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Introduction: Increasing evidence suggests that individuals with obesity are at a

higher risk of developing depression, and conversely, depression can contribute

to the onset of obesity, creating a detrimental cycle. This study aims to

investigate the potential shared biological pathways between obesity and

depression by examining genetic correlations, identifying common

polymorphisms, and conducting cross-trait genetic analyses.

Methods: We assessed the genetic correlation between obesity and depression

using linkage disequilibrium score regression and high-density lipoprotein levels.

We combined two different sources of obesity data using METAL and employed

bidirectional Mendelian randomization to determine the causal relationship

between obesity and depression. Additionally, we conducted multivariate trait

analysis using the MTAG method to improve statistical robustness and identify

novel genetic associations. Furthermore, we performed a thorough investigation

of independent risk loci using GCTA-COJO, PLACO, MAGMA, POPS, and SMR,

integrating different QTL information and methods to further identify risk genes

and proteins.

Results: Our analysis revealed genetic correlations and bidirectional positive

causal relationships between obesity and depression, highlighting shared risk

SNP (rs10789340). We identified RPL31P12, NEGR1, and DCC as common risk

genes for obesity and depression. Using the BLISS method, we identified SCG3

and FLRT2 as potential drug targets.

Limitation: Most of our data sources are from Europe, which may limit the

generalization of our findings to other ethnic populations.
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Conclusion: This study demonstrates the genetic causal relationship and

common risk SNPs, genes, proteins, and pathways between obesity and

depression. These findings contribute to a deeper understanding of their

pathogenesis and the identification of potential therapeutic targets.
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1 Introduction

The Depression and obesity are prevalent conditions with

profound public health consequences. In the United States, the

lifetime prevalence of major depressive disorder approaches 20%

(1–3). Extensive epidemiological research and meta-analyses have

established that these conditions frequently co-occur (4). A recent

study demonstrated that individuals with obesity are 55% more

likely to experience lifetime depression compared to the general

population, while those suffering from depression are 58% more

likely to become obese (5). This reciprocal relationship is

consistently observed across various studies, including a meta-

analysis of 17 community-based cross-sectional studies, which

revealed a positive correlation between depression and obesity,

indicating an 18% increased risk of obesity among those with

depression (6–8). Further, substantial evidence suggests that

depression and obesity engage in a cyclical relationship,

exacerbating one another through adverse physiological changes

(9, 10). These include dysregulation of the hypothalamic-pituitary-

adrenal axis, heightened inflammation, increased oxidative stress,

and hormonal imbalances (11). Individuals with depression might

gain weight over time due to a dysregulated stress response or

unhealthy lifestyle choices. Conversely, obesity can lead to

depression due to negative self-perception or the physical burdens

it imposes (12).

Research focused on a single disease may overlook critical

genetic loci and molecular regulatory mechanisms. Therefore,

employing multivariate analysis methods is essential to broaden

the phenotypic spectrum of research, explore risk loci, and delve

into the common genetic causes of diseases (13). Shared genetic

causes also suggest potential pleiotropy, which often represents

genetic confounding factors in trait associations (14, 15). Cross-trait

analysis is thus proposed to investigate pleiotropic genetic

variations or loci among multiple traits using the correlation of

genome-wide association studies (GWAS) signals (16, 17). These

pleiotropic loci could serve as intervention targets, potentially

preventing or treating these diseases simultaneously.

In this genome-wide pleiotropy association study, we utilized

obesity data from Finngen and UKB and depression data from the

PGC database. Various statistical genetic methods were employed

to study pleiotropic associations sequentially at the single

nucleotide variant (SNV), gene, and protein levels, as well as
02
biological pathways, to unravel potential common genetic causes.

Firstly, we assessed genetic correlation using Linkage disequilibrium

score regression (LDSC) and high-definition likelihood (HDL).

Within the framework of pleiotropy analysis, we identified shared

pleiotropic genetic loci for obesity and depression at the SNV level

using multi-trait analysis of GWASs (MTAG), PLACO, and COJO

analyses. Subsequently, we conducted gene-level analyses using

MAGMA, POPS, and SMR to identify candidate related risk

genes and employed BLISS to identify risk proteins at the protein

level. Finally, we performed genome-specific enrichment analyses to

characterize genomic pathways and tissue specificity. Figure 1

illustrates the overall study design.
2 Materials and methods

2.1 Data collection

2.1.1 Collection of GWAS summary data
A comprehensive range of GWAS summary data was used in this

study. Owing to the limited availability of data from other ancestries,

we included GWAS summary data from European ancestry.

Supplementary Table S1 presents a comprehensive description of the

characteristics of each dataset utilized in our study.

GWAS summary data on obesity were extracted from the

UKbiobank, which included 4,688 patients and 458,322 control

individuals, and a FinnGen database (Finn-Obesity), which included

23,971 patients and 388,084 control individuals. Depression GWAS

data were obtained from the PGC database (246,363 cases and 561,190

controls).To investigate the genetic composition of patients with

Obesity, we integrated quantitative trait loci (QTL) data, including

expression QTLs (eQTLs) from 54 specific samples (such as

gastrointestinal tissues and blood) and plasma protein QTLs

(pQTLs). Blood eQTL data were extracted from the expansive

eQTLGen Consortium database, which documented single

nucleotide polymorphisms (SNPs) associated with traits in 31,684

individuals (18). Plasma pQTL data were extracted from the

deCODE database, which included 35,559 Icelandic participants and

focused on 4,907 plasma proteins (19). 4953 plasma proteins from the

ARIC database, and the UKBPP project, which included 54,219

participants from the UK Biobank study and focused on 2,923

plasma proteins (20).
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2.2 Statistical analysis

During the analysis phase of this study, we meticulously

excluded SNVs within the major histocompatibility complex

(MHC) region on chromosome 6 (25–35 Mb) to mitigate

potential confounding effects. In addition, we removed SNPs with

a minor allele frequency of <0.01 and those with duplicated or

missing reference cluster IDs from each GWAS summary dataset

for subsequent analysis. Data aligned to the GRCh38 reference were

converted to GRCh37 using the liftOver tool for consistency (21).

2.2.1 Assessment of genetic correlations between
obesity and depression

LDSC and HDL methods were used to assess the genetic

relationship between obesity and depression based on GWAS

summary data from two datasets. The HDL method was cross-

validated against LDSC to ensure robustness. Significant genetic

correlations between obesity and depression were consistently

observed across three independent sources, warranting further

analysis. To enhance rigor and reliability, multiple comparisons

were adjusted using the Bonferroni correction, setting the

significance threshold at P < 0.025. Notably, significant genetic

correlations were identified between obesity (FinnGen) and

depression, as well as obesity (UK Biobank) and depression,

highlighting potential shared genetic components.
Frontiers in Endocrinology 03
2.2.2 Meta-analysis of GWASs
Meta-analysis was performed to combine data from the two

datasets (UKbiobank, FinnGen). Given the potential sample overlap

between the datasets, Metasoft was used to evaluate heterogeneity

(I2) and P-values based on Cochran’s Q test (P_het). When

heterogeneity was present (I2 ≥ 50 or P_het < 0.05), P-values

from the random-effect model calculated using RE2C were

considered (22, 23).
2.2.3 Multi-trait analysis of GWAS summary
statistics

Building on the results of our previous phase of research, we

continued with a MTAG method, cross-analyzing the META-

OBESITY and depression phenotypes. The MTAG method improves

the efficiency of identifying associated genes by integrating the genetic

correlation structure of several similar traits into a single “meta-

analysis,” thereby enabling joint analysis of multiple traits (24). In

this analysis, we combined GWAS data for META-OBESITY and

depression to derive MTAG-OBESITY. For this purpose, the genome-

wide significance threshold was set at a P-value of less than 5e-8 to

ensure stringent identification of associations.

We applied PLACO to conduct a genome-wide search for SNPs

influencing the risk of both MTAG- OBESITY and depression. In

brief, PLACO is a novel statistical approach that identifies

pleiotropic loci between two traits by testing the composite null
FIGURE 1

Overall study design.
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hypothesis (i.e., a locus is associated with zero or one of the

traits) (17).

2.2.4 Identification of genetic risk factors for
obesity
2.2.4.1 Identification of independent risk loci

To identify genomic risk factors for obesity, we detected distinct

independent signals within the genomic loci associated with

MTAG-OBESITY using the stepwise model selection framework

provided by genome-wide complex trait analysis (GCTA)-

conditional and joint analysis (COJO) (25, 26). Based on the

results of PLACO, the identified pleiotropic loci were mapped to

neighboring genes to investigate their shared biological

mechanisms. The functional mapping and annotation (FUMA)

platform (27) was used to delineate the genomic risk loci through

functional annotation of the variants based on LD scores obtained

from the European cohort of the third phase of the 1000 Genomes

Project. SNV, validated by COJO and FUMA analyses, was

identified as a risk factor for obesity and depression co-morbidity.

These variants were annotated using ANNOVAR (28), and their

potential deleterious effects were assessed using Combined

Annotation Dependent Depletion (CADD) scores, with values of

>12.37 indicating a higher likelihood of producing deleterious

effects (29).

2.2.4.2 Genetic insights into obesity-depression
comorbidity

In the integrated analysis aimed at revealing the genetic basis of

obesity, MAGMA and POPS (30, 31) were used to identify and

prioritize relevant genes, with P-values adjusted using the

bonferroni procedure in each method. Genes with false discovery

rate (FDR)-adjusted P-values of <0.05 and those consistently

identified using both methods were considered significant risk

factors. MAGMA enables gene-centered analysis based on

extensive data from protein-coding genes and can be integrated

with POPS to prioritize enriched genes. In particular, this approach

integrates GWAS summary data with expression profiles and

biological pathways, with a POPS score of >1 indicating candidate

genetic risk factors.

To investigate the genetic correlates of obesity, SMR was

performed using the GWAS summary data of patients with

obesity and the eQTL data of various tissues and cell types (32).

The inclusion criteria were as follows: FDR-adjusted P-value < 0.05;

heterogeneity (HEIDI) > 0.01.

Phenotypic and genomic enrichment analyses were performed

to assess the biological relevance of genes associated with obesity.

Genomic enrichment analysis involved the use of data from the

Molecular Signatures Database (MSigDB) (33), with significant

biological pathways being identified using the ClusterProfiler tool

after adjusting for multiple tests (34).

2.2.4.3 Proteomic insights into obesity-depression
comorbidity

The “Biomarker Level Inference from Summary Statistics”

(BLISS) method was used to examine the complex proteomic
Frontiers in Endocrinology 04
landscapes of obesity and depression. Traditional proteome-wide

association study (PWAS) models depend on detailed individual-

level proteomic data. This dependence often limits the ability to

utilize the vast amount of summary-level pQTL data available

publicly (35). In contrast to traditional PWAS models, the BLISS

method represents a novel strategy for constructing protein

imputation models directly from summary-level pQTL data. In

this study, the BLISS method was used to generate extensive

European PWAS models using pQTL data from large-sample

UKB, deCODE, and ARIC studies (35). Proteins with an FDR-

adjusted P-value of <0.05 were identified as significant risk factors,

indicating their potential key role in the pathophysiology of obesity

and depression.

2.2.4.4 Two-sample Mendelian randomization analysis

We conducted MR analysis to determine the causal link

between obesity and depression (36, 37). Using the clumping

procedure in PLINK software, we identified all significant genetic

loci independently associated with these conditions (P < 5×10-8) as

instrumental variables (IVs), with an r2 threshold of 0.001 and a

window size of 10,000 kb. To ensure the robustness of our IVs, we

calculated the coefficient of determination (r2) and the F-statistic,

including only SNPs with an F-value greater than 10. The inverse-

variance weighted (IVW) method was the primary analysis

technique. We also conducted several sensitivity analyses by

assessing heterogeneity among individual IVs using IVW and

MR-Egger Q tests to identify potential violations of the

assumptions. MR-Egger was further applied to account for

horizontal pleiotropy based on its intercept estimate, ensuring

that genetic variants were not related to both the exposure and

the outcome. To strengthen the robustness of the results, we

performed additional analyses using MR methods with different

modeling assumptions and strengths, such as weighted median and

weighted mode. Additionally, we used the MR-PRESSO method,

repeated 1,000 times, to detect outliers (14), and any identified

outliers were removed for reevaluation.
3 Results

3.1 Genetic relationship between obesity
and depression

In our comprehensive investigation, we conducted LDSC

analyses on GWAS data for obesity from two different sources

and depression separately. Following stringent Bonferroni

correction, we found significant genetic correlations between

depression and obesity from both sources, which was further

confirmed by HDL analysis. The results obtained through LDSC

and HDL are presented in Table 1. We then meta-analyzed the

GWAS summary statistics from the two sources of obesity, creating

a combined dataset (META-OBESITY). This dataset includes

10,634,628 validated SNPs, meticulously excluding the complex

MHC region, and identified 1,166 statistically significant

genetic loci.
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3.2 Bidirectional two-sample MR

Our MR analysis indicated that obesity might increase the risk

of depression (IVW, b=4.88, 95% confidence interval (CI): 1.86-

7.90, P = 0.0015). Consistent results regarding the effect of obesity

on depression were observed through MR-Egger causal estimates,

weighted median, and weighted mode analyses (Figure 2A). In the

reverse MR analysis, depression might increase the risk of obesity

(IVW, b=0.0049, 95% CI: 0.0013-0.0002, P = 0.00019) (Figure 2B).

Consistent directional effects of depression on obesity were

observed through MR-Egger causal estimates, weighted median,

and weighted mode analyses. In this bidirectional MR analysis,

there was no evidence of significant horizontal pleiotropy or

heterogeneity in Cochran’s Q test and MR-PRESSO test

(Supplementary Table S2). Additionally, no potential outliers

were identified among the selected IVs in the “leave-one-out”

sensitivity test, demonstrating the robustness of the results

(Figures 2C, D).
Frontiers in Endocrinology 05
3.3 Deciphering the genetic architecture of
obesity-depression comorbidity through
multi-trait analysis

Our investigation further delved into the intricate genetic issues of

obesity by conducting a multi-trait analysis using the combined dataset

(META-OBESITY) and the GWAS summary data for depression

phenotypes. Utilizing the MTAG method, we generated an enhanced

dataset for obesity (MTAG-OBESITY), which includes 6,941,121

SNPs. Within this dataset, we identified 241 variant SNPs.
3.4 Identifying distinct genetic markers
associated with obesity-depression
comorbidity

Using the advanced GCTA-COJO tool for stepwise model

selection, we conducted conditional and joint association analysis
FIGURE 2

Scatter plot (A) and sensitivity analysis (B), of the effect of META-OBESITY on depression. Scatter plot (C) and sensitivity analysis (D) of the effect of
depression on META-OBESITY.
TABLE 1 Genetic correlation analysis results.

Trait pair LDSC HDL

rg (SE) P Intercept (SE) rg (SE) p

Obesity (FinnGen)
- depression

0.208 (0.025) 2.92e-17 0.004 (0.006) 0.190(0.028) 1.68e-11

Obesity (UKbiobank)
- depression

0.398 (0.053) 8.49e-14 0.010 (0.007) 0.330(0.037) 1.16e-18
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on the MTAG-OBESITY dataset. Through this rigorous process, we

identified seven SNVs, as detailed in Supplementary Table S3.

Subsequent identification using PLACO results on the FUMA

platform revealed four additional SNVs, as shown in

Supplementary Table S4. Notably, rs10789340 was consistently

identified in both COJO and FUMA analyses, establishing it as an

independent genetic risk locus for obesity-depression comorbidity.

Further detailed gene annotation using the ANNOVAR tool

highlighted that rs10789340, located intergenically in the

RPL31P12 gene, was distinguished by a high CADD score of

12.37. This suggests a potential pathogenic role, as indicated in

Supplementary Table S4.
3.5 Genes associated with the risk of
obesity-depression comorbidity

MAGMA revealed 25 Genes associated with Obesity-

Depression Comorbidity Risk SNVs (Supplementary Table S5).

Subsequently, POPS revealed 1 gene (POPS scores > 1)

potentially associated with the risk of Obesity-Depression

Comorbidity(Supplementary Table S6). Additionally, SMR

analysis identified RPL31P12 and NEGR1 as potential candidate

genes (Supplementary Table S7). Interestingly, the SNP rs10789340

in RPL31P12 was also identified as a potential risk locus, further

corroborating its role in obesity-depression comorbidity.

Consequently, we identified three potential risk genes: DCC,

RPL31P12, and NEGR1. Gene Ontology (GO) and KEGG

pathway enrichment analyses indicated significant enrichment in

pathways related to the regulation of nervous system development

and feeding behavior (Figures 3A, B). These pathways include

regulation of neuron projection development, neuron migration,
Frontiers in Endocrinology 06
axon guidance, and feeding behavior, suggesting that the

intersection of obesity and depression comorbidity lies in the

nervous system (Supplementary Table S8).
3.6 Identification of risk proteins
associated with obesity-depression
comorbidity

Through our analysis, we utilized the BLISS method in

conjunction with the MTAG-OBESITY data to evaluate plasma

proteins in the UKB, ARIC, and deCODE databases. This

comprehensive analysis identified 56 proteins associated with the

risk of obesity and depression comorbidity. Notably, two proteins,

SCG3 and FLRT2, were consistently identified across all three

databases (Supplementary Table S9), highlighting their potential

as drug targets.
4 Discussion

The inherent complex genetic diversity in patients with obesity

and comorbid depression necessitates moving beyond traditional

single-disease frameworks to comprehensively explore the genetic

foundations affecting human health and depression. This study

aims to uncover the genetic basis and complex association network

between obesity and depression.

Our analysis consolidated two obesity GWAS summaries into a

single META-OBESITY dataset. Through genetic correlation

studies of depression using LDSC and HDL, we found a

significant genetic association between depression and obesity,

further enhancing our understanding of obesity treatment.
FIGURE 3

Enrichment analysis for identified risk genes. Significant Types of Pathways Based on GO (A) and KEGG Enrichment Analyses (B). BP, Biological
Process; CC, Cellular Component; MF, Molecular Function; KEGG, Kyoto encyclopedia of genes and genomes pathway.
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Integrating META-OBESITY with depression into comprehensive

multivariate trait analysis aims to strengthen the statistical

validation of the original obesity datasets. Additionally,

bidirectional two-sample MR revealed a bidirectional positive

causal relationship between obesity and depression. Using COJO

and FUMA fine mapping techniques, we identified rs10789340 as

an independent risk locus closely associated with comorbid obesity

and depression. Notably, rs10789340 was not previously identified

in individual obesity GWAS or META-OBESITY (P < 5×10-8).

However, rs10789340 (P = 4.23×10-17) has been associated with

depression in previous studies. This result highlights the significant

role our study plays in identifying comorbid SNV, thereby

deepening the understanding of the genetic basis of comorbid

obesity and depression. Through this approach, we not only

identified new genetic loci but also provided insights into the

genetic diversity of obesity. Our comprehensive gene association

analysis identified DCC as a gene associated with comorbid obesity

and depression. Netrin-1, a protein encoded by DCC, contains three

domains (38). Netrin-1 acts as a guidance cue, influencing the

“decision-making” process of growing axons by signaling when,

where, and whether to grow (39). It organizes neuronal circuits by

attracting or repelling growing axons and dendrites, playing a

crucial role in nervous system development, with its abnormal

expression potentially leading to psychiatric disorders (40). A

significant association between depression and epigenetic changes

in DCC has been observed in individuals with major depressive

disorder who died by suicide, showing a 50% increase in DCC gene

expression in the prefrontal cortex of untreated patients (41). There

is substantial genetic evidence from human populations indicating

that variation in DCC expression is a risk factor for depression (42).

Although these findings do not establish causality, animal

studies using mouse models of depression have shown that

increased DCC expression in the prefrontal cortex induces

susceptibility to depression-like phenotypes (42). Recently,

research by Ramkhelawon (43) has elucidated a pivotal function

of netrin-1 in obesity, notably its role in anchoring adipose tissue

macrophages within visceral adipose tissue. This mechanism

substantially contributes to systemic inflammation and metabolic

dysfunction. Further, a clinical investigation has revealed that levels

of circulating netrin-1 are positively associated with critical markers

such as fasting blood glucose, HbA1c levels, and the insulin

resistance index. These findings imply that netrin-1 could serve as

a sensitive biomarker for the early detection of type 2 diabetes (44),

impacting glucose metabolism and indirectly exacerbating obesity.

In summary, these studies collectively underscore netrin-1’s integral

role in mediating obesity-related inflammation and its influence on

the development of the nervous system. This knowledge brings to

light the potential of DCC and its associated signaling pathways as

prospective therapeutic targets for both obesity and depression.

SMR analysis results identified NEGR1 and RPL31P12 as

genetic links affecting the interaction between depression and

obesity. NEGR1 is thought to regulate cellular fat content by

modulating the expression of CD36. In addition, NEGR1 regulates

body weight by influencing energy balance, lipogenesis, transport,

and brain regions that control eating behavior, such as the
Frontiers in Endocrinology 07
hypothalamus and cerebellum (45, 46), highlighting its potential

role in the pathogenesis of obesity. In human genetic studies, the

rs10789336 in NEGR1 was correlated with the expression levels of

RPL31P12 in brain tissue and an increased risk of major depressive

disorder (47). RPL31P12 exhibited a notably significant pleiotropic

association with major depressive disorder, particularly in the

cerebellum (48) (Figure 4). Additionally, diminished expression of

a transcript variant of the RPL31P12, which encodes for the

ribosomal protein L31 pseudogene 12, was linked to major

depressive disorder (49), suggesting a shared genetic pathway

influencing both depression and obesity risk.

Utilizing the BLISS method, we successfully identified 89

proteins implicated in the comorbid risk of obesity and

depression across the deCODE, UKBPP, and ARIC databases,

with SCG3 and FLRT2 detected in all three. SCG3, a notable

member of the granin protein family (50), plays an essential role

in endocrine and neuroendocrine cells, particularly in secretory

and neurotransmitter vesicles through its interaction with

chromogranin A (51). Previous research indicates that SCG3

significantly influences glucose homeostasis by facilitating the

formation of insulin-containing secretory granules and processing

insulin (52), thereby impacting the body’s energy metabolism.

Furthermore, cohort studies suggest that diminished SCG3

levels are linked to an elevated risk of obesity (53). GWAS

have pinpointed SNPs in the SCG3 gene associated with obesity

(54). Although direct evidence connecting SCG3 to depression is

absent, our findings propose a potential role for SCG3 in the

pathophysiology of depression.

Fibronectin leucine rich transmembrane protein (FLRT) family

members are pivotal in cellular functions such as adhesion,

migration, and axon guidance (55, 56). Specifically, FLRT2 has

been shown to regulate dendritic spine density in CA1 neurons and
FIGURE 4

Schematic illustration of brain regions highlighting the hypothalamus
and cerebellum. The brown area represents the hypothalamus, while
the blue area corresponds to the cerebellum. NEGR1 is shown to
primarily act in both the hypothalamus and cerebellum, while
RPL31P12 predominantly influences the cerebellum. This figure was
created using BioRender.
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to refine cortical circuits (57, 58) A proteomic analysis revealed

notable differences in FLRT2 expression between the brains of

hyperlipidemic and normal mice (59). Although no direct

evidence currently connects FLRT2 to obesity or depression, its

integral role in nervous system development underscores its

potential as a therapeutic target for psychiatric disorders.
5 Limitation

This study, however, faces several limitations. The GWAS

datasets utilized were derived from individuals of European

descent, underscoring the necessity for additional research across

more diverse populations to confirm the universality of our results.

Additionally, the absence of individual-level GWAS data precluded

the possibility of stratifying our analysis by age and sex, limiting our

exploration of potential age- and sex-specific effects on the

identified associations. Furthermore, the intrinsic constraints of

GWAS, which primarily identify common genetic variants, often

neglect rare or structural variants that could also contribute

significantly to the comorbidity of obesity and depression.
6 Conclusion

Our study highlights the significant genetic association between

obesity and depression, uncovering several novel genetic risk factors

and associated biomolecules. These insights deepen our

understanding of the genetic basis of the comorbidity between

obesity and depression and may provide guidance for the

development of new therapeutic strategies.
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