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Objectives: Type 2 diabetes mellitus (T2DM) and major depressive disorder

(MDD) frequently co-occur, highlighting the need to understand the metabolic

effects of antidepressants. This systematic review evaluated the impact of

citalopram and escitalopram on glucose and lipid metabolism, focusing on

glycemic control.

Methods: A comprehensive search of PubMed, Embase, Web of Science,

PsycINFO, the Cochrane Library and Google Scholar was conducted. Primary

outcomes included changes in glycosylated hemoglobin (HbA1c) and fasting

blood glucose (FBG). Secondary outcomes assessed lipid profiles (triglycerides,

cholesterol, high-density lipoprotein, and low-density lipoprotein) and

depressive symptom scales. Subgroup analyses were conducted to evaluate

outcomes in patients with comorbid T2DM and MDD and those with MDD only.

Results: Thirteen studies involving 502 participants met the inclusion criteria. Six

randomized controlled trials, four prospective studies, one cohort trial, one

single-arm trial and one three-arm trial. The findings suggest that both

citalopram and escitalopram tend to reduce HbA1c and FBG levels. No

significant effects on lipid profiles were observed across the included studies.

Conclusion: Citalopram and escitalopram appear to exert beneficial effects on

glycemic control, as evidenced by reductions in HbA1c and FBG. Further high-

quality investigations are warranted to validate these findings and guide

individualized treatment strategies.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/view/

CRD42024544963, identifier CRD42024544963.
KEYWORDS

major depressive disorder, type 2 diabetes mellitus, glucolipid metabolism, citalopram,
escitalopram, systematic review
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1 Introduction

The global prevalence of type 2 diabetes mellitus (T2DM) and

major depressive disorder (MDD) has increased substantially,

posing a significant public health concern (1). In individuals with

T2DM, the prevalence of depression is approximately twice that

observed in those without T2DM, with women exhibiting a higher

rate than men, irrespective of diabetes status (2). This relationship

between T2DM and MDD is bidirectional, influenced by a complex

interplay of biological, psychological, and social factors (3). These

factors worsen depressive symptoms and impair glycemic control,

thereby complicating the management of both conditions.

Insulin, a peptide hormone produced by pancreatic beta cells,

crosses the blood-brain barrier and binds to endothelial cell

receptors, initiating tyrosine kinases-dependent signaling cascades

(4). These cascades regulate central and peripheral metabolic

processes, including synaptic plasticity, neurotransmitter

modulation, and neuro cognitive functions (5, 6). Insulin

resistance, an early hallmark of T2DM, disrupts glucose

metabolism in muscle, adipose, and hepatic tissues and impairs

dopaminergic (DA) signaling and reward-related behaviors,

highlighting a critical link between T2DM and MDD (7, 8).

Improving central insulin signaling can peripheral insulin

sensitivity, reduce glucose production, and optimize metabolic

outcomes (9). Chronic stress further aggravates insulin resistance

and depressive symptoms through dysregulation of the

hypothalamic-pituitary-adrenal (HPA) axis and excessive innate

immune activation (10). Oxidative stress augments these

pathologies by damaging lipids and proteins and by reducing

antioxidant enzyme activity in the brain and pancreas (11).

Selective serotonin reuptake inhibitors (SSRIs) have been shown

to improve blood glucose levels compared to placebo, with

Fluoxetine and escitalopram/citalopram demonstrating particular

efficacy (12). Escitalopram, the S-enantiomer of citalopram, exhibits

superior tolerability and safety compared to other antidepressants

(13, 14). It may also enhance glycemic control, by modulating the

HPA axis (15), increasing insulin sensitivity in hepatic and

muscular tissues, and normalizing neural connectivity in regions

such as the hippocampus, and nucleus accumbens (NAc) (16–18).

Moreover, escitalopram has been reported to exert antioxidant and

anti-inflammatory effects and to reduce lipid levels (19–21).

These findings suggest that escitalopram may confer

therapeutic benefits for glycemic control in patients with

comorbid T2DM and MDD. The present study aims to

systematically review current evidence on the effects of citalopram

and escitalopram on glucose and lipid metabolism in

this population.
2 Methods

2.1 Research registration

The study protocol was pre-registered with PROSPERO

(CRD42024544963) prior to initiating the literature review.
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2.2 Data source and search methodology

A systematic literature review was conducted utilizing databases

including PubMed, Embase, Web of Science, Google Scholar,

PsycINFO and Cochrane databases. The search, limited to

English-language publications and focused on clinical trials

investigating the effects of citalopram or escitalopram on glucose

metabolism in patients with T2DM from January 2000 to December

2024. Boolean search terms included: (“escitalopram” OR

“escitalopram oxalate” OR “citalopram hydrobromide”) AND

(“diabetes mellitus, type 2” OR “diabetes” OR “type 2 diabetes”

OR “diabetes” OR “serum glucose” OR “glucose metabolism” OR

“hyperglycemia” OR “hypoglycemia” OR “glucose metabolism

disorder” OR “glycosylated hemoglobin” OR “glucose intolerance”

OR “insulin resistance” OR “impaired glucose metabolism”). Title

and abstract screening were conducted independently by two

reviewers (YJD and ML). Relevant studies were further assessed

as detailed in Figure 1. Any discrepancies were resolved through

discussion, with mediation by SGL when necessary.
2.3 Inclusion and exclusion criteria

Inclusion criteria: (1) clinical trials assessing the impact of

citalopram or escitalopram on glucose metabolism; (2) studies

involving T2DM patients with clinical glucose-related outcomes;

(3) English-language publications; and (4) research published

between January 2000 and December 2024.

Exclusion criteria: (1) reviews, letters, case reports, cross-

sectional studies, and other non-original literature; (2) trials

lacking adequate statistical data; (3) studies involving T2DM

patients with comorbid severe mental disorders other than MDD;

and (4) research on type 1 diabetes, gestational diabetes, or non-

T2DM conditions.
2.4 Data extraction

Extracted data included authorship, publication year,

geographic region, participant demographics (sex, age), study

design, sample size, and follow-up duration. Primary outcomes

were changes in glycosylated hemoglobin (HbA1c, %) and fasting

blood glucose (FBG, mg/dl). Secondary outcomes included lipid

profiles including triglycerides (TG, mg/dl), cholesterol (CH, mg/

dl), high-density lipoprotein (HDL, mg/dl), and low-density

lipoprotein (LDL, mg/dl), and assessments of depressive symptoms.
2.5 Quality assessment

The methodological quality of included studies was assessed

using the Newcastle-Ottawa Scale, which evaluates three key

domains: selection, comparability, and outcome/exposure

assessment. Surveys with overall scores of 0–3, 4–6, and 7–9 were

categorized as being of poor, fair, or good quality, in that order. We
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used the Grading of Recommendations, Assessment, Development,

and Evaluations (GRADE) to assess the evidence quality (22).
2.6 Statistical analysis

Data were summarized as means with standard deviations,

where applicable. Study heterogeneity was evaluated using

Higgins’ I² statistic and p value. The I² statistic was interpreted as

follows: no heterogeneity was defined as <25%, mild heterogeneity

as 25–50%, moderate heterogeneity as 50–75%, and high

heterogeneity as >75% (23). A fixed-effects model was used for

low heterogeneity (p > 0.1, I² ≤ 50%), and a random-effects model

for high heterogeneity (p < 0.1, I² > 50%). Funnel plots were

generated to inspect plot asymmetry visually. Begg’s and Egger’s

regression tests were used.

Sensitivity analyses were conducted to evaluate the robustness

of the results. Subgroup analyses were stratified by disease subgroup

(T2DM-MDD vs MDD-only) and pharmacological classification

(escitalopram vs citalopram), with additional stratification by

geographic region and age strata. All statistical analyses were

performed using Stata 17.0.
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3 Results

3.1 Characteristics of included studies

The study selection process is shown in Figure 1. Of the 231

screened articles, 13 studies met the inclusion criteria, six

randomized controlled trials, four prospective studies, one cohort

study, one single-arm trial, and one three-arm trial. Quality

assessments are illustrated in Supplementary Figure S1;

Supplementary Table S1. The GRADE assessments are listed in

Supplementary Table S2. Collectively, these studies involved 502

middle-aged and older adults, with 23 participants loss to follow-up.

Participants were stratified into two groups: those with comorbid

T2DM-MDD and those with MDD only. Two studies assessed

citalopram (20–40 mg/day for 8–26 weeks), while nine evaluated

escitalopram (5–30 mg/day for 1–52 weeks). Further categorization

was based on study region (Middle East, South Asia, East Asia,

Western Europe, and North America) and age (<50 years, 50-60

years, >60 years). See Table 1.

Due to differences in study designs and outcomes, a formal meta-

analysis was not feasible, prompting a systematic review instead. Given

substantial between-study heterogeneity (I² > 50%), the results were
FIGURE 1

Flowchart of study identification and selection.
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restricted to outcomes demonstrating low-to-moderate heterogeneity

(I² ≤ 50%), with exploratory pooled estimates derived from random-

effects models (Figures 2, 3; S2). The results of sensitivity analyses are

listed in Supplementary Table S3. Publication bias was systematically

evaluated through funnel plot asymmetry assessments using Begg’s

rank correlation and Egger’s weighted regression tests, with graphical

representations in Supplementary Figures S3, S4 and quantitative

results in Supplementary Table S4.
3.2 Primary outcome measures

3.2.1 HbA1c
HbA1c, a crucial marker of glycemic control was assessed in ten

studies involving 409 participants, with treatment durations

ranging from 8 weeks to 12 months (24–27, 29–35). Significant

reductions in HbA1c levels were observed in specific subgroups,

notably in a South African cohort (standardized mean difference

[SMD] = 0.63, 95% CI: 0.34-0.92) (Figure 2A). Among participants

under 60 years, the SMD was 0.48 (95% CI: 0.09-0.87) for those
Frontiers in Endocrinology 04
under 50 years and 1.05 (95% CI: 0.66-1.45) for the 50-60 years

group (Figure 3A). The forest plot indicates that both citalopram

and escitalopram may lower HbA1c levels (Supplementary Figure

S5A), as supported by disease-specific (Supplementary Figure S6A)

and drug subgroup analyses (Supplementary Figure S7A). High

heterogeneity (I² > 50%) likely arise from differences in sample

characteristics and study designs.

Four studies reported statistically significant HbA1c reductions.

Khazaie et al. (24) documented a 1.59% ± 1.03 decrease (P < 0.001),

while Gehlawat et al. (25)Tiwary et al. (34) and Israt et al. (30) also

reported significant improvements. Although six studies (26, 27, 29,

31–33, 35) found no significant HbA1c changes, a trend toward

improvement was noted.

3.2.2 FBG
FBG was evaluated a primary marker of glycemic fluctuation,

was evaluated in ten studies involving 327 participants (24, 25, 27,

28, 28, 30–33, 35, 36). These studies compared the effects of

escitalopram or citalopram versus placebo on FBG, over

treatment durations of 1 to 12 weeks. Eight studies specifically
TABLE 1 Summary of baseline characteristics.

Study Baseline
status

Intervention Study
regions

Age
(years)

BMI
(kg/m2)

Total
participants

Main
outcomes

Endpoint
(weeks)

Khazaie et al. (24) T2DM+MDD C:40mg/d Iran 47.70±8.63 30.64±5.85 20 HbA1c,
FBG, BDI

12

Gehlawat et al. (25) T2DM+MDD E:10-20mg/d India 50.75±8.88 26.83±4.41 43 FBG, HbA1c,
HAMD,
lipid profile

12

Nicolau et al. (26) T2DM+MDD C:20mg/d Spain 60.35±10.73 31.09±4.95 38 HbA1c, BDI 26

Kumar et al. (27) T2DM+MDD E:20mg/d India 48.65±10.19 28.88±4.58 20 FBG, HbA1c,
HAMD, HAMA

8

Sebedi et al. (28) T2DM+MDD E:10mg/d Nepal NR NR 37 FBG, PPBG 6

Khassawneh et al. (29) T2DM+MDD E:5-10mg/d Jordan 47.68±8.39 31.75±5.81 12 HbA1c, lipid
profile, PHQ-9

12

Israt et al. (30) T2DM+MDD E:NR Dhaka 51.2±6.3 NR 35 FBG,
PPBG, HbA1c

12

Wei et al. (31) T2DM+MDD E:10mg/d China 43.31±4.57 23.33±1.24 30 FBG, SDS, SAS 1

Santi et al. (32)1 T2DM+MDD E:10-20mg/d India 42.00±15.93 26.90±1.11 10 FBG, HbA1c,
CH, TG, HAMD

12

Shubha et al. (33) T2DM+MDD E:5mg/d India 42.0±3.36 NR 32 HbA1c, MADRS 52

Tiwary et al. (34) T2DM+MDD E:NR India 63.2±10.6 NR 125 FBG, PPBG,
HbA1c, HAMD

12

Papakostas et al. (35) MDD E:10-30mg/d Boston NR NR 68 FBG, HbA1c,
lipid profile

8

Kudyar et al. (36) MDD E:10mg/d India 39.74±8.60 NR 26 FBG, HAMD 6

Santi et al. (32)2 MDD E:10-20mg/d India 42.00±15.93 26.90±1.11 6 FBG, HbA1c,
CH, TG HAMD

12
T2DM, type 2 diabetes. MDD, major depressive disorder. C, citalopram. E, escitalopram. BMI, body mass index. NR, not reported.
HbA1c, glycosylated hemoglobin. FBG, fasting blood glucose. PPBG, postprandial blood glucose. CH, cholesterol. TG, triglyceride. lipid profile includes triglyceride, total cholesterol, high density
lipoprotein and lower density lipoprotein.
BDI, Beck Depression Inventory. HAMD, Hamilton Depression Scale. HAMA, Hamilton Anxiety Scale. PHQ-9, Patient Health Questionnaire-9. SDS, Self-Rating Depression Scale. SAS, Self-
Rating Anxiety Scale. MADRS, Montgomery-Asberg Depression Rating Scale.
Santi et al. (32) 1 represents T2DM comorbid with MDD group, and Santi et al. (32) 2 represents MDD only group.
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targeting patients with T2DM-MDD (24, 25, 27, 28, 30–33)

reported significant post- treatment improvements in

FBG (Supplementary Figure S5B). In contrast, no significant FBG

changes were noted in patients with MDD only, suggesting that the

T2DM-MDD comorbidity uniquely influences glucose metabolism.

The forest plot (Supplementary Figure S6B) suggests that these

medications may reduce FBG levels, supported by study region,

age and drug subgroup analyses (Figures 2B, 3B, and S7B). High
Frontiers in Endocrinology 05
heterogeneity (I² > 50%) may be attributed to variations in sample

characteristics and study designs.

Khazaie et al. (24) observed a significant FBG reduction

(39.95 ± 25.66 mg/dL, P < 0.001) in T2DM-MDD patients treated

with citalopram (40 mg/d). Similarly, Israt et al. (30) found that 12

weeks of escitalopram significantly improved FBG levels in patients

with T2DM-MDD (P < 0.001). Additional studies (Wei et al. (31) [P

= 0.027] Gehlawat et al. (25) [P < 0.05] Sebedi et al. (28) [P < 0.001])
FIGURE 2

Subgroup analysis of study regions. (A) HbA1c (glycosylated hemoglobin) levels before and after treatment. (B) FBG (fasting blood glucose) levels
before and after treatment. Notes: Santi N. (32)1 represents T2DM comorbid with MDD group, and Santi N. (32)2 represents MDD only group.
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also reported statistically significant effects, whereas Santi et al. (32)

did not observe significant changes (P > 0.05).
3.3 Second outcome measures

3.3.1 Lipid profile
Four studies. (25, 29, 32, 35) assessed TG and CH levels before and

after escitalopram treatment, finding no statistically significant changes

(Supplementary Table S5; Supplementary Figure S8). Disease subgroup

analyses yielded similar results (Supplementary Figure S9).
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Additionally, three studies (25, 29, 35) examined the effects of

escitalopram on HDL and LDL levels, reporting no significant

differences between escitalopram and placebo. These findings suggest

that escitalopram exerts a negligible impact on lipid profiles, including

TG, CH, HDL, or LDL level.

3.3.2 Clinical depression assessment
Nine studies assessed changes in depressive symptoms using

instruments including the Hamilton Depression Rating Scale

(HAMD), the Beck Depression Inventory (BDI), and other

relevant depression scales before and after treatment. Although
FIGURE 3

Subgroup analysis of participant age. (A) HbA1c levels before and after treatment. (B) FBG levels before and after treatment. Notes: Santi N. (32)1

represents T2DM comorbid with MDD group, and Santi N. (32)2 represents MDD only group.
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overall interventions alleviated depressive symptoms, statistically

significant was not reached across all studies (Supplementary Figure

S10A). Nonetheless, four studies (25, 32, 34, 36) reported significant

reductions in HAMD total scores (Supplementary Figure S10B),

while two studies (24, 26) observed significant decreases in BDI

scores (Supplementary Figure S10C), indicating a favorable

therapeutic treatment.
4 Discussion

This systematic review represents the first comprehensive

analysis of the effects of citalopram and escitalopram on

glucolipid metabolism. Synthesized data from thirteen studies—

primarily involving adults with T2DM-MDD and individuals with

MDD only. Our findings suggest that both citalopram and

escitalopram tend to reduce HbA1c and FBG levels. However, no

significant effects on lipid profiles were observed across the

included studies.

These results are consistent with previous reports (25, 30),

which demonstrated significant improvements in glycemic

control, particularly reductions in FBG and HbA1c, among

patients with T2DM and comorbid MDD. The underlying

hypothesis guiding this review posits that poor glycemic control

in patients with comorbid T2DM and MDD is linked to insulin

resistance, which contributes to MDD pathophysiology. A GWAS

utilizing data from the UK Biobank identified 496 shared risk SNPs,

implicating critical biological pathways involved in both disorders,

including glycolipid metabolism (PPAP2B, DGKB, LIPC),

adipocytokine signaling (LEPR, PPARGC1A), T2DM (GCK,

CACNA1C), long-term depression (ITPR2, IGF1), and immune

pathways (NFATC3, NFATC2) (37). Rodent models of insulin

resistance exhibit impaired dopaminergic signaling and disrupted

reward-related behaviors (7, 38), reflecting detrimental effects on

emotional well-being. A hyperdopaminergic state in the amygdala

may underlie increased risk of mood disorder observed in insulin-

resistant, diabetic rats (39). Moreover, the high expression of insulin

receptor in the dopaminergic neurons of midbrain, which encodes

reward-seeking behavior, underscores the interplay between insulin

signaling and mood regulation (29, 40, 41). In diabetic patients,

peripheral insulin administration markedly impairs glucose

metabolism in appetite- and reward-related regions, such as the

mesostriatal system, compared to healthy controls (42).

The genotyping of the CYP2C19 gene is essential for

personalizing escitalopram therapy, as the metabolizer status

significantly influences drug concentrations and therapeutic

efficacy (43). Escitalopram response is intricately to reward

processing, with early increases in frontostriatal connectivity

during reward anticipation correlating significantly with reduced

depressive symptoms after eight weeks of treatment (16). Moreover,

in patients with MDD, improvements in depressive symptoms after

two weeks of escitalopram treatment were positively correlated with

increased functional connectivity between the left hippocampus and

the inferior frontal gyrus, suggesting an early predictor of

antidepressant efficacy (18). These findings imply that
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escitalopram may ameliorate both cognitive and emotional

functions that are compromised by diabetes. Notably,

escitalopram is reported to enhance synaptic plasticity within

three to five weeks in healthy individuals (44), positioning it as a

promising candidate for improving insulin sensitivity while and

simultaneously addressing the dual challenges posed by T2DM

and MDD.

Psychological factors, such as stress and depression, also play a

significant role in glucose regulation, suggesting a complex interplay

between mental health and metabolic processes (45). From an

endocrinological perspective, it is essential to explore how

antidepressants might affect insulin sensitivity and glucose

metabolism. The relationship between T2DM and MDD is

primarily mediated through the HPA axis, which drives elevated

cortisol levels that adversely affect brain regions rich in

glucocorticoid receptors (46–48). Escitalopram has been

demonstrated to enhance cognitive function in stressed rodent

models by modulating the HPA axis and the insulin receptor

substrate/Glycogen Synthase Kinase 3 (GSK-3b) signaling

pathway (46), suggesting that escitalopram may represent a viable

therapeutic strategy for the concurrent management of T2DM and

MDD. Insulin resistance and hyperglycemia contribute to

mitochondrial dysfunction, generating reactive oxygen species

(ROS) that disrupt energy metabolism and initiate apoptosis (49).

In models of chronic stress-induced depression, escitalopram has

demonstrated efficacy in mitigating oxidative damage, enhancing

antioxidant defenses, and modulating brain-derived neurotrophic

factor (BDNF) levels, thereby promoting neuronal healthy (19).

Moreover, n-3 polyunsaturated fatty acids (PUFAs) and

escitalopram may work synergistically enhance adenylyl cyclase

activity and BDNF expression, further reinforcing their

antidepressant effects (50). In summary, antidepressants such as

escitalopram and citalopram may affect glucose metabolism by

addressing stress and depression, which are recognized factors

affecting insulin sensitivity and glucose regulation.

Escitalopram therapy significantly reduced CH, TG, LDL and

malondialdehyde levels, while increasing HDL compared to the

atherosclerosis model group (21). In contrast, antidepressants such

as citalopram and escitalopram have been associated with adverse

alterations in lipid profiles, including elevated triglyceride levels,

increased LDL cholesterol, and decreased HDL cholesterol (51). A

24-month observational study revealed that the use of

antidepressants such as escitalopram, paroxetine, and duloxetine

was associated with a 10-15% increased risk of weight gain of at least

5% from baseline weight (52). Additionally, atypical depression has

been correlated with heightened insulin resistance, characterized by

increased appetite and subsequent weight gain (53).

Our results demonstrated no significant alterations in lipid

homeostasis, contrasts with prior observational studies reporting

modest elevations in TG and CH among individuals T2DM-MDD

(29). This discrepancy may be attributed to several factors: (i)

population-specific pathophysiological characteristics, (ii) limited

longitudinal assessment windows, and (iii) differences in baseline

glycemic control. Moreover, obesity-related neuroinflammation has

been shown to impair serotonin transporter (SERT) expression in the
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hippocampus, potentially elucidating the diminished responsiveness

to SSRIs observed in obese individuals with comorbid depression

(54). Understanding the complex interactions between mental health

and lipid metabolism is crucial for developing comprehensive

treatment strategies, particularly in patients presenting with

comorbid obesity and depression.

Given the pathophysiological insights into depression, the

exploration of novel therapeutic strategies is paramount

importance. Chronic unpredictable mild stress induces been shown

to induce depressive-like behaviors and neuroinflammation in leptin-

deficient mice, effects that were reversed by pioglitazone, a

peroxisome proliferator-activated receptor gamma (PPARg)
agonist, likely through the enhancement of plasma glucose levels

(55). Pioglitazone has emerged as a promising adjunctive treatment

for non-diabetic MDD, demonstrating early improvements and

potential remission (56). Clinical investigations further substantiate

its efficacy and safety, positioning pioglitazone as an augmentation

strategy for patients with moderate to severe MDD (57). Moreover,

the 5-HT3 receptor antagonist 3-methoxy-N-p-tolylquinoxalin-2-

carboxamide (QCM-4) has exhibited considerable promise in

improving insulin sensitivity and mitigating depressive-like

behaviors in mice subjected to a high-fat diet, while also

normalizing glucose and lipid profiles (58, 59).

This study has several limitations. First, significant variability

exists among the included studies due to differences in baseline

metabolic profiles, medication dosages, and statistical methods.

Second, the relatively small sample sizes underscore the need for

larger clinical trials to confirm these findings. Third, the exclusion

of non-English publications may introduce publication biases.

Moreover, individual responses to SSRIs vary, with some patients

experiencing dyslipidemia and weight gain as side effects.
5 Conclusion

Despite methodological and sample size limitations precluding a

formal meta-analysis, the available evidence suggests that both

citalopram and escitalopram are effective in reducing FBG and

HbA1c levels. To strengthen the evidence base, future research

should prioritize large-scale, multicenter RCTs utilizing

standardized protocols for treatment duration and dose titration.

These studies should include diverse patient populations, stratified by

obesity status, diabetes severity, and depression subtypes, to identify

subgroups most likely to benefit. Such efforts are essential for

validating the efficacy of these medications and for drawing more

definitive conclusions regarding their effects on glycemic control.
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