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Artificial intelligence (AI) has been used to study thyroid diseases since the 1990s.

Previously, it mainly concentrated on the diagnosis of thyroid function and

distinguishing benign from malignant thyroid nodules. With the rapid

development of machine and deep learning, AI has been widely used in

multiple areas of thyroid disease management, including image analysis,

pathological diagnosis, personalized treatment, patient monitoring, and follow-

up. This review systematically examines the evolution of AI applications in thyroid

disease management since the 1990s, with a focus on diagnostic innovations,

therapeutic personalization, and emerging challenges in clinical implementation.

AI not only reduces the subjectivity associated with ultrasound examinations but

also enhances the differentiation rate of benign and malignant thyroid nodules,

thereby reducing the frequency of unnecessary fine-needle aspirations. AI

synthesizes multimodal data, such as ultrasound, electronic health records,

and wearable sensors, for continuous health monitoring. This integration

facilitates the early detection of subclinical recurrence risk, particularly in

patients who have undergone thyroidectomy. Despite the broad prospects of

AI applications, challenges related to data privacy, model interpretability, and

clinical applicability remain. This review critically evaluates studies across the

ultrasound, CT/MRI, and histopathology domains, while addressing barriers to

clinical translation, such as data heterogeneity and ethical concerns.
KEYWORDS

artificial intelligence, deep learning, thyroid nodule, ultrasonography, radiomics, pathology
1 Introduction

The origins of artificial intelligence (AI) can be traced back to the 1950s, when

researchers first sought to simulate human thought and decision-making processes (1).

With the rapid advancement of computer technology, AI applications have expanded,

notably in medical image analysis, where AI has been integrated into computer-aided

diagnosis systems to detect and evaluate abnormal structures (2). In the context of thyroid

disease research, which began in the 1990s, early AI applications primarily focused on
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assessing thyroid function (3) and analyzing ultrasound images to

assist clinicians in differentiating between benign and malignant

nodules (4).

Thyroid nodules are common in the general population.

Approximately 20% of individuals have palpable thyroid nodules

on physical examination, and up to 50% present with nodules on

imaging. However, only 5% to 15% of these cases are malignant (5).

Fine-needle aspiration (FNA) biopsy is the gold standard for the

preoperative diagnosis of thyroid cancer. Current diagnostic

methods detect 20%–30% of cytologically indeterminate thyroid

nodules, with a false-negative rate of 3% to 5%, depending on

cytological interpretation and nodule characteristics (6, 7).

Currently, the major clinical challenge in the management of

thyroid nodules is the diagnosis of thyroid cancer. A large

multicenter correlation study found a 34% malignancy rate for

FNAs with indeterminate cytology (8). However, the American

College of Radiology Thyroid Imaging Reporting and Data System

(ACR TI-RADS) risk stratification system is relatively complex to

apply in clinical practice and has limited diagnostic specificity

(44%-67.3%) (9). Clinicians require additional tools to reduce

overdiagnosis and avoid unnecessary surgeries.

In the 21st century, rapid advancements in machine and deep

learning have created transformative opportunities for AI

applications in thyroid disease management. The latest deep-

learning algorithms have markedly enhanced image-processing

capabilities, allowing AI to analyze complex ultrasound images

with greater accuracy and thereby improve diagnostic sensitivity

and specificity (10). For instance, studies indicate that AI-assisted

ultrasound diagnostic systems can achieve accuracy rates exceeding

90% for identifying thyroid nodules, significantly surpassing

traditional diagnostic methods (11). AI combined with radiomics

can reduce the rate of unnecessary FNA biopsies from 30.0% to

4.5% in the validation dataset and from 37.7% to 4.7% in the test

dataset, compared to ACR TI-RADS (9). AI systems can identify

subtle changes in cellular morphology and tissue structure (12, 13)

improving the diagnostic accuracy of FNA biopsies (14, 15). In a

comparison between AI and human experts, the AI model

demonstrated higher accuracy and specificity than those of the

average expert cytopathologist by more than two standard

deviations (accuracy 99.71% vs. 88.91%, sensitivity 99.81% vs.

87.26%, and specificity 99.61% vs. 90.58%) (16).

Currently, AI is extensively applied to various aspects of thyroid

disease management, including image analysis (17–20),

pathological diagnosis (12, 14, 16, 21, 22), personalized treatment
Abbreviations: ACR TIRADS, American College of Radiology Thyroid Imaging

Reporting and Data System; AI, Artificial intelligence; AUC, Area under the

curve; CAD, Computer-aided diagnosis; DCNN, Deep convolutional neural

network; DTLR, deep transfer learning radiomics; ETE, Extrathyroidal

extension; FNA, Fine-needle aspiration biopsy; FTC, follicular thyroid cancer;

HCC, Hürthle cell carcinoma; MALDI-MSI, Matrix-assisted laser desorption/

ionization mass spectrometry imaging; NPV, Negative predictive value; PPV,

Positive predictive value; PTC, Papillary thyroid carcinoma; TLR, Transfer

learning-based radiomics; BRAF, B-Raf proto-oncogene, serine/threonine kinase.
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(23, 24), and patient monitoring and follow-up (25, 26) (Figure 1).

By leveraging historical case data, AI systems offer considerable

advantages in standardized diagnoses, risk assessments,

personalized treatments, and patient follow-ups, ultimately

providing more accessible and tailored healthcare services.

In summary, advancements in AI for thyroid disease

management exemplify the deep integration of medicine and

computer science, presenting significant opportunities to advance

personalized healthcare. This study aims to review the current

progress of AI applications in thyroid disease and explore future

directions for its development.
2 Methods

2.1 Search strategy and inclusion criteria

This review followed the PRISMA guidelines. Databases

(PubMed, Scopus, and Web of Science) were searched (2019–2025)

using the following keywords: ‘ultrasonography,’ ‘ultrasonics,’

‘artificial intelligence,’ ‘intelligent learning,’ ‘thyroid nodule,’

‘thyroid cancer,’ ‘pathology,’ ‘personalized treatment,’ ‘CT,’ and

‘MRI.’ Inclusion criteria: (1) Clinical human studies; (2) validation

in ≥50 patients; (3) performance metrics reported. Exclusion criteria:

(1) Animal or phantom studies; (2) technical reports without clinical

validation. From 1,837 records, 30 studies met the criteria after

screening (see the PRISMA flowchart, Figure 2).
2.2 Reproducibility

The reproducibility analysis revealed critical gaps: 90% (27/30) of

the studies utilized proprietary datasets with restricted access, whereas

90% (27/30) failed to disclose preprocessing codes. A striking example

of this “reproducibility crisis” is Peng’s ThyNet model (27), which

achieved 89.1% accuracy in the original publication. However,

independent replication attempts by Gild et al. demonstrated a

performance decline to 64% (28). Standardized image storage

protocols and preprocessing environments are urgently required to

enhance reproducibility.
3 Results

3.1 Diagnostic applications

3.1.1 Imaging analysis (Ultrasound/CT/MRI)
3.1.1.1 Evolution of AI in ultrasound technology and
clinical applications
3.1.1.1.1 Early exploration of traditional AI algorithms

AI research on thyroid ultrasound originated in 1993 by Sharpe

et al., who utilized artificial neural networks for in vitro thyroid

function diagnosis (29). Early studies focused on constructing

machine learning models based on ultrasound features manually

extracted by radiologists, such as nodule morphology and
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echogenicity. For example, the thyroid ultrasound computer-aided

diagnosis system developed by Choi et al. demonstrated a sensitivity

comparable to that of experienced radiologists but exhibited lower

specificity (56%) and overall accuracy (17). Similarly, the S-Detect

system achieved 95% sensitivity for thyroid cancer diagnosis;

however, its insufficient specificity (56%) highlights the risk of

overdiagnosis (18). Although these technologies improve

diagnostic consistency, they remain reliant on manual annotation

or feature extraction, introducing subjectivity, operational

complexity, and potential increases in interpretation time, false-

positive rates, and false-negative rates (30).
3.1.1.1.2 Revolution in autonomous feature extraction via deep
learning

Deep learning, through multilayered neural networks enables

automatic extraction of high-dimensional image features,

overcoming the limitations of traditional methods. Examples

include: the AIBx system developed by Swan et al., which

integrated with TI-RADS classification and significantly reduced

the risk of missed malignant nodules (single-center study, 413

nodules; AIBx and TI-RADS false-negative rates: 22% vs. 6%,

with no malignant nodules overlooked when both methods

concurred on benign classification) (19); the Al-Thyroid model

designed by Eun et al., which improved diagnostic accuracy and

interobserver consistency, particularly enhancing junior physicians’

performance (AUROC increased from 0.854 to 0.945, sensitivity

from 84.2% to 92.7%, specificity from 72.9% to 86.6%; P <.001 for

all) (20); and the ThyNet system proposed by Peng et al., which

integrated ultrasound images and video data from 23 hospitals

(18,049 images) to optimize positive/negative predictive values and

reduce unnecessary FNAs (FNAs decreased from 61.9% to 35.2%,

while missed malignancies declined from 18.9% to 17.0%) (27).

However, most studies rely entirely on hospital-confirmed

histopathological data and lack representation of screening
Frontiers in Endocrinology 03
populations. Differences in disease prevalence across cohorts may

distort the PPV/NPV metrics and compromise generalizability.

Additionally, the exclusion of nondiagnostic scans and unresolved

multinodular correlations from retrospective datasets introduces

methodological bias. Largescale screening validation remains

critical to address these translational gaps.

Deep learning not only achieves benign–malignant nodule

classification (AUC: 0.90) (31)but also synergizes with radiomics

to extract quantitative features (including shape, texture, and

intensity) for refined clinical decision-making. Examples include

metastasis prediction: Yu et al.’s radiomics model predicted lymph

node metastasis in thyroid cancer with an AUC of 0.90 (n = 1,013)

(31); genomic and prognostic analysis: ultrasound features

correlated with tumor phenotypes or genetic mutations (n = 96)

(32), while multimodal models localized primary cancer sites in

metastatic lymph nodes (n = 280) (33); and treatment optimization:

radiomics-clinical integrated models reduced unnecessary central

lymph node dissections (34, 35) and assessed disease-free survival

(36). Most AI validations depend on single-center retrospective

data, and lack largescale, multicenter prospective validations.

3.1.1.1.3 Clinical value of AI-TI-RADS

A retrospective analysis of 2,061 thyroid nodules (sampled via

FNA or surgery) was used to develop the AI-TI-RADS classification

model. Compared to the conventional ACR TI-RADS, AI-TI-RADS

demonstrated superior specificity (70.2% vs. 49.2%) and biopsy

avoidance rates (42.3%), while maintaining comparable sensitivity

(82.2% vs. 86.7%) (37). This disparity underscores the need to

balance sensitivity and specificity based on clinical scenarios (37).

3.1.1.2 AI advancements in CT and MRI

Although ultrasound remains the primary imaging modality for

thyroid disorders, CT is indispensable in complex cases, such as the

assessment of tumor invasiveness. The AI system developed byWang
FIGURE 1

AI is extensively applied across various aspects of thyroid disease management, including image analysis, pathological diagnosis, personalized
treatment, as well as patientmonitoring and follow-up.
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et al. predicted preoperative cervical lymph node metastasis in

thyroid cancer using CT images and outperformed senior

radiologists in sensitivity and accuracy. When combined with

radiologists, AI further enhances diagnostic efficacy, demonstrating

its utility in surgical planning (38). MRI, with its high soft tissue

resolution, offers unique advantages for assessing extrathyroidal

extension. A radiomics study (n = 132) identified 16 key features

from multiparametric MRI data, constructing a predictive model for

extrathyroidal extension with an AUC of 0.87 (39). However, these

studies involved moderate sample sizes, necessitating larger cohorts

to improve predictive efficiency. Additionally, deep learning-based

segmentation of thyroid lesions on CT or MRI remains unexplored in

the literature. Tumors <0.5 cm in diameter were excluded because of

unreliable identification and segmentation on CT or MRI images.
Frontiers in Endocrinology 04
3.1.2 Pathology support
The earliest applications of AI in the pathological analysis of

thyroid diseases date back to the 1990s, when AI was primarily used

for basic image recognition and classification. Researchers began

exploring computer-assisted techniques for analyzing pathological

slides; however, the limitations of the technology restricted its

application (40).

In the 21st century, the rapid development of deep learning has

significantly advanced the application of AI in pathological analysis.

The introduction of convolutional neural networks has enabled AI

to effectively process and analyze high-resolution pathological

images. Research during this period has focused on automated

tumor detection and classification, particularly in the diagnosis of

thyroid cancer, where AI systems can identify subtle changes in
frontiersin.o
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PRISMA flowchart of the review.
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cellular morphology and tissue structure (12, 13). Guan et al.

utilized a the VGG-16 deep convolutional neural network

(DCNN) model to establish a pathology-validated dataset from

279 cytological images of thyroid nodules. They trained and tested

both the VGG-16 and Inception-v3 DCNN models and found that

the VGG-16 model showed significant potential to enhance the

diagnosis of papillary thyroid carcinoma (PTC) in cytological

images. In fragment images, the contours, perimeter, area, and

average pixel intensity of PTC cells were all greater than those of

benign nodules (12). FNA biopsy remains the gold standard for the

preoperative diagnosis of malignant tumors. However,

approximately 10%–30% of thyroid nodules yield inconclusive

results, with 10-40% of those cases subsequently confirmed to be

malignant (41). Zhao et al., found that the DCNN ResNeSt achieved

high sensitivity in diagnosing malignancies in these ambiguous

atypical nodules. The ResNeSt model achieved an accuracy of

92.49% (160/173) on fragment images and 84.78% (39/46) in

distinguishing PTC from benign nodules in ambiguous cases. The

sensitivity and specificity of the ResNeSt model were 95.79% and

88.46%, respectively. Malignant nodules exhibit larger and more

deeply stained nuclei than those of benign nodules (14).

The development of AI-assisted algorithms using digital

cytology images has been significantly impeded by technical

challenges and a shortage of optimized scanners for cytology

specimens (42). In a study by Guan et al., all three fragmented

false-positive cases showed large nuclei with high mean pixel color

information similar to that of malignant cells. However,

cytopathologists considered these images representative of typical

benign nodules. The authors suggested that the DCNN based its

diagnosis on nucleus size and staining intensity rather than

shape.Future studies should focus on training the networks to

differentiate between cellular and nucleus morphologies (12).

Additionally, current DCNN models require sufficient sample

sizes; smaller datasets risk overfitting. Rare thyroid cancer

histopathologies—such as follicular thyroid cancer (FTC) and

Hürthle cell carcinoma—remain difficult to diagnose. Wai-Kin

Chan et al. found that the accuracy of convolutional neural

networks in identifying FTC was only 63.6%–72.7% and in

identifying Hürthle cell carcinoma, only 60%–66.7%. These

limitations were largely because of the small number of cases in

the database—a consequence of the low incidence and prevalence of

these cancers. However, the performance of retrained convolutional

neural networks was significantly better than that of the

participating physicians (43).

Since 2016, the application of AI has gradually evolved toward

the integration of multimodal data. Researchers have begun to

explore combinations of pathological images with clinical data and

genomic information to construct comprehensive models (44). This

trend extends the capabilities of AI beyond image analysis, enabling

support for predicting genetic information, assessing patient

prognosis, and developing personalized treatment plans. For

example, PTC— particularly its aggressive subtype—is often

associated with BRAF p.V600E mutations and RET fusions (45,

46). Rossi et al. examined 72 FNA cytology specimens from

patients diagnosed with PTC and found that 47 of the patients
Frontiers in Endocrinology 05
with mutations exhibited distinct morphological features. This study

demonstrated that the BRAF p.V600Emutation could be predicted in

cytological samples based on specific morphological characteristics

(21). AI technology has the potential to predict whether patients with

PTC harbor BRAF p.V600E mutations by analyzing and identifying

the morphological features of cells (47). Nishikaw et al. generated a

morphological analysis dataset using deep learning, constructed 72

whole-slide images, and extracted six types of nuclear features. This

study successfully established a predictive model for identifying RET

fusions, achieving an AUC of 0.801 (22). Additionally, integrative

multiomics analyses—such as combining spatial proteomics,

genomics, immunohistochemistry, and metabolomics—with the

application of AI and machine learning methods can reveal

complex relations and interactions among various molecular

components, providing a more comprehensive biological landscape

for pathological thyroid diagnosis and addressing current diagnostic

challenges (48). Matrix-assisted laser desorption/ionization mass

spectrometry imaging and desorption electrospray ionization mass

spectrometry imaging enhance the diagnostic performance of FNA

by effectively distinguishing between benign and malignant cell

regions, serving as supplementary tools for diagnosing uncertain

characteristics of thyroid nodules (15, 49) (Table 1).
3.2 Therapeutic applications

3.2.1 Surgical decision-making
Radiomic models can analyze risk stratification, predict the

invasiveness of thyroid cancer and lymph node metastasis, and

guide surgical decisions regarding preventive lymph node dissection

(50). One study used of mind maps and iterative decision trees to

develop a guideline-based clinical decision support system for

routine surgical practice. The concordance between clinical

decision support system recommendations and actual treatment

decisions in real-world clinical settings was 78.9% (51).

3.2.2 Targeted therapy guidance
Initially, the concept of personalized treatment relied primarily

on clinical experience and pathological analysis and lacked data-

driven approaches. Advancements in AI have facilitated a gradual

shift toward data-driven personalized treatment. With the

development of genomics and bioinformatics, researchers have

begun using AI to analyze patient genetic information to predict

disease risk and treatment responses (52). Early studies focused on

the genetic mutation analysis of patients with thyroid cancer to

identify biomarkers associated with treatment sensitivity (21, 53).

The ResNet152-based DTLR model demonstrated significant value

in identifying BRAF p.V600E mutations in patients with PTC using

ultrasound images (54).Combination therapy with dabrafenib and

trametinib is currently the standard treatment for patients with the

BRAF p.V600E mutation. Machine learning approaches have

contributed to the identification of biological pathways involved

in cancer drug responses. For example, machine learning methods

identified Rac1/cytoskeleton signaling transduction as the most

significant driver of resistance to BRAF inhibitors (55). AI-
frontiersin.org
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TABLE 1 AI studies for thyroid disease diagnosis.

Study Modality Model type AI task Validation Dataset Model validation
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.98

This is a pilot study, they have only included a few
typical cytological images.

.93

ResNeSt model could ‘t distinguish some misdiagnosed
fragmented image because of VGG-16 made the
diagnosis based on the size and staining of the nucleus,
thus a combination of different models may provide
better categorization.

.50

Predictive values depend on malignancy prevalence.
Narrow malignant case spectrum may impact model’s
carcinoma signature recognition.

3 High proportion of malignant thyroid nodules.
Part of benign group were based on US-guided biopsy
results. There were no pathological results.This was a
single-center study.

.39

This was a retrospective study, and only one image of
each nodule was available.
Image obtained only in the transversal plane.

2
2 0.938
81.6%
89.9%

Biases in data selection and misleading benign from
malignant nodules. AI-Thyroid outcomes not compared
to physicians’. Further studies on “nondiagnostic” or
“indeterminate” nodules needed.

ns 0.801;
00E
.638

The sample size for RET fusion cases and the training
dataset for nuclear feature detection were small. Only
BRAFV600E-negative cases were tested for RET fusions.

3 The prevalence diversity could impact PPV and NPV,
reducing results’ generalizability. Radiologists’
performance may be underestimated.
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Guan, Q., et al. (12) Cytological
images

VGG-16 DCNN Classification Single-center
Retrospective
Internal validation

279 cytological images
of thyroid nodules

Spec 94.9%
Sens 100.0
Acc 97.7%
PPV 95.8%
F1 score 0

Zhao et al. (14) Cytological
images

ResNeSt Classification Single-center
Retrospective
Internal validation

Training dataset 1,330
samples
Test dataset 173 samples

Spec 88.5%
Sens 95.8%
Acc 92.5%
F1 score 0

Capitoli, G.,
et al (15)

Cytological
images

MALDI-MSI model Classification Single-center
Prospective
External validation

207 patients Spec 82.9%
Sens 43.1%
Acc 67.7%
PPV 60.9%
F1 score 0

Li. et al. (18) US S-Detect Classification Single-center
Prospective
External validation

236 patients AUC 0.75
Spec 56.0%
Sens 95.0%
Acc 84.0%

Swan, K.Z.,et al (19) US AIBx Risk stratification Single-center
Retrospective
External validation

209 patients AUC 0.61
Spec 44.2%
Sens 78.4%
PPV 25.8%
F1 score 0

Ha, E.J., et al. (20) US AI-Thyroid Classification Multicenter
Retrospective
External validation

Training 6163 patients
Test set 1 4820 patients
Test set 2 2367 patients

Test1 Tes
AUC 0.92
Spec 81.5%
Sens 87.0%

Nishikawa,T.,et
al. (22)

Hematoxylin and
eosin
staining slides

Four
convolutionalneural
networks

Gene prediction Multicenter
Retrospective

72 samples of classical
papillary
thyroid carcinoma.

AUC:
RET fusio
BRAFp.V6
mutation

Peng, S., et al. (27) US ThyNet Classification Multicenter
Prospective
External validation

Training 8339 patients.
Total test 2775 patients

AUC 0.82
Spec 89.1%
Sens 94.9%

Yu, J., et al. (31) US TLR model Metastasis prediction Multicenter
Prospective
External validation

The first two datasets
3172 patients
The third dataset
1691 patients

Test1 Tes
AUC 0.93
Spec 89.0%
Sens 83.0%
t
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t
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TABLE 1 Continued

Study Modality Model type AI task Validation Dataset Model validation
rmance

Limitations

% 84.0%
.0% 74.0%
0.87 0.83

65
.8%
.8%
%

This was a retrospective study from a single institution
with small datasets.
The lack of external validation data.

838
.5%
.7%
%
.5%
0.66

The study was subject to selection bias, using the same
scanner for multimodal ultrasound images and focusing
on one region of interest from B-mode, color Doppler,
and elastography images for model building.

841
.8%
.4%
%
.7%
0.76

US images of central LNs were not included in the
analysis.
The interpretability of features learned by the DL and
radiomics model remains limited.
The limited amount of data utilized.

803
.6%
0%

Selection bias. The sample size was small.Radiomics
feature variability from equipment and settings is
unexamined. Did not divide cervical LNS into central
and lateral.

0.777
re 3.087

The retrospective nature of its data collection and the
relatively small sample size.

762
.2%
.2%
%
%
0.61

Selection bias.
The study’s composite reference standard may contain
potential errors. The sample does not accurately
represent real-world thyroid nodule types. Agreement
was assessed only between two readers.

81
.0%
.0%
%
.0%
0.74

Samples were obtained only in China.
Manual segmentations were performed by a radiologist.
Tumor diameters<0.5 cm were not included.
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Acc 86
PPV 92
F1 scor

Kwon, M.R.,
et al. (32)

US Logistic regression
SVM.
Random forest
using 5-fold CV.

Gene prediction Single-center
Retrospective
Internal validation

96 thyroid nodules AUC 0
Spec 61
Sens 66
Acc 64

Zhu, Y., et al. (33) US CUS+UE+CEUS Prediction primary
cancer sites

Single-center
Retrospective
Internal validation

280 cancer patients AUC 0
Spec 94
Sens 59
Acc 87
PPV 74
F1 scor

Gao, Y., et al. (34) US An integrated
model with DL,
radiomics, and
clinical
imaging features.

Metastasis prediction Single-center
Retrospective
Internal validation

613 patients AUC 0
Spec 81
Sens 72
Acc 77
PPV 79
F1 scor

Lv, X., et al. (35) US and
frozen section

The clinical model,
radiomics model
and nomogram.

Metastasis prediction Multicenter
Retrospective
Internal validation

208 patients AUC 0
Spec 53
Sens 10

Park, V.Y., et al. (36) US A radiomics
signature (Rad-
score) based
on thyroid.

Predicting disease-
free survival

Single-center
Retrospective

768 patients. C-inde
Rad-sco

Liu Y., et al. (37) US AI TI-RADS Classification Multicenter
Retrospective
External validation

1859 patients. AUC 0
Spec 70
Sens 82
Acc 73
PPV49
F1 scor

Wang, C., et al. (38) CT AI-based CLNM
prediction system.

Metastasis prediction Multicenter
Retrospective
External validation

Development set 423
patients
Internal test set 182
patients.
External test set
66 patients.

AUC 0
Spec 92
Sens 62
Acc 73
PPV 93
F1 scor
.0

e

.

.3

.

.3

e

.

.1

e

.

x

.

.3

.0
e

.

.0

e

https://doi.org/10.3389/fendo.2025.1578455
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


TABLE 1 Continued

Study Modality Model type AI task Validation
cohort & type

Dataset Model validation
performance

Limitations

Single-center
Retrospective
Internal validation

132 patients Spec 93.4%
Sens 89.5%
Acc 91.7%
PPV91.1%

The sample size was small and not externally validated.
Lesions varied significantly between ETE and non-ETE
groups. Tumors < 5 mm were excluded.

Single-center
Retrospective
Internal validation

812 patients AUC 0.821 0.832 0.833

Spec% 76.91 81.42 83.73

Sens%76.01 72.5266.23

Acc % 76.5177.6276.13

PPV % 71.8175.1275.83

F1score0.7410.7420.713

Selection bias. Collecting malignant samples is time-
consuming. Test set has few cases, lacks tumor size info.
Rarer malignant forms excluded. Diagnostic power for
multinodular goiters unclear. Ultrasound algorithm
differences impact training and classification.

Single-center
Retrospective
Internal validation

118 whole slide images Spec 71.0%
Sens 91.0%
Acc 87.0%
PPV 94.0%
F1 score 0.92

Selection bias.
The retrospective nature of its data collection and the
relatively small sample size.

Multicenter
Retrospective
Internal validation

206 frozen human
thyroid tissue samples

Test1 Test2
Spec 91.0% 88.0%
Sens 96.0%100.0%
PPV 88.0%20.0%
F1 score 0.92 0.33

Access to patient and clinical information is limited.
The study had one FNA FTC sample. DESI-MS imaging
requires frozen FNA samples for stability.Imaging
experiments take a few hours.

DCNN, Deep convolutional neural network; DL, Deep learning; DESI-MS, Desorption electrospray ionization mass spectrometry; ETE, extrathyroidal extension;
g; NPV, Negative predictive value; PPV, Positive predictive value; Sens, sensitivity; Spec, specificity; SVM, Support vector machine; UE, Ultrasound elastography;
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Wei, R., et al. (39) MRI A radiomics
predictive model.

Metastasis prediction

Chan WK, et al. (43) US InceptionV31

ResNet1012

VGG193

Classification

Wang CW,
et al. (47)

Cytological
images

DLframework Gene prediction

DeHoog, R.J.,
et al. (49)

Tissue samples DESI-MSI
Test1 Benign vs.
PTC model
Test2 Benign vs.
FTC model

Classification

AUC, Area under the curve; Acc, Accuray;CV, cross-validation; CLNM, Central lymph node metastasis
LNs, Lymph nodes; MALDI-MSI, Matrix-assisted laser desorption/ionization mass spectrometry imagin
US, Ultrasound.
;
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assisted virtual screening identified Kir5.1 as a druggable target

through the molecular docking of 200,000 compounds.

Additionally, 10 potent compounds that interact with Kir5.1 were

successfully identified using AI-assisted virtual screening

(24) (Table 2).
3.3 Prognostic monitoring

AI not only holds significant promise in the diagnosis and

personalized treatment of patients with thyroid diseases but also

plays an increasingly important role in patient monitoring and

follow-up, particularly in remote monitoring, prognostic

assessment, and risk management.

3.3.1 Recurrence prediction
With the maturation of deep and machine learning algorithms,

the application of AI in the personalized treatment of thyroid diseases

has continued to expand. Researchers have begun integrating clinical

data, imaging features, and biomarkers to develop complex predictive

models. These models not only assist physicians in formulating

individualized treatment plans but also evaluate patients’ responses

to various therapies. Zhang et al, integrated radiomic features,

mutated genes, and clinical characteristics to construct a

nomogram model. The study found that this model significantly

enhanced the predictive efficacy of radiomic features for lymph node

metastasis improving accuracy from 71.5% to 87.0% (23).

In the context of prognostic assessment and risk management,

AI aids in analyzing long-term data to evaluate the risk of

recurrence, particularly during the follow-up of patients with

thyroid cancer. Timely interventions can be initiated by the early

detection of abnormal signals. For instance, one study analyzed the

prognostic significance of clinical and pathological factors in 1,040

patients with PTC, including the number of metastatic lymph nodes

and lymph node ratio. Researchers attempted to construct a disease

recurrence prediction model using machine learning techniques

and compared the accuracy of five machine learning models. The

decision tree model exhibited the highest accuracy at 95%, while the

combination of Light Gradient Boosting Machine and stacking

models showed an accuracy of 93% (25). In another study

involving 554 patients with PTC, researchers used radiomic

features in combination with significant clinical and pathological

characteristics to construct a nomogram. The results demonstrated

that the combined nomogram showed strong concordance with

actual recurrence events and yielded a net benefit superior to that of

traditional clinical models across most thresholds (26).

3.3.2 Remote monitoring
With ongoing technological advancements, the application of AI

in remote monitoring has steadily increased. Using smartphones and

wearable devices, patients’ physiological parameters and symptoms

can be collected and transmitted to healthcare teams in real time (56,

57). AI systems can analyze these data to promptly identify potential

complications and recurrence risks, thereby providing physicians with

real-time decision-making support. This form of remote monitoring
Frontiers in Endocrinology 09
not only enhances patients’ self-management capabilities but also

reduces the need for frequent clinic visits (Table 3).
4 Conclusion and outlook

AI has demonstrated significant potential in the detection and

follow-up of patients with thyroid diseases, particularly in imaging

analysis, prediction of invasiveness and metastasis, and prognostic

assessment. Through deep learning and machine learning

techniques, AI has not only improved the accuracy of

differentiating between benign and malignant thyroid nodules but

also integrated multiple data sources to monitor patient health and

identify potential risks in a timely manner. Despite the promising

prospects of AI in thyroid disease management, critical challenges

persist regarding data privacy, model interpretability, and clinical

applicability. This study had three fundamental limitations:

First, the generalization capacity of AI models is profoundly

affected by dataset homogeneity. Existing studies predominantly

relied on single-center, hospital-based cohorts (28 of 30 studies,

93%), which differ in thyroid cancer prevalence compared with the

general population, thereby compromising external validity.

Notably, 83% of the models (25 of 30) were trained on Asian

datasets, raising concerns about their efficacy across diverse ethnic

and geographic populations. Furthermore, the inadequate

representation of pathological subtypes—with 90% of studies

focusing on classical PTC—has resulted in diagnostic inequity for

patients with FTC and other rare subtypes. This limitation

contributes to degraded algorithmic performance across

institutions, imaging devices, and multiethnic cohorts.

Second, the “black-box” nature of AI models remains a critical

barrier to clinical adoption. Although interpretability tools, such as

SHapley Additive exPlanations and Local Interpretable Model-

agnostic Explanations (58–60), have been partially implemented,

current systems fail to transparently elucidate decision-making

pathways—particularly the relative contributions of key

morphological features, such as microcalcifications versus

vascular patterns. This opacity complicates the clinical validation

of misdiagnoses, including the erroneous classification of

Hashimoto’s thyroiditis as malignancy (15).

Third, these two systemic disconnects hinder real-world

application. Algorithmic development remains poorly integrated

with clinical workflows, as exemplified by models, such as those

developed by Peng et al. (27), which lack compatibility with Picture

Archiving and Communication Systems. Concurrently, the absence

of ethical and legal frameworks—addressing liability attribution for

AI misdiagnoses and informed consent for predictive genomic

models—creates regulatory ambiguities (61).

Future research should prioritize these three directions. Cross-

modal data-fusion architectures must integrate ultrasound,

pathomics, and multiomics data to develop interpretable

multitask learning frameworks. Algorithmic improvements are

urgently required to enhance predictive fairness in heterogeneous

thyroid nodule populations. The seamless integration of AI tools

into clinical workflows necessitates the establishment of rapid
frontiersin.org
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TABLE 2 AI studies for therapeutic applications.

Study Modality Model type AI task Validation
ort & type

Dataset Model validation
performance

Limitations

le-center
pective
rnal validation

70 pairs of thyroid
tumor and
paratumor tissues

Kir5.1 is a potential
therapeutic target for
thyroid cancer. Identified
genes and developed Kir5.1
interaction compounds.

Sample capacity was insufficient,
specifically owing to the lack of DeTC
and Anaplastic thyroid carcinoma
specimens.Can not reflect thelocation or
distribution of DEGs in cells.

le-center
ospective
rnal validation

211 patients. AUC 0.901
Spec 86.7%
Sens 82.4%
Acc 84.4%

Their analysis had a small sample size,
focusing on static grayscale ultrasound
images of LNs without multimodal image
integration. LN size classification was
not detailed.

le-center
ospective

.483 patients CDSS recommendations
and clinical treatment
concordance was 78.9%.

To implement a CDSS, a large-scale
study is required. Limited cases prevent
assessing some IDT paths with SNUBH
data. The concordance rate is 78.9%,
which is low.

ticenter
ospective
rnal validation

401 cases AUC 0.769 Variability in public databases.
The majority of cases were stage I/II and
of the traditional subtype, potentially
biasing the data analysis.

le-center
ospective
rnal validation

738 patients AUC 0.833
Spec 81.7%
Sens 76.2%
Acc 80.6%
PPV 49.2%
F1 score 0.60

Although itincluded numerous samples,
there is still the potential for study
enlargement.
Selection bias.
This study employed manual tumor
segmentation, noting the variability
among individuals.

C, Dedifferentiated thyroid cancers; DTLR, deep transfer learning radiomics; IDT,Iterative decision tree; LNs,Lymph nodes; PPV,Positive
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Yang, X., et al. (24) Gene Expression
Omnibus database

.A.I. system AlphaFold
AutoDock Vinav.1.2.0

Gene prediction Sing
Pro
Ext

Fan, F., et al. (50) US Combined model Metastasis prediction Sing
Ret
Inte

Yu HW., et al. (51)

Clinical data Clinical
knowledge models

Clinical decision
support system

Sing
Ret

Liu, Y., et al. (53) Cancer genome
atlas database

The Pathomics model Gene prediction Mu
Ret
Ext

Wu F., et al. (54) US The ResNet152-based
DTLR model

Gene prediction Sing
Ret
Inte

Acc, Accuray; AUC, Area under the curve; CDSS, Clinical decision support system; DEGs, differentially expressed genes; De
predictive value; Sens, sensitivity; SNUBH, Seoul National University Bundang Hospital; Spec, specificity.
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TABLE 3 AI studies for prognostic monitoring.

Study Modality Model type AI task Validation
cohort & type

Dataset Model validation
performance

Limitations

diction Single-center
Prospective
Internal validation

182 thyroid
nodule samples.

AUC 0.603 /

Single-center
Retrospective
Internal validation

1040 patients Sens18%
Acc 95.0%
PPV 66.0%
F1 score 0.28

Need more patient data.
This was a retrospective study conducted at a
single institution and there were selection bias.

/ 554 patients
Training cohort 388.
Validation cohort166

AUC 0.885
Spec 86.4%
Sens 75.0%
Acc 86.1%

This was a retrospective study conducted atone
center and there were certain potential biases.
Small sample size and the short follow-up time.

ces. / / With large tensile strains
(≥110%), high flexibility (R ≥ 1.4
mm), and lightweight (≤1.58 g)
to meet the needs of
wearable devices.

Ignoring array elements during large curvature
surface conformation can lead to phase
compensation errors due to discrepancies
between actual and defined positions.

ces. Single-center
Prospective

44 patients / Results may not apply to those new to smart
devices. Gender ratio varied between groups,
with a small, imbalanced sample size. Study’s
validity for early or mild hypothyroidism
is uncertain.

e; RF, Random forest;Sens, sensitivity; Spec, specificity.
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Zhang, R., et al. (23) Samples obtained by
fine-needle aspiration

Multi-feature integration
nomogram model for
LNM prediction

Metastasis pre

Park, Y.M. and B.J.
Lee (25).

US The decision tree, RF,
XGBoost, and
LightGBM, and
Stacking models.

Recurrence
prediction

Zhou, B., et al. (26) US Clinical model,
radiomics signature and
combined nomogram.

Recurrence
prediction

Chen, J., et al. (56) US Flexible and stretchable
ultrasound transducer

Wearable dev

Kim, K.H., et al. (57) Wearable device Heart rate monitored by
a wearable device

Wearable dev

Acc, Accuray; AUC, Area under the curve; LNM, Lymph node metastasis; PPV, Positive predictive val
i
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implementation pipelines. Additionally, prospective randomized

controlled trials are imperative to quantify the real-world impact

of AI systems on healthcare costs—such as reductions in FNA rates

—and patient outcomes, including 5-year survival rates. Addressing

these priorities will bridge the gap between AI innovation and

equitable, ethically grounded clinical practice.
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