inhibitors

suppressed CAVD by alleviating inflammation, fibrosis, and

calcification (225–227). Overall, DPP-4 inhibitors might be able

to inhibit CAVD independent of glucose control with potential

efficacy for deterioration of BAV.

Over the last decade, the results of numerous large

cardiovascular outcome trials in patients with diabetes at high

cardiovascular risk with novel glucose-lowering medications, such

as sodium-glucose co-transporter-2 (SGLT-2) inhibitors and GLP-1

receptor agonists, have substantially offered more available

medications, resulting in brand new evidence-based medical

therapy for the management of this population (10). Based on the

cardiovascular benefits independent of glucose control, SGLT-2 and

GLP-1 receptor agonist inhibitors might be the promising

medications with potential efficacy for CAVD or even

deterioration of BAV. Thus, further experiments and large-scale

clinical studies are essential for verification of the effects of glucose-

lowering medications on deterioration of BAV.
7 Conclusions

In recent years, the prevalence of diabetes has increased rapidly

in patients with CAVD. Except for individual effects of diabetes

(e.g., hyperglycemia, AGEs/RAGE pathway, oxidative stress,

EndMT, and inflammation), there were multifactorial interactions

between those diabetic complications (e.g., hypertension,

hyperlipidemia, CKD, ageing), which mutually took part in the

initiation and development of CAVD. The prevalence of diabetes in

patients undergoing TAVR or SAVR has also increased along with

the progression of CAVD. However, clinical outcomes and

postoperative complications in diabetes after TAVR or SAVR

remained controversial. Compared with non-diabetes, the short-
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term mortality after TAVR was not significant in diabetes, while the

mid-term mortality remained disputable. The mid-term and long-

term mortality rates after SAVR were higher in patients with

diabetes than non-diabetes, while the short-term mortality

remained disputable. There were common worse manifestations

with CAD, AKI, heart failure, and SIRS in diabetes undergoing

TAVR or SAVR, compared with non-diabetes. The role of diabetes-

related obesity paradox in TAVR or SAVR remains disputable.

There is a need for RCT and large cohorts with long-term follow-up

of diabetes vs. non-diabetes in patients undergoing TAVR or SAVR.

Moreover, diabetes and its complications also jointly participated in

the deterioration of BAV, leading to increased long-term mortality

and various postoperative complications after TAVR or SAVR.

Based on the efficacy for CAVD and BAV deterioration in vitro and

vivo, PPARg agonists might be the promising glucose-lowering

medication to inhibit BAV deterioration independent of

glucose control.
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