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Diabetic kidney disease (DKD), a severe and long-term complication of diabetes,

is amicrocirculatory pathology influenced by diabetes-related factors that affects

hundreds of millions of people worldwide. DKD is characterized by proteinuria,

glomerular injury, and renal fibrosis, ultimately leading to end-stage renal

disease. Its pathogenesis is complex and involves multiple cellular and

molecular mechanisms. Microcirculatory disorders form the fundamental

pathological basis of DKD. These disorders are primarily manifested through

changes in the number and structure of renal microvessels, alterations in renal

hemodynamics, formation of renal thrombi, glomerular endothelial cell

dysfunction, and associated lesions in podocytes and mesangial cells. This

article focuses on renal microangiopathy and glomerular endothelial cell (GEC)

dysfunction, summarizing the mechanisms associated with microcirculatory

lesions in DKD, including nitric oxide (NO), advanced glycation end-products

(AGEs), vascular endothelial growth factor (VEGF), the renin-angiotensin-

aldosterone system (RAAS), reactive oxygen species (ROS), the NLRP3

inflammasome, protein kinase C (PKC), epidermal growth factor receptor

(EGFR), and platelet-derived growth factor (PDGF). Additionally, we briefly

introduce the characteristics of DKD animal models in terms of renal

microcirculation and discuss the application of relevant technological tools in

studying microcirculatory lesions in DKD.
KEYWORDS
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1 Introduction

In 2021, an estimated 536 million individuals worldwide had diabetes, with 50% of

hemodialysis patients affected. The global diabetic population is projected to reach 783

million by 2045, posing a significant threat to public health (1). Diabetic kidney disease

(DKD) is a chronic condition that arises as a result of diabetes mellitus. It is one of the most

common microvascular complications of diabetes mellitus and represents a major cause of
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end-stage renal disease (ESRD), accounting for about 30%-50% of

ESRD cases worldwide (2). In addition, a report indicates that about

25% to 40% of diabetic patients develop DKD, with older diabetic

patients being at a significantly higher risk of developing chronic

kidney disease (CKD) (2).

For the diagnosis of DKD, glomerular filtration rate (GFR),

elevated urinary albumin excretion (UAE), serum creatinine (Scr),

and other relevant indicators in diabetic patients are utilized as

diagnostic tools (3). While studies have demonstrated the high

sensitivity of the clinical diagnosis of DKD based on changes in

biochemical indicators, kidney biopsy continues to play a pivotal

role in the diagnosis of DKD, particularly through pathologic

examination following renal puncture (4). The prevalence of

DKD among diabetic patients across different countries is not

well understood. We have summarized this data from our

literature survey in Figure 1 (5–17). Not surprisingly, DKD has

become a major public health problem worldwide.

DKD is intricately linked to the metabolic and hemodynamic

disorders associated with long-term diabetes mellitus (18).

Impaired diabetic microcirculation not only plays a crucial role in

the development of diabetic microvascular complications but also

contributes to insulin resistance and the progression of diabetes

mellitus (19, 20). Persistent metabolic and hemodynamic

abnormalities can lead to structural damage in the renal

microvasculature, including increased vascular permeability,

capillary leakage, thickening of the glomerular basement

membrane (GBM), narrowing or even occlusion of the vascular

lumen, and microthrombosis, all of which contribute to renal

microcirculatory disorders (21).

The focus of this review is to describe the vascular and

microcirculatory dysfunctions and their underlying mechanisms

in DKD, as well as to summarize the techniques for assessing renal
Frontiers in Endocrinology 02
microcirculatory function. Our goal is to provide a comprehensive

and up-to-date review that will contribute to the development of

safe and reliable therapeutic approaches, thereby advancing the

treatment of human DKD.
2 Renal microcirculation

2.1 Renal microcirculation network

The kidney is a highly vascularized organ. The main renal artery

progressively branches into interlobar arteries, arcuate arteries,

interlobular arteries, and glomerular afferent arterioles, which

ultimately lead to the glomerular capillaries where fluids and

solutes are filtered (excluding plasma proteins). Subsequently, the

other end of the glomerular capillaries forms the glomerular efferent

arterioles, which enter the peritubular capillary network. This

network plays a crucial role in filtration, secretion, and

reabsorption within the renal tubules, facilitating the removal of

waste products from the filtered blood so they can be excreted in the

urine. The peritubular capillary network further branches into the

arteriolae rectae that extend into the renal medulla. Together with

the straight venules, these form the renal medullary

microcirculation, which subsequently merges into the interlobular

veins, arcuate veins, interlobar veins, and eventually the renal veins

(22). The microcirculation is a network of end-vessels composed of

microvessels <20 mm in diameter, including small arteries, small

veins, and capillaries in between (23). The renal microcirculation is

composed of two parts: the renal medullary microcirculation and

the renal cortical microcirculation. The renal cortical

microcirculation includes the glomerular capillaries and the

peritubular capillary network, while the renal medullary
FIGURE 1

Worldwide prevalence of DKD in patients with diabetes. data are expressed as a percentage of the total population of diabetes patients.
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microcirculation comprises the arteriolae rectae, straight venules,

and the capillaries between them. Glomerular capillaries are

composed of endothelial cells, pericytes, and basement

membranes, while small arterioles and veins contain an additional

layer of smooth muscle cells (24). Functionally, the renal

microcirculation is the primary site for the exchange of gases,

nutrients, wastes, proteins, and drug components between the

blood and tissues. Blood pressure is higher in the glomerular

capillaries, where blood gradually passes through the filtration

barrier, which is composed of endothelial cells, the basement

membrane, and podocytes. At this stage, large amounts of water

and solutes are filtered into the renal capsule to form proto-urine.

The renal capsule extends outward to form the renal tubules. As the

proto-urine enters the tubules, almost all glucose and amino acids,

along with most of the water and ions, are reabsorbed into the

capillaries surrounding the tubules and then circulate throughout

the body with the blood. On the other hand, metabolites reabsorbed

by renal tubular epithelial cells (RTECs) enter the primary urine

and are excreted along with other waste products. Injuries to the

renal microcirculation can be categorized into two types: functional

injuries and structural injuries. Functional damage refers to

abnormal perfusion without changes in the number or structure

of blood vessels. Structural damage involves a decrease in the

number of vessels or alterations in their structure. These two

types of injuries are not independent of each other and can co-

exist. It has been shown that both structural changes in the

vasculature and a reduction in the number of capillaries can

contribute to the progression of kidney disease (25, 26).
2.2 Intrarenal vascular resistance

The microcirculation plays a major role in vascular resistance,

and the renal microcirculation can be regulated to maintain

glomerular filtration and blood flow. There are three main types

of regulation in the renal microcirculation: First, changes in

vascular morphology, such as vessel wall hypertrophy, reduce

lumen diameter and decrease vasodilatory capacity, leading to

increased resistance to blood flow (27); Second, alterations in the

kidney’s ability to self-regulate in response to changes in arterial

pressure. Renal self-regulation has two components: an intrinsic

myogenic response and a glomerular feedback mechanism. When

the glomerular filtration rate increases, the rise in sodium chloride

flow activates the macula densa and initiates a tubuloglomerular

feedback response (28). Third, the effect of vasoactive factors on the

renal vasculature. Various pathological conditions result in

increased responsiveness of renal microvessels to vasoactive

factors, which may lead to changes in renal vascular resistance (29).

During the progression of DKD due to various pathological

factors, the morphology and function of glomerular cells—

primarily glomerular endothelial cells (GECs), mesangial cells

(MCs), and podocytes—as well as the glomerular basement

membrane (GBM), undergo significant changes (Figure 2). The

damage to these cells leads to pathological changes in renal

structure and vasculature, which ultimately manifest as renal
Frontiers in Endocrinology 03
hemodynamic alterations, such as increased intrarenal vascular

resistance, altered renal blood flow, and elevated renal vascular

pressure. Additionally, glomerular hyperfiltration, abnormal renal

function, and increased proteinuria are all manifestations of renal

hemodynamic abnormalities, indirectly reflecting changes in the

renal microcirculation (30).

GECs are located in the innermost layer of the glomerular

capillaries, forming the inner wall of blood vessels, and are dynamic

regulatory cells that continuously line the entire lumen of these

vessels. Therefore, the interaction of GECs with circulating

substances is strongly linked to the state of the renal

microcirculation (31). GECs serve as the primary barrier

maintaining vascular permeability, preventing the leakage of

macromolecules from the blood. Additionally, they are the targets

of metabolic substances and hemodynamic signals that regulate the

glomerular microcirculation (32), playing a crucial role in the

occurrence and development of renal microcirculatory

dysfunction (33). Because GECs are in direct contact with the

blood, they are susceptible to the influence or damage from

circulating substances such as glucose, lipids, and inflammatory

factors. These cells, in turn, regulate the structure and function of

the vasculature through the release of biochemical factors such as

nitric oxide and prostacyclin (34). Activated GECs can produce a

large number of adhesion molecules, such as vascular cell adhesion

molecule-1 (VCAM-1) and intercellular adhesion molecule-1

(ICAM-1), which recruit leukocytes and monocytes from the

blood to infi l trate the subendothelial layer and form

microthrombi, leading to glomerular microcirculation dysfunction

(35, 36). Furthermore, the overexpression of endothelin-1 (ET-1)

and angiotensin II (Ang II) induced by a hyperglycemic

environment can lead to glomerular endothelial dysfunction,

ultimately resulting in malignant nephrosclerosis (37).

Additionally, evidence suggests that the dual ET-1 and Ang II

receptor antagonistic effects of Sparsentan can improve renal

hemodynamics, as well as podocyte and endothelial cell function,

in mouse models of focal segmental glomerulosclerosis (38). In

addition, activated leukocytes and GECs release inflammatory

factors, peroxides, and other factors that damage microvascular

endothelial cells and vascular basement membranes, leading to

albumin extravasation (39, 40). Thus, the functional state of

GECs plays a crucial role in local vasodilation, the maintenance

of vascular homeostasis, and selective glomerular filtration.

The maintenance of endothelial cell phenotype is a

physiological activity that requires intracellular energy and

signaling inputs (41). In pathological states, GECs undergo

endothelial-to-mesenchymal transition (EndMT), resulting in

reduced glomerular capillary density, loss of glomerular

endothelial permeability, and ultimately leading to renal fibrosis

and dysfunction (42, 43). In DKD pathology, the loss of fenestrae

and the formation of diaphragms induce an increase in GEC

permeability and disrupt the ultrastructure of the renal capillary

wall. This, in turn, leads to GEC dysfunction and impairs the

transport of macromolecules such as albumin through the

endothelium (44, 45). The complex meshwork covering the

surface of GECs is known as the glycocalyx, located at the
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interface between endothelial cells and circulating blood. The

glycocalyx regulates capillary permeability, limits the adhesion of

leukocytes and platelets to GECs, and modulates the transmission

of relevant signals. It serves as an important component of the

glomerular filtration barrier (GFB) (46, 47). In a high-glucose

environment, the production of reactive oxygen species (ROS)

and pro-inflammatory cytokines can directly or indirectly lead to

the degradation and destruction of the endothelial glycocalyx. This

degradation, in turn, triggers endothelial dysfunction, proteinuria,

and renal capillary obstruction due to leukocyte deposition (48).

In addition, the reduced concentration of glycosaminoglycans

and proteoglycans in the superficial layer of the glomerular capillary

lumen in a high-glucose state also leads to dysfunction of the GFB,

resulting in albumin leakage, the development of albuminuria, and

impaired renal function (49). Under diabetic conditions, the

glomerular vasculature is exposed to ischemia, oxidative stress,

inflammation, abnormal renin-angiotensin (Ang) secretion, and

other injurious factors, leading to necrosis or apoptosis of

glomerular vascular endothelial cells and their detachment from

the basement membrane. This process results in a decrease in the

number of GECs, their dysfunction, and subsequent damage to the

GFB (50).

Morphologic changes and dysfunction of glomerular podocytes

are also involved in the development of renal microcirculatory

disorders and glomerulosclerosis. Glomerular podocytes are highly

differentiated, terminally differentiated cells that cover the outer
Frontiers in Endocrinology 04
part of the GBM (51). Together with GECs, they are responsible for

constituting the GBM, regulating the glomerular filtration rate, and

maintaining the shape and integrity of glomerular capillaries.

Capillary collaterals are supported by multiple podocytes, and

each podocyte simultaneously supports multiple capillary

collaterals. To accommodate their physiological functions,

podocytes have a unique morphology with a complex

cytoskeleton underlying their delicate structure (52). Podocytes

possess primary, secondary, and tertiary foot processes, all of

which contain a rich actin cytoskeleton. These processes are

interspersed and connected by the slit diaphragm (53). Podocyte

foot processes regulate glomerular filtration by contracting and

expanding, thereby altering the size of the slit diaphragm (52). In

the pathological setting of DKD, podocytes undergo morphological

and functional changes, including hypertrophy, decreased motility,

fusion and loss of foot processes, detachment, autophagy, and

apoptosis (54). These complex pathological changes are mediated

by various factors such as Ang II, vascular endothelial growth factor

(VEGF), reactive oxygen species (ROS), and TGF-b1 (55).

MCs, as stromal cells, are an integral part of glomerular

structure and maintain homeostasis of GECs and podocytes (56).

In most cases, mesangial cells (MCs) and glomerular endothelial

cells (GECs) are tightly coupled, with MCs controlling the surface

area of glomerular capillaries by relaxing and contracting, thereby

affecting the glomerular filtration rate (GFR) (57). A hyperglycemic

environment promotes the proliferation, hypertrophy, and fibrosis
FIGURE 2

The pathological changes of glomerular cells in DKD. This figure is divided into upper and lower panels to illustrate the differences between normal
and DKD glomeruli, with particular emphasis on pathological alterations characteristic of DKD glomeruli: (A) Hyperglycemic environments induce
degradation of the glycocalyx and injury to GECs. (B) GECs undergo endothelial-to-mesenchymal transition. (C) MCs proliferate and expand,
adhering to the inner layer of the GBM, which triggers capillary detachment and subsequent collapse. (D) In the pathological milieu of DKD,
podocytes undergo morphological and functional alterations, primarily manifesting as cellular hypertrophy and effacement of foot processes.
(E) Activated GECs secrete abundant adhesion molecules, recruiting leukocytes and monocytes from the bloodstream to infiltrate the subendothelial
layer and form microthrombi, ultimately inducing glomerular microcirculatory dysfunction.
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of glomerular MCs through various mechanisms, leading to a series

of pathological changes, including hemodynamic alterations and

neovascularization (58). Hyperglycemia can induce the apoptosis of

MCs (59), which in turn leads to impaired glomerular capillary

integrity and damage to the glomerular capillary network. This

damage can manifest as capillary aneurysms and delayed capillary

repair (58). Relatively, mesangial cells (MCs) can partially come

into contact with the inner layer of the glomerular basement

membrane (GBM) through proliferation and expansion, resulting

in capillary collapse as the capillaries become separated from the

GBM (60). In addition, due to mesangial expansion, the proportion

of MCs in the glomerulus increases, along with an increase in the

extracellular matrix (ECM) secreted by MCs and mesangial stroma.

Notably, one of the features of glomerulosclerosis is the obstruction

of glomerular capillaries by the ECM (61). Thus, lesions of the MCs

are closely linked to changes in the renal microcirculation.

The GBM is located between the GECs and the podocytes. The

GBM is a crucial component of the GFB and also provides

structural support to glomerular cells (62). GBM thickening is

one of the earliest and most characteristic changes in diabetic

glomeruli (40, 63, 64). Thickening and sclerosis of the GBM may

decrease the elasticity of the capillary wall and promote glomerular

injury through hemodynamic mechanisms (65). Additionally, the

thickened GBM can adhere to the renal capsule, further promoting

glomerulosclerosis (55). It has been demonstrated that GBM

thickening is positively correlated with UACR and negatively

correlated with eGFR (39).

Under the conditions of DKD, GECs, podocytes, and MCs

undergo abnormal structural and functional changes, engaging in

crosstalk with each other. These interactions result in the unique

structural features and microcirculatory abnormalities

characteristic of DKD kidneys (66). However, the manifestations

of microcirculatory abnormalities in DKD are highly diverse, and

the associated mechanisms are extremely complex. In this review,

we focus on the alterations in renal microvascular structure,

microcirculatory hemodynamic abnormalities, and glomerular

vascular endothelial cell dysfunction in DKD, with the aim of

providing new insights for the study of this condition.
3 Mechanism of microcirculation
dysfunction

3.1 Nitric oxide

NO is an endogenous vasodilatory molecule and an anti-

inflammatory signaling molecule that maintains normal renal

vascular resistance and vascular homeostasis. It plays a crucial

regulatory role in the maintenance of renal hemodynamics and

glomerular function (67). NO is synthesized by endothelial nitric

oxide synthase (eNOS) and neuronal nitric oxide synthase(nNOS)

in vascular endothelial cells in response to stimuli such as hypoxia

and shear stress (68, 69). The released NO mediates local

vasodilation, antagonizes platelet aggregation, and inhibits

vascular smooth muscle cell proliferation (70). On the other
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hand, the expression of eNOS is primarily localized in the

endothelium of preglomerular and postglomerular vessels, as well

as in glomerular capillaries. In the early stages of DKD, increased

eNOS phosphorylation and a surge in NO production may

contribute to glomerular hyperfiltration (71). It has been

demonstrated that upregulation of eNOS in the microcirculatory

system of rats with early diabetic nephropathy promotes NO

production and leads to the dilation of renal microvessels (72).

Genetic polymorphisms in eNOS as a factor contributing to the

worsening of DKD (73). As DKD progresses, NO bioavailability

decreases and NO synthesis is disrupted due to eNOS uncoupling,

leading to hypertension and renal vasoconstriction (74, 75). An

animal experiment confirmed this: Diabetic eNOS knockout mice

exhibited clear microangiopathy due to defects in NO production.

Significant microaneurysms, mesangial expansion, capillary

endothelial damage, and occasional arteriolar hyalinosis were

observed (76). With the progression of diabetes, advanced

glycation end-products (AGEs) gradually accumulate. A study has

shown that excessive AGEs significantly reduce eNOS activity and

cellular NO levels, thereby causing endothelial dysfunction (77).

High levels of reactive oxygen species (ROS) can lead to oxidative

modifications of proteins, loss of enzyme activity, alterations in

cellular function, and disruption of cellular homeostasis (78). The

relationship between NO and ROS is bidirectional. Low levels of

NO in endothelial cells induce the expression of antioxidant genes,

whereas elevated ROS levels suppress NO production by inhibiting

NOS (79). In the kidney, elevated ROS levels lead to a deficiency of

NO and NOS, resulting in renal endothelial dysfunction, increased

vascular resistance, and reduced vasodilation (77, 80, 81). In

another study, it was shown that endothelium-derived NO plays a

role in counterbalancing the vasoconstrictive effects of Ang II (82).

eNOS knockout mice were significantly more responsive to Ang II

(82). Another experiment demonstrated that the absence of eNOS

has a more detrimental effect on the renal microvascular system

than on aortic blood vessels. In a high-glucose environment lacking

eNOS, mice exhibited significant thickening of the GBM and

developed pronounced albuminuria (83). The researchers also

observed fibrin, platelets, and leukocytes accumulating in the

kidney capillaries, similar to the characteristics of glomerular

injury seen in thrombotic microangiopathy. Additionally, NO

deficiency in diabetes causes VEGFA to become harmful to

glomerular cells, leading to abnormal vascular repair and

remodeling (82, 84).
3.2 Endothelin-1

ET-1 is an endothelium-derived polypeptide with potent

vasoconstrictive effects, playing a key role in circulatory

homeostasis (85). ET-1 induces a range of pathophysiological

changes by binding to the ETA receptor (ETAR) and ETB

receptor (ETBR) (86). Activation of ETAR can lead to responses

such as vasoconstriction and inflammation, while activation of

ETBR mediates vasodilation (86). ETAR is predominantly found

on renal vasculature, MCs, and podocytes, whereas ETBR is
frontiersin.org

https://doi.org/10.3389/fendo.2025.1580608
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Hang et al. 10.3389/fendo.2025.1580608
primarily located on renal tubules. The upregulation of ET-1

secretion can result in diverse effects due to the widespread

presence of endothelin receptors within glomerular structures

(86). It has been demonstrated that under conditions of diabetes

mellitus, ET-1 concentrations show a marked elevation in both

humans and experimental animals (87, 88). ET-1 mediates the

effects of IL-15 or directly activates endothelin receptors in

podocytes, leading to podocyte damage and glomerulosclerosis

(89, 90). In addition, ET-1 can induce the release of heparinase

from podocytes, thereby destroying the endothelial glycocalyx—a

process that is exacerbated in diabetes (91). In a mouse model of

DKD, researchers found that glomerular endothelial mitochondrial

dysfunction was associated with increased expression of glomerular

ETAR and circulating ET-1. Blockade of ETAR prevented

mitochondrial oxidative stress in GECs, which ameliorated

endothe l ia l in jury , podocyte loss , a lbuminur ia , and

glomerulosclerosis (92). In DKD, ET-1 also affects MCs, and the

binding of ET-1 to ETAR in MCs promotes the RhoA/ROCK

pathway, accelerating MC proliferation and ECM accumulation,

which can impact glomerular capillary homeostasis (93). In terms of

hemodynamics, ET-1 levels are upregulated under hyperglycemic

conditions, causing constriction of the renal vasculature and a

decrease in renal blood flow, which subsequently leads to a

reduction in glomerular filtration rate (94). Interestingly, afferent

arterioles appear to be more sensitive to the effects of ET-1 (95). In a

study measuring plasma ET-1 concentrations in 99 diabetic

patients, researchers found that plasma ET-1 levels were

significantly higher in diabetic patients compared to normal

subjects and that ET-1 concentrations were inversely correlated

with effective renal plasma flow, demonstrating the potential

negative impact of ET-1 on renal circulation (96). In animal

experiments, intravenous administration of exogenous ET-1

caused a slight increase in blood pressure and a significant

reduction in renal cortical and medullary blood flow in rats (97).

In another study, researchers found that DKD patients had higher

levels of ET-1 expression in kidney capillaries compared to normal

subjects, as determined by staining, suggesting a potential effect of

ET-1 on kidney microvessels (98). In summary, aberrant expression

of ET-1 in DKD is a significant cause of reduced renal blood flow

and impaired renal microcirculation. Moreover, studies have shown

that ET-1 also affects podocytes. Podocytes are highly differentiated

cells with a complex actin cytoskeleton (99). In podocytes, ET-1 can

act through both paracrine and autocrine mechanisms. The increase

in ET-1 induces the redistribution of actin fibers toward the cell

periphery and promotes foot process effacement (100). On the other

hand, under ET-1 stimulation, the ETAR forms a complex with the

scaffold proteinb-arrestin-1 and the tyrosine kinase Src. This

complex subsequently transactivates the EGFR, phosphorylates b-
catenin, and promotes the transcription of mesenchymal markers.

This molecular cascade leads to a migratory phenotype in

podocytes, enhancing their detachment from the GBM (101). ET-

1 can also serve as a mediator of crosstalk between GECs and

podocytes, contributing to the progression of DKD. In DKD, the

activation of TGF-b receptors increases the expression of ET-1 in

podocytes. ET-1 acts via a paracrine mechanism to stimulate ETAR
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in adjacent GECs. The activation of these ETAR leads to

mitochondrial stress and oxidative stress in endothelial cells

(102). Another study demonstrated that podocyte-derived ET-1

increases heparanase and hyaluronidase levels in GECs, leading to

damage to the endothelial glycocalyx, glomerular endothelial injury,

and albuminuria. Inhibition of the type A endothelin receptor,

rather than the type B endothelin receptor, reduces endothelial

injury (103).
3.3 Polyol pathway

The polyol pathway is a form of glucose metabolism that is

significantly activated in response to high intracellular glucose

concentrations. Under normal conditions, cells produce pyruvate

by using glucose as an energy source through phosphorylation in

the presence of hexokinase. However, when intracellular glucose

concentrations become excessive, hexokinase becomes saturated,

allowing more glucose to enter the polyol pathway (104).

Nicotinamide adenine dinucleotide phosphate hydrogen

(NADPH) plays an important role in the polyol pathway

reactions (104). Glucose is converted to sorbitol by aldose

reductase, with NADPH acting as a coenzyme in this process.

Subsequently, sorbitol is converted to fructose by sorbitol

dehydrogenase, where NAD is involved, producing NADH (105).

Increased intracellular sorbitol leads to decreased Na+-K+ ATPase

activity at the cell membrane and inhibits the entry of myo-inositol

into the cell (106). Thus, activation of the polyol pathway in DKD

causing an increase in sorbitol and fructose concentrations and a

decrease in intracellular myo-inositol levels. This disruption in

cellular osmoregulation promotes the development of diabetic

microvascular complications. An animal experiment showed that

elevated concentrations of sorbitol in a mouse model of renal aldose

reductase overexpression led to renal vascular thrombosis and

fibrinous deposits in Bowman’s capsule (107). In another study,

glomerular hypertension, vasoconstriction of the renal cortex, and

thickening of the vascular walls of afferent arterioles were observed

in rats fed a high-fructose diet compared to those on a normal diet.

These lesions may be associated with uric acid produced by fructose

metabolism (108). In addition, reduced glutathione (GSH) acts as a

scavenger of reactive oxygen species (ROS). As a cofactor for GSH,

the depletion of NADPH in the polyol pathway may induce or

exacerbate oxidative stress in cells, leading to kidney damage (109).

Activation of the polyol pathway occurs not only at elevated glucose

concentrations but also during the secondary depletion of NADPH,

which shifts glucose metabolism from glycolysis to other pathways.

This shift induces the activation of the renin-angiotensin-

aldosterone system (RAAS) and leads to renal injury (110).
3.4 Advanced glycosylation end products

AGEs are stable covalent adducts formed by the spontaneous

reaction of macromolecules such as proteins, lipids, or nucleic acids

with glucose or other reducing monosaccharides, without the
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involvement of enzymes (111). AGEs accumulate gradually with

metabolism and age. In diabetic patients, the synthesis and

accumulation of AGEs are accelerated, and even after

hyperglycemia is corrected, AGEs levels do not return to normal

but persist in the blood vessels due to slow degradation over time

(112). AGEs are primarily expressed on renal tubules, GECs, and

MCs. AGEs bind to the receptor for advanced glycation end-

products (RAGE) and activate a series of signaling pathways,

triggering adverse effects such as cell proliferation, inflammatory

responses, and apoptosis (113). It has been shown that in human

microvascular endothelial cells (HMVECs), AGEs bind to RAGE,

leading to the upregulation of heparinase expression through the

activation of FOXO4 (114). This upregulation may be related to

FOXO4-mediated oxidative stress (115), which is potentially one of

the mechanisms underlying microvascular complications in

diabetes mellitus. In another study, a two-part in vivo and in vitro

experiment demonstrated that the binding of AGEs to RAGE

activated the RAGE/RhoA/ROCK signaling pathway and

upregulated the expression of VEGF, MCP-1, and ICAM-1. This

upregulation led to macrophage infiltration and glomerular

endothel ia l dysfunction, resul t ing in impaired renal

microcirculation (116). In the kidney, RAGE signaling activates

the transcription factor NF-kB, promoting the release of cytokines

and tissue factors while reducing NO release (117). Additionally,

the AGEs/RAGE axis inhibits the eNOS activity of endothelial cells,

contributing to the development of DKD (118). RAGE knockout

mice have also been shown to be protected from various features of

DKD, such as reduced glomerular filtration rate, albuminuria, and

glomerulosclerosis (119).
3.5 VEGF

VEGF is a member of a protein family that includes VEGF-B,

VEGF-C, VEGF-D, VEGF-E, and placental growth factor (PlGF).

Given the predominant role of VEGF-A in regulating angiogenesis

and vascular function, it is often referred to simply as VEGF and

plays a crucial role in the development of DKD (120). There are

three types of VEGF receptors: VEGF receptor 1 (R1), VEGF

receptor 2 (R2), and VEGF receptor 3 (R3). R1 and R2 are

primarily expressed on endothelial cells. According to the study,

VEGF-A binds to R1 and R2, VEGF-B and PlGF bind to R1, and

VEGF-C and VEGF-D bind to R3, but can also bind to R2 after

hydrolytic cleavage (121). It has been suggested that typical

intraglomerular VEGF signaling primarily involves the binding of

VEGF-A to R2, which is expressed by glomerular endothelial cells

(122). VEGF plays a crucial role in the development of DKD, and

the integrity of the vascular system relies on a balance between

various vascular factors (123). Disruption of this balance has been

observed in several kidney diseases, particularly DKD (124). VEGF-

A is essential for the proliferation, differentiation, and survival of

endothelial cells in the vascular system, and thus it plays a

significant role in regulating endothelium-dependent vasodilation

and vascular permeability (125). Over the past two decades, studies

of kidney disease have shown that dysregulated VEGF-A expression
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plays a critical role in damaging the renal capillary network. Low

expression of VEGF-A promotes renal microvascular thrombosis,

while high expression of VEGF-A leads to proteinuria (126, 127). In

the early stage of DKD, VEGF-A expression is increased in

glomerular podocytes (128), and the over-secreted VEGF-A

crosses the glomerular basement membrane, binds to and

promotes the dimerization of R2 expressed on the surface of

glomerular endothelial cells. This binding leads to the

phosphorylation of R2’s structural domains and the activation of

downstream signaling pathways that promote capillary sprouting in

the kidney (129). In addition, elevated VEGF-A expression can

promote macrophage migration and infiltration in the glomerulus,

leading to pathological changes in the renal microcirculation, such

as increased renal vascular permeability, glomerular inflammation,

and glomerular microaneurysm formation (130). Interestingly, in

the early stages of DKD, VEGF-C appears to have a protective effect

on the kidney. One study suggests that VEGF-C may inhibit the

VEGF-A signaling pathway by competing with VEGF-A for

binding to R1 and R2, thereby exerting its protective effect (131).

As DKD progresses, reduced VEGF-A levels lead to the thinning of

glomerular capillaries, possibly due to a decrease in podocytes

(122). A study demonstrated that glomerular VEGF-A mRNA

levels were 2.5 times lower in patients with progressive DKD than

in normal subjects (68). Furthermore, another study demonstrated

that in endothelial-specific Dgke knockout mice, the loss of Dgke in
endothelial cells impairs downstream VEGFR2 signaling,

preventing the activation of Akt. This results in defective

induction of COX-2 and prostaglandin E2 (PGE2), ultimately

leading to thrombotic microangiopathy and proteinuria in mice

(132). These studies suggest that maintaining podocyte-derived

VEGF-A expression within the normal range is essential for

preserving the structure and function of renal capillaries (70).
3.6 The renin angiotensin aldosterone
system

The development of several renal diseases is associated with the

activation of the RAAS, and in DKD, RAAS plays a key role. The

RAAS regulates renal vasoconstriction and vasodilation, maintains

electrolyte homeostasis, and modulates renal tissue growth.

However, under pathological conditions, abnormal activation of

the RAAS can lead to the constriction of small renal arterioles and

glomerular capillaries, resulting in increased peripheral and renal

microcirculatory resistance, and inducing vascular endothelial

dysfunction (133). A study suggests that RAAS is abnormally

activated in a high-glucose environment, stimulating the

expression of renin and Angiotensin (Ang) in the kidney.

Hyperactivation of endogenous renal RAAS appears to affect

afferent arterioles more than efferent arterioles. One study found

that in DKD due to type 1 diabetic disease, afferent arterioles show

more pronounced constriction and increased vascular resistance

(134). However, in most cases, Ang II promotes renal tissue fibrosis,

vasoconstriction of the efferent arteriole, increased intraglomerular

pressure, a decreased number of small blood vessels, and other
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pathological changes (135, 136). In diabetic rats, upregulation of

Ang II can damage the glomerular filtration barrier and increase

glomerular permeability, leading to proteinuria. Pathohistological

changes, such as mesangial expansion, diffuse thickening of the

basement membrane, and effacement of podocyte foot processes,

have also been observed (137). At the same time, increased Ang II

can stimulate the synthesis of renal ET-1, thereby inducing kidney

injury through an additional pathway. In diabetes mellitus,

increased binding of aldosterone to the mineralocorticoid

receptor (MR) further contributes to renal fibrosis (138).

Activation of the mineralocorticoid receptor (MR) can also lead

to reduced eNOS activity, thereby affecting vasoconstriction and

vasodilation (139). Several studies have shown that treatment with

MR antagonists significantly improves the urinary albumin-to-

creatinine ratio and reduces the risk of cardiovascular events in

patients with DKD (140, 141). This ameliorative effect was similarly

demonstrated in animal studies, showing a reduction in renal

fibrosis, protection of glomerular structure, and improvement in

podocytopathy (142). However, the elevation of blood potassium

associated with aldosterone receptor antagonism is a concern.
3.7 ROS

ROS are key mediators of glomerular cell injury in diabetes.

Oxidative stress occurs when ROS production exceeds their

scavenging by antioxidants, initiating and mediating the signaling

cascade in response to cell injury. A growing body of research

suggests that overproduction of ROS is a critical factor linking

altered renal metabolic pathways to the hemodynamic disturbances

of DKD. These pathways ultimately lead to inflammation, fibrosis,

and endothelial dysfunction (142, 143). In the early stages of DKD,

mitochondrial dysfunction occurs in both glomerular podocytes

and (RTECs). This dysfunction leads to enhanced mitochondrial

substrate oxidation, resulting in the overproduction of ROS and

subsequent oxidative stress (144). Multiple enzyme systems

associated with ROS production are present in the kidney, with

the NADPH oxidase (NOX) family being the most significant

contributors (74, 75). The expression of NOXs is upregulated in a

hyperglycemic environment. Studies have shown that in the kidneys

of NOX2-overexpressing mice, peroxide levels are significantly

increased, glomerular endothelial cells are activated, and the

endothelial glycocalyx is reduced (145). In addition, ROS are also

produced during uric acid production. Hypoxanthine is oxidized to

xanthine by xanthine oxidase (XO), and xanthine is further

oxidized to uric acid by the same enzyme, producing both O2 and

H2O2 in the process (146). Upregulation of Ang II and adenosine

activates NOX in the renal microvasculature via AT1R and A1R,

leading to superoxide production (147). Oxidative stress in the

kidney contributes to renal vascular remodeling, while increased

ROS prompts vasoconstriction of renal afferent arterioles, enhances

myogenic responses, and alters tubuloglomerular feedback (TGF),

further contributing to renal hemodynamic dysfunction in DKD

(147). It has been demonstrated that the overproduction of H2O2 in

a CKDmouse model leads to myogenic constriction of renal arteries
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in mice (148). Additionally, ROS have been shown to increase the

responsiveness of renal afferent arterioles to Ang II, leading to their

constriction and inhibiting the production of NO (149). Another

experiment showed that in a diabetic mouse model, the high-

glucose environment led to the activation of Wnt signaling and

promoted ROS production, particularly H2O2. The increased ROS

enhanced the responsiveness of renal afferent arterioles to ET-1,

leading to their constriction. Additionally, blocking the Wnt

signaling pathway increased catalase concentration in mice, which

corrected the vascular abnormalities in DKD (150). On the

therapeutic side, one study found that acetylcholine-induced

endothelium-dependent relaxation of renal afferent arterioles was

lower in diabetic mice compared to normal mice, due to a reduction

in NO and the overproduction of ROS. This finding suggests a

potential inhibitory effect of ROS on renal vasodilation. Meanwhile,

the researchers discovered that fenofibrate enhances renal

vasorelaxation and improves renal microcirculation by activating

the PPAR/LKB1/AMPK/eNOS pathway, promoting endogenous

NO production, and preventing oxidative stress (151).
3.8 Inflammasome

The inflammasome is a multiprotein complex critical to the

immune system, responsible for detecting and responding to

pathogenic microorganisms and cellular stimuli, thereby

activating the inflammatory response. These stimuli include

pathogen-associated molecular patterns (PAMPs) such as

bacterial lipopolysaccharide (LPS) and viral RNA, as well as

damage-associated molecular patterns (DAMPs) like ATP and b-
amyloid protein (152). In DKD, the NLRP3 inflammasome is a key

mediator of inflammation associated with disease progression.

Under DKD conditions, various DAMPs can activate the NLRP3

inflammasome. AGEs formed under hyperglycemic conditions,

mitochondrial dysfunction, and increased ROS production all

contribute to and exacerbate NLRP3 activation. The activation of

NLRP3 involves two steps: priming and activation. The priming

step is initiated through the recognition of PAMPs or DAMPs (153,

154). This recognition triggers signaling pathways, including

MAPK and NF-kB, leading to the upregulation of NLRP3. The

activation step occurs in response to the priming signal, which

induces the assembly of the NLRP3 inflammasome complex, where

NLRP3 recruits the adaptor protein ASC and pro-caspase-1 (155).

The formation of this complex leads to the activation of caspase-1,

which subsequently cleaves pro-IL-1b and pro-IL-18 into their

active forms, IL-1b and IL-18. These cytokines are then released

to mediate the inflammatory response (156).

Studies have shown that pharmacological inhibition of caspase-

1 or NLRP3 knockdown reduces inflammasome activation and

thrombosis under hypoxic conditions. Furthermore, the early pro-

inflammatory state induced by HIF-1a-activated NLRP3

inflammasomes in venous settings is a key factor in acute

thrombotic events under hypoxic conditions (157). In addition,

activation of the NLRP3 inflammasome can exacerbate the

calcification of vascular smooth muscle cells (158), further
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demonstrating the potential impact of NLRP3 inflammasomes on

the microcirculatory system. The accumulation of inflammatory

cells in the kidney is closely associated with decreased renal function

(159, 160). Inflammasome activation plays a significant role in the

pathology of DKD, and NLRP3 can be activated by metabolites

associated with DKD, such as AGEs and ROS (161, 162). Activation

of the NLRP3 inflammasome leads to elevated levels of IL-1ß and

IL-8 in DKD patients (163, 164). In patients with CKD, the

expression of inflammasome activation markers (CASP1, IL-1b,
and IL-18) in renal biopsy samples is positively correlated with the

severity of albuminuria (161). Similarly, the expression of

glomerular inflammasome markers, such as NLRP3, ASC, CASP1,

and IL-18, is significantly increased in DKD patients compared to

non-diabetic healthy individuals. These inflammasome-associated

proteins are also upregulated in the kidneys of db/db mice (162).

Activation of the podocyte NLRP3 inflammasome leads to

glomerular injury, proteinuria, glomerular mesangial expansion,

and glomerular basement membrane thickening. It also exerts

immune cell-like functions that exacerbate renal microcirculatory

disturbances in DKD (165). Not surprisingly, inhibition of high

glucose-induced NLRP3 inflammasome activation in podocytes

attenuated podocyte injury (166). Activation of NLRP3 can also

lead to glomerular endothelial dysfunction. Studies have shown that

biomarkers of neutrophil extracellular traps (NETs) are increased in

both diabetic mice and diabetic patients. In cellular experiments, it

was demonstrated that while a high-glucose environment induced

IL-1b and NLRP3 in glomerular endothelial cells (GECs), NETs

further exacerbated NLRP3 activation, thereby contributing to

NLRP3-induced glomerular endothelial dysfunction (165). In

addition, NLRP3 inflammasome activation can mediate Ang II-

induced podocyte apoptosis and mitochondrial dysfunction,

exacerbating renal microcirculatory injury and thereby promoting

proteinuria and glomerulosclerosis in DKD patients (167, 168).

Notably, Gasdermins (GSDMs) are pore-forming proteins that

execute pyroptosis . They are activated via canonical

inflammasomes, noncanonical pathways, or other triggers,

enabling membrane pore formation to induce pyroptosis and

subsequent release of inflammatory mediators (169). In the

canonical inflammasome pathway, caspase-1 activation

downstream of inflammasome assembly cleaves gasdermin D

(GSDMD), generating its N-terminal fragment (GSDMD-NT).

This fragment oligomerizes to form plasma membrane pores,

facilitating pyroptotic cell death and the release of interleukin-1b
(IL-1b) and IL-18. In contrast, the non-canonical pathway involves

direct activation of caspase-4/5/8/11 by cytosolic lipopolysaccharide

(LPS) or bacterial toxins, leading to the same cascaded reactions

(169). Targeting GSDMD has emerged as a critical therapeutic

strategy in DKD. Studies demonstrate that dapagliflozin

significantly reduces renal expression of NLRP3, Caspase-1, and

GSDMD-NT in DKD models, suppressing pyroptosis-associated

inflammatory responses. Molecular docking assays confirm that

dapagliflozin directly binds to GSDMD, blocking its activation

(170). Similarly, Astragaloside IV (AS-IV) ameliorates renal
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function and podocyte injury in db/db mice by inhibiting the

TXNIP-NLRP3-GSDMD axis, exerting anti-pyroptotic effects and

attenuating DKD progression (171). Additionally, Loganin

suppresses the canonical NLRP3/Caspase-1/Gasdermin D

pathway, reducing fasting blood glucose, blood urea nitrogen, and

serum creatinine levels in DKD mice while alleviating renal

pathological changes (172).

The NLRP1 inflammasome is activated by hyperglycemia-

associated DAMPs, triggering caspase-1 autocleavage and

subsequent release of IL-1b/IL-18, which drives inflammatory

responses. Hyperglycemia-induced endoplasmic reticulum (ER)

stress further elevates NLRP1 levels via ATF-4 activation, leading

to the activation of MAPK, NF-kB, and TGF-b/Smad signaling

pathways, thereby promoting fibrogenesis and tissue injury (173).

Intriguingly, studies indicate that NLRP1 gain-of-function variants

suppress excessive inflammation, suggesting its dual regulatory role

in both amplifying inflammatory cascades and maintaining

metabolic homeostasis (174).

NLRC4 interacts with the NLR family apoptosis inhibitory

protein (NAIP) to form a complex, recruiting apoptosis-

associated speck-like protein containing a CARD (ASC) and

activating caspase-1, thereby promoting the maturation and

release of IL-1b and IL-18 to induce pyroptosis (175). In DKD,

hyperglycemic conditions and oxidative stress upregulate and

activate NLRC4, triggering IL-1b release and promoting

macrophage infiltration in renal tissues. Concurrently, activation

of the NF-kB and JNK pathways exacerbates inflammatory

responses, elevating pro-fibrotic factors such as TNF-a and TGF-

b, ultimately leading to podocyte injury, GBM thickening, and

mesangial matrix expansion (176). Studies reveal increased Tim-3

expression in DKD (177), while under renal ischemia-reperfusion

injury (IRI), Tim-3 exacerbates kidney damage by upregulating

NLRC4 activity, amplifying IL-1b/IL-18-mediated local

inflammation. These findings highlight the potential role of

NLRC4 in driving DKD progression. An interesting research

suggests that: moderate intensity continuous training(MICT)

improved renal fibrosis and renal injury, attenuating the

inflammatory response by inhibiting TLR4/NF-kB pathway and

the activation of NLRC4 inflammasome (178).

Absent in melanoma 2 (AIM2) is expressed in the kidney and

predominantly activated by macrophages. Immunofluorescence

staining in renal tissues of CKD patients demonstrates AIM2

expression in glomeruli and tubules. In vitro studies confirm that

macrophages phagocytosing necrotic cells activate caspase-1 and

IL-1b through AIM2-dependent mechanisms, driving a pro-

inflammatory phenotype and exacerbating chronic kidney injury

(179). In DKD, HG conditions induce excessive ROS generation,

leading to DNA damage in RTECs, which subsequently activates

AIM2. AIM2 facilitates inflammasome assembly by recruiting the

adaptor protein apoptosis-associated speck-like protein containing

a CARD (ASC) and caspase-1, thereby promoting caspase-1

autocatalytic cleavage. The activated caspase-1 cleaves GSDMD to

generate its N-terminal fragment, which forms pores in the cell
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membrane, triggering pyroptosis and mediating renal tubular

epithelial cell injury. Furthermore, elevated AIM2 expression in

renal RTECs of DKD patients and db/db mice exhibits a positive

correlation with serum creatinine levels and an inverse correlation

with eGFR, underscoring the critical association between AIM2

expression and impaired renal function (180). In therapeutic

research, a study demonstrated that wogonin mitigates renal

inflammation and fibrosis in DKD by upregulating suppressor of

cytokine signaling 3 (SOCS3). This upregulation suppresses HG-

induced activation of Toll-like receptor 4 (TLR4) and its

downs t ream JAK/STAT s igna l ing pa thway , the reby

downregulating the AIM2 inflammasome and the expression of

associated pro-inflammatory cytokines (181).

NLRP6, also known as NALP6 or PYPAF5, is predominantly

expressed in the human and mouse intestine, and to a lesser extent in

the liver, brain, kidney, and lungs (182). Previous research

demonstrated that co-expression of human NLRP6 and ASC in

HEK293T or COS-7 cells triggers caspase-1 activation and

subsequent IL-1b secretion, suggesting the potential formation of a

functional NLRP6 inflammasome complex (183). Emerging evidence

suggests a nephroprotective role of NLRP6 in kidney diseases. Under

physiological conditions, NLRP6 maintains cellular homeostasis in

renal RTECs by suppressing phosphorylation of ERK1/2 and p38

MAP kinases. However, during acute kidney injury (AKI), NLRP6

expression is markedly downregulated, leading to aberrant activation

of MAPK signaling pathways. This dysregulation exacerbates

inflammatory responses and promotes tubular cell apoptosis.

Notably, a parallel study demonstrated that Nlrp6-deficient mice

exhibited exacerbated renal inflammatory responses and fibrotic

progression (184). Mechanistically, this phenomenon may arise

from Nlrp6 downregulation-triggered activation of the p38 MAPK

signaling pathway, which drives upregulation of TGF-b1 and

connective tissue growth factor (CTGF) while concurrently

suppressing the antifibrotic factor Klotho (185).
3.9 Protein kinase C

The PKC family acts as a signaling kinase involved in multiple

signaling pathways, including cell proliferation, differentiation, cell

cycle regulation, and apoptosis. PKC activation induced by a

hyperglycemic environment plays a crucial role in the

development of DKD (186). It has been demonstrated that Ang

II- and ET-induced renal vasoconstriction is mediated by PKC

activation (187). Under conditions of hyperglycemia or insulin

resistance, PKC activation in vascular tissues inhibits PI-3 kinase-

mediated eNOS expression, leading to endothelial dysfunction,

which may contribute to impaired renal microcirculation in DKD

(188). Additionally, PKC activation by high glucose concentrations

leads to increased expression of VPF-mRNA in VSM cells, which

subsequently induces abnormal endothelial permeability and

angiogenesis in diabetes mellitus (189).In cellular experiments,

PKC activation induced by high glucose concentrations promoted

TGF-b1 expression in mesangial cells (MCs), which subsequently

led to the accumulation of microvascular matrix proteins (190).
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3.10 Epidermal growth factor receptor

EGFR is a member of the ErbB/HER family of receptor tyrosine

kinases. It has been demonstrated that the deterioration of EGFR

tyrosine kinase phosphorylation is a significant factor contributing

to diabetic microvascular dysfunction. Treatment of type 2 diabetic

mice with an EGFR tyrosine kinase inhibitor for two weeks resulted

in a significant improvement in vasotension and endothelial

function in mesenteric and coronary arteries (191). In the kidney,

EGFR is expressed in various glomerular cells, including podocytes,

GECs, and MCs (192). Moreover, EGFR expression is clearly

upregulated in a high-glucose environment (193). Studies have

shown that antagonizing EGFR improves renal vascular

endothelial dysfunction as well as renal hemodynamics (194).

Phosphorylation of EGFR mediates vascular remodeling of

resistance arteries and increases vessel stiffness and wall thickness

in diabetic mouse models (195). These abnormal changes may be

mediated through the ERK1/2-ROCK signaling pathway (196). At

the cellular level, EGFR activation is involved in the loss of

podocytes, tubular cell apoptosis, and glomerulosclerosis in DKD

(193). On the other hand, there is a potential link between EGFR

and other injury mediators. Studies have demonstrated that ET-1

activates the ETAR, driving podocyte migration through b-arrestin
signaling and increasing b-arrestin-1 expression. b-arrestin-1 forms

a trimeric complex with Src, leading to EGFR transactivation and b-
catenin phosphorylation, which subsequently promotes the gene

transcription of Snail. This process results in podocyte loss and the

formation of proliferative lesions (101). An animal study

demonstrated that targeted knockout of EGFR prevented high-fat

diet (HFD)-induced endothelial dysfunction. HFD-induced

albuminuria was less pronounced in animals with endothelial

EGFR knockout, while it was completely abolished in animals

with vascular smooth muscle EGFR knockout. These findings

highlight the potential association between EGFR and renal

circulatory disorders (197).

In summary, targeted inhibition of EGFR expression may be a

potential treatment for DKD.
3.11 Platelet-derived growth factors

PDGF is a peptide regulator that stimulates cell growth and is

stored in platelet a-granules under physiological conditions, where
it is activated and released during blood coagulation. The PDGF

family consists of four members: PDGFA, PDGFB, PDGFC, and

PDGFD. These four polypeptide units can form five types of dimers:

PDGF-AA, PDGF-BB, PDGF-CC, PDGF-DD, and PDGF-AB

(198). The five PDGF dimer subtypes exert various biological

functions by binding to two specific receptors, PDGFR-a and

PDGFR-b (199). PDGF is produced and secreted by various cell

types, which promote mitosis and induce the division, proliferation,

and migration of vascular cells, this highlights the potential role of

PDGF in regulating vascular homeostasis (200).

It has been demonstrated that PDGF induces hypertrophy of

vascular smooth muscle cells in the rat kidney, thereby affecting
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renal perfusion (201). In DKD, PDGF and its receptors are

overexpressed (202); PDGF-A is primarily distributed in

glomerular and RTECs, while PDGF-B is mainly located

extracellularly (202). With the progression of DKD, gradual

fibrosis of the kidneys occurs, and one study showed that PDGF-

CC plays an important role in the process of renal fibrosis, but does

not significantly aggravate capillary rarefaction (203). At the cellular

level, PDGF-BB, PDGF-CC, and PDGF-DD all stimulate the

proliferation of MCs, leading to mesangial expansion (204).

Furthermore, in proximal tubular epithelial cells, increased

phosphorylation of PDGF receptor-b (PDGFRb) due to high

glucose activates the Akt/mTORC1 signaling pathway, which in

turn promotes the expression of collagen I(a2), ultimately inducing

tubulointerstitial fibrosis in DKD (205). In summary, changes in

PDGF and its receptors have the potential to influence renal

microcirculation in DKD.
4 DKD preclinical models

To explore new treatments for DKD and test the effectiveness of

therapeutic regimens, it is necessary to develop animal models of

DKD with varying characteristics. These models can mimic the

human state of DKD, thereby providing valuable clinical evidence

for treatment strategies. The most common methods for modeling

DKD include the use of chemicals, genetic engineering, genetic

hybridization, dietary interventions, or combinations of these

approaches (206). Because the symptoms and micropathologic

changes of DKD vary among experimental models, it is important

to select the appropriate animal model based on the specific

research focus (206). Mice are currently the most common

animal model for studying DKD because they are inexpensive to

maintain, reproduce rapidly, and can reflect the disease progression

of DKD to some extent (207). However, mouse models also have

disadvantages, including a lack of genetic diversity and differences

in islet cell distribution compared to humans (208). Large animal

models of DKD, such as diabetic dogs, exhibit characteristics of the

disease that are similar to those in humans. However, these models

are not widely used in research due to the disadvantages of longer

study cycles and higher maintenance costs (209). Here, we

summarize the common animal models of DKD (Table 1). These

models exhibit many of the features of human DKD and the

associated changes in renal microcirculation. In the following

section, we outline the mechanisms underlying the establishment

of commonly used animal models for DKD.
4.1 T1DM

Type 1 diabetes mellitus (T1DM) is an autoimmune disorder

characterized by pancreatic b-cell destruction and subsequent

absolute insulin deficiency. Commonly employed animal models

for T1DM research include spontaneous non-obese diabetic (NOD)

mice, BioBreeding (BB) rats, streptozotocin (STZ)-induced models,
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and transgenic models. The following section briefly outlines their

modeling mechanisms.

Streptozotocin (STZ) selectively destroys pancreatic b-cells
through necrosis or apoptosis, thereby inducing absolute insulin

deficiency, and is widely used for establishing T1DM in rodents.

The pathological manifestations of STZ-induced diabetes typically

include sustained hyperglycemia, albuminuria, thickening of the

glomerular basement membrane, and mesangial expansion, but

rarely present with hypertension or glomerulosclerosis (210).

Similarly to streptozotocin, alloxan induces T1DM and associated

complications in Beagle dogs through selective destruction of

pancreatic b-cells (211).
The Akita mice model develops T1DM through an Ins2 gene

point mutation (Cys96Tyr) that causes insulin protein misfolding,

triggering endoplasmic reticulum stress and subsequent pancreatic

b-cell apoptosis, ultimately resulting in absolute insulin deficiency.

This model faithfully recapitulates the progressive b-cell failure
characteristic of human T1DM (212). In contrast, non-obese

diabetic (NOD) mice exhibit autoimmune destruction of

pancreatic b-cells mediated by autoreactive T cells, driven by

genetic susceptibility associated with the H-2g7 MHC haplotype.

Aberrant presentation of islet antigens through defective MHC class

II molecules activates both CD4+ and CD8+ T cells, mimicking the

autoimmune pathogenesis observed in human T1DM (213).

The OVE26 mice model develops T1DM through pancreatic b-
cell-specific overexpression of calmodulin, resulting in b-cell
damage and absolute insulin deficiency. This model demonstrates

characteristic DKD manifestations including mesangial matrix

expansion, significant proteinuria, podocyte loss, glomerular

hypertrophy, and tubulointerstitial fibrosis. Notably, female

OVE26 mice exhibit more pronounced DKD manifestations

compared to males. This model faithfully recapitulates multistage

pathological features of human DKD while partially reflecting

gender-specific disease progression patterns (214).

BB rats represent a well-established rodent model of T1DM,

characterized by spontaneous autoimmune-mediated destruction of

pancreatic b-cells leading to absolute insulin deficiency, thereby

recapitulating key pathological features of human T1DM (215).
4.2 T2DM

The animal model of T2DM widely adopts multiple low-dose

STZ injections to induce progressive pancreatic b-cell destruction,
representing a well-established modeling approach that mimics b-
cell dysfunction in human T2DM pathogenesis (216). In addition,

experimental models of T2DM frequently employ genetically obese

rodents, such as leptin-deficient (ob/ob) or leptin receptor-deficient

(db/db) mice, to simulate metabolic dysregulation. These strains

recapitulate key pathophysiological hallmarks observed in early

human DKD, characterized by hyperglycemia, hyperinsulinemia,

and progressive albuminuria (217). The HFDmodel induces insulin

resistance through metabolic dysregulation characterized by

excessive adipose accumulation and elevated free fatty acid (FFA)
frontiersin.org
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TABLE 1 Pathological manifestations and renal microcirculatory characteristics in diabetic kidney disease animal models.

Type of Metabolic Renal function Structural changes
he kidney

Alterations in
renal circulation

References

ascular lymphocytic
gates, endotheliosis,
matory cell

ration, degenerative
ges, fibrotic, interstitial
rrhage, and
erular necrosis.

Unknown (225)

% increase in renal
erular volume.
% increase in renal
gen deposition.
drop of

erular podocytes.

1) Suppress the velocity
of Vs (renal arteries
peak systolic velocity).
2) Decreases in Vd
(renal arteries minimal
end diastolic velocity)
after 12 weeks.

(226, 227)

lomerular vasodilation
mesangial expansion.
ngiogenesis is
antly activated in
idneys.

Reduction in renal
medullary blood flow
after 6 weeks

(228, 229)

ressive renal damage,
rtrophy, and
mulation of mesangial
ix were observed at 8
s, followed by
erular lesions at
eeks.

Unknown (230, 231)

erular hypertrophy
mesangial expansion at
eks.

An increase in mean PI
(pulsatility index) values
(1.50 ± 0.13 vs. 1.18 ±
0.19) and mean RI
(resistive index) values
(0.81 ± 0.04 vs. 0.69 ±
0.06) was observed
compared to lean mice

(230, 232)

omoted the expression
rosis associated
in-collagen I in
eys.
acerbated ROS
ation in kidneys.
omoted mouse
apoptosis.

Significantly larger
baseline afferent
arteriole
(AA) diameters.

(233–235)
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Model name Strain
diabetes characteristics

Urinary protein
characteristics in t

Nicotinamide(NA)120mg/kg
/Streptozotocin(STZ)60mg/kg

C57BL/6J mice T2DM

Urine volume, food
consumption, water
intake, body weight, and
HbA1c levels were
significantly increased

8 fold increase after 5
weeks (vs.
Normal Control)

Uric acid, serum urea,
BUN, and creatinine levels
were significantly increased,
showing a 2- to 3-fold
increase after 5 weeks
compared to the
normal control.

Peri
aggr
infla
infil
chan
hem
glom

High Fat Diet (HFD) mice C57BL/6J mice T2DM

1) The increase of body
and kidney weights.
2) Impaired glucose
tolerance,
hyperinsulinemia,
polyuria.

2.7-fold increase in 24-h
urinary
albumin excretion.

1) The increase of UACR
after 8 weeks.
2) eGFR increase at 12
week and reduce at
16 weeks.

1) 2
glom
2) 1
colla
3) 8
glom

STZ + HFD mice C57BL/6J mice T2DM

1) The increase of body
and kidney weights.
2) The increase of
fasting blood glucose
and cholesterol.

1) 2.37–fold increase
in UACR.

1) 2.37–fold increase in
UACR.
2) The magnitude of the
urine cystatin C-to-
creatinine ratio increased.

1) G
and
2) A
aber
the

BTBR-ob/ob mice BTBR + C57BL/6 T2DM

Insulin resistance,
hyperglycemia,
hyperphagia, and
obesity were observed.

A 2-fold increase was
observed at 8 weeks,
and a 10-fold increase at
20 weeks compared to
BTBR WT.

Unknown

Prog
hyp
accu
mat
wee
glom
20 w

ob/ob mice (leptindeficient) C57BL/6J mice T2DM
Obesity, hyperglycaemia
and insulin resistance

1) developed proteinuria
beginning at 4 weeks.
2) A 4-fold increase was
observed after 22 weeks
compared to WT mice.

Unknown
Glom
and
8 we

db/db mice
(leptinreceptor deficient)

C57BLKs/J mice T2DM

1) The increase of body
weight, kidney weight,
blood glucose, blood
lipids and insulin at 10
weeks. (vs.db/m)

Significantly increase of
urinary albumin
excretion at 8 weeks.

A 2-fold increase in UACR
was observed compared to
db/m mice.
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TABLE 1 Continued

Type of Metabolic Renal function Structural changes
the kidney

Alterations in
renal circulation

References

) Glomerular hypertrophy,
esangial expansion,
lomerular epithelial cell
roliferation, renal
terstitial inflammatory
ell infiltration, partial renal
bular atrophy.
) Irregular thickening of
e GBM, effacement of the
ot processes,
ccumulation of the
esangial and renal
terstitial matrix

1) An increase in
diameters of the
glomerulus, afferent
arterioles, glomerular
capillaries and efferent
arterioles.
2) Increased blood flow
into the glomerulus.

(236)

enal hypertrophy,
esangial expansion,
lomerulosclerosis,
lomerular and
terstitial fibrosis.

1) renal blood flow
(RBF) was significantly
decreased.
2) Mean arterial
pressure (MAP) was
significantly higher.
3) renal vascular
resistance (RVR) was
much higher

(237, 238)

lomerulosclerosis,
traglomerular capillary
rombi and lipid
eposition, nephritis, and
deposition.

Unknown (239)

hickening of the
lomerular
asement membrane.

Unknown (240)

) Lipid deposition and
creased.
) Increased renal
edulla perfusion.

Renal Blood Flow (RBF)
Values was decreased
but no statistically
significant difference.

(241, 242)

lomerular hypertrophy,
BM thickening, segmental
lomerulosclerosis,
bulointerstitial fibrosis.

Blood flow and velocity
increased in the renal
microvasculature of GK
rats, leading to
abnormal renal
hemodynamics
characterized by high

(243–245)
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Model name Strain
diabetes characteristics

Urinary protein
characteristics i

KKAy mice KKAy mice T2DM

1) Reduced activity,
lackluster coat, drank
more, consumed more
food, and more urinary
output.
2) The increase of body
weight, kidney weight,
blood glucose.

24-hour urine protein
levels were significantly
higher than in C57BL/6J
mice at 14 weeks.

A significant increase in
BUN and serum creatinine
was observed compared to
C57BL/6J mice.

1
m
g
p
i
c
t
2
t
f
a
m
i

eNOS deficiency mice C57BLKs/J mice T2DM

Body weights, urinary
output, fasting blood
glucose significantly
increase at 8 weeks.

1) Albuminuria starting
at12 weeks.

1) The significantly increase
of serum creatinine and
BUN at 24 weeks.

R
m
g
g
i

NONcNZO10/LtJ mice
NON/LtJ
+NZO/H1Lt

T2DM

Insulin resistance,
maturity-onset
hyperglycemia, visceral
obesity, dyslipidemia.

Albuminuria
Serum creatinine levels
were increased at 6 months.

G
i
t
d
I

STZ Zebrafish T2DM Unknown Unknown Unknown
T
g
b

alloxan (ALX)+HFD Rabbits T2DM Unknown

24-hour urinary protein
significantly increased in
the DN group at
different time-points.

Serum creatinine and urea
nitrogen levels of the DN
group increased at the end
of the 8th week.

1
i
2
m

Goto-Kakizaki (GK) rats T2DM
The increase of kidney
weight and
blood glucose.

Increased of proteinuria.

1) Serum creatinine levels
were significantly elevated.
2) BUN levels were
similarly increased 2 to
5-fold.
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TABLE 1 Continued

Type of Metabolic Renal function Structural changes
in the kidney

Alterations in
renal circulation

References

perfusion and
high filtration.

1) Glomerular hypertrophy
and GBM thickening.
2) Extracellular matrix
expansion.
3) Nodular lesions, diffuse
glomerulosclerosis, tubulo-
interstitial fibrosis.

Total renal blood flow
(RBF), superficial blood
flow (SBF), and deep
renal cortical blood flow
(DBF) showed
stepwise reductions.

(246–248)

glomerulosclerosis, tubulo-
interstitial and
vascular damage.

1) Increased mean PI
and mean RI values
compared to Zucker
lean rats.
2) Increased in average
SBP and DBP.

(246, 249)

Glomerulosclerosis, severe
tubulo-interstitial damage,
and vascular damage.

1) Significant increase in
average BP.
2) Reduction in renal
blood flow and GFR.

(246, 250)

1) Diffuse mesangial
proliferation with
focal glomerulolysis and
scattered global sclerosis.
2) Mesangial matrix
proliferation and
interstitial edema.

Unknown (251)

Enhanced GFR and
thickening of GBM.

Glomerular filtration
rates and renal blood
flow were 43% and 48%
greater in BB rats than
in control rats.

(252, 253)

1) GBM thickening, Fibrosis.
2) Mononuclear
inflammatory
cell infiltration.

Unknown (216)

1) The increase of kidney
size after 12 weeks.
2) Mesangial matrix
expansion and GBM

Systolic blood pressure
(BP) was significantly
elevated at 10 weeks.

(254)
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Model name Strain
diabetes characteristics

Urinary protein
characteristics

OLETF rats T2DM
The increase of body
weight and
blood glucose.

Proteinuria
progressively increased
after the 20th week.

Increased of GFR.

ZDF rats T2DM
The increase of body
weight and Fasting
blood glucose.

Heavy proteinuria. Unknown

ZSF1 rats T2DM
The increase of body
weight and
blood glucose.

Proteinuria showed a
progressive increase
after the 12th week.

Reduced of GFR.

High-fat diet in low
dose-STZ-treated,
Heminephrectomies

rats T2DM
1) Insulin resistance.
2) TC and TG were
significantly increased.

Overt proteinuria was
seen after 20 weeks.

Ccr(Creatinine clearance
rate) was significantly
higher at 20 weeks, but
thereafter started to decline.

BB rat rat T1DM
The increase of kidney
weight and
blood glucose.

Urinary albumin
excretion of diabetic rats
did
not exceed the levels
found in control.

Unknown

Uni-nephrectomies
rat model of STZ
induced DN

rat T1DM Unknown Albuminuria Unknown

Akita mice: (Ins2 +/
C96Y) on C57Bl/6

mice TIDM
1) Sustained
hyperglycemia
and polyuria.

Urinary albumin
excretion significantly
increased by 8 weeks.

Urinary excretion of
nephrin increased at 16 and
20 weeks.
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TABLE 1 Continued

Type of Metabolic
s

Urinary protein
Renal function
characteristics

Structural changes
in the kidney

Alterations in
renal circulation

References

thickening.
3) Podocyte apoptosis.

ey
Significantly
increased albuminuria.

Unknown
Enlarged glomeruli and
mesangial sclerosis.

Systolic blood pressure
(SBP) was significantly
higher in NOD mice
compared to control
group mice.

(255)

ey 1) Significant 3-fold
increase in ACR
versus WT.

HD-OVE mice exhibited
hyperfiltration levels of
GFR at 12 weeks of age, by
20 weeks, showed
significant GFR reductions.

1) Glomerular hypertrophy
and mesangial matrix
expansion.
2) Renal tubulointerstitial
fibrosis and elevated a-
SMA.
3) Increased collagen and
fibronectin production.

1) Systolic BP is
progressively increased.

(256)

1c
vels
igher

The prevalence of
microalbuminuria of
59% in the
present study.

1) Significantly increased of
GFR and RPF.
2) BUN levels being
fourfold greater
than normal.

1) The area of glomerulus
and area ratio between
glomerulus and renal
capsule were decreased.
2) The collagen fibers and
glycogen in kidney cortex
were
significantly accumulation.

1) The highest recorded
prevalence of systolic
and diastolic
hypertension was 55
and 64%.
2) Significantly
increased of GFR
and RPF.

(256–258)
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Model name Strain
diabetes characteristic

NOD mice mice TIDM
The increase of kidn
weight and
blood glucose.

HD-OVE mice TIDM
The increase of kidn
weight and
blood glucose.

Alloxan Dogs TIDM

Polyuria and
hyperglycemia were
observed, and HbA
and urine glucose le
were significantly h
than normal.
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TABLE 2 Techniques for assessing renal microcirculation function: advantages and limitations.

Methods Applications Advantages Disadvantages References

SR

1) Visualizing glomeruli, renal
arterioles, proximal tubules.
2) Observing the diameter of renal
vasculature while using
contrast agent.

1) No geometric magnification of
vessels.
2) Highly precise X-ray beam,
small X-ray source and non-
invasive method.
3) Micron-sized arteriole can
be observed.

Difficulty in reflecting the internal
three-dimensional structure of
the kidney.

(260, 261)

BOLD-MRI

Measurement of deoxyhemoglobin
levels to reflect the degree of
tissue hypoxia, thus indirectly
assessing renal microcirculation.

1) Noninvasive method.
2) Without exposure to radiation
or exogenous contrast agents.
3) High spatial resolution.

1) Difficulties in manual tracing of
appropriate ROIs.
2) Numerous analytical techniques,
no standardized methodology.

(285)

mCT

1) Quantitative monitoring of
renal microcirculation, changes in
vascular structure and vascular
function.
2) Renal vasculature from a
3D perspective.

1) Noninvasive method.
2) Quantitative monitoring.
3) Showing the 3D structure of the
renal microcirculation.

1) X-ray exposure;
2) The need for iodine- based
contrast agents.

(268)

Electron microscopy
Observation of the ultrastructure
of the glomerular interior such as
podocytes and endothelium.

1) Ultrastructural changes in the
renal microcirculation can
be observed.

1) Sacrifice of the animals. (299)

fluorescence microangiography
Detect, quantitate and analyze the
changes in renal microvasculature.

1) Define perfused capillaries and
their precise architecture.

1) Sacrifice of the animals. (275, 300)

MPM

Quantify multiple dynamic renal
processes, including capillary flow,
permeability, and glomerular
function.
2) Study of intracellular changes
and crosstalk between cells.

1) Noninvasive method.
2) High-resolution(cellular and
subcellular resolutions).

1) Labor-intensive and time-
consuming.
2) Affected by movement.
3) Effects of anesthesia.

(301–303)

MRI

1) Detect and analyze the changes
in renal microvasculature.
2) Observation of ultrastructural
changes in the kidney.
3) Analyze renal function.

1) Noninvasive method.
2) Effectively evaluate fibrosis in
the kidney.

Affected by movement.

IVIM-MRI

1) Valuation of renal
microcirculation by pure
molecular diffusion (D), pseudo-
diffusion coefficient (D*),
perfusion fraction (f), mean
diffusion (MD), and mean
kurtosis (MK).
2) Shows microstructural and
functional changes in tissues.

1) Noninvasive method.
2) Without exposure to radiation
or exogenous contrast agents.

1) Affected by movement.
2) Affected by no Gaussian
diffusion behavior and
Rician noise.

(281, 282)

MRE-MRI

1) Detecting the elasticity,
stiffness, and structure of kidney
tissue to determine the extent of
renal fibrosis.
2) Indirect detection of
kidney perfusion.

1) Noninvasive method.
2) Without exposure to radiation
or exogenous contrast agents.
3) Can assess the extent of
renal fibrosis.

1) Affected by movement.
2) Limitations in testing
kidney function.

(291)

ASL-MRI
Measurement of renal
blood perfusion.

1) Noninvasive method.
2) Without exposure to radiation
or exogenous contrast agents.
3) Repeatable and stable.

1) Affected by movement.
2) low signal-to-noise ratio.

(304, 305)

CEUS

1) Quantitative assessment of
renal microcirculation and
microvascular perfusion
characteristics.
2) Analyze renal function.
3) Assess renal
transplant viability.

1) Radiation-free and non-
nephrotoxic.
2) Distinguishes perfusion
heterogeneity between renal cortex
and medulla, enabling detection of
microvascular abnormalities.
3) Real-time imaging capability.

1) Operator-dependent, requiring
experienced personnel for optimal
acquisition.
2) Outcomes may vary across
ultrasound machine models,
necessitating
protocol standardization.

(298)
F
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release, which collectively impair insulin signaling transduction.

Concurrently, adipose tissue macrophage infiltration and pro-

inflammatory cytokine secretion establish chronic low-grade

inflammation, ultimately compromising pancreatic b-cell function
and insulin secretion. This model effectively recapitulates two

hallmark pathological features of human T2DM: systemic insulin

resistance and progressive b-cell failure (218). The KK-Ay mouse

model, carrying the dominant yellow obese Ay allele, develops

hyperphagia, metabolic dysregulation, and obesity. Characteristic

renal manifestations in this model include albuminuria, mesangial

hyperplasia, segmental glomerulosclerosis, and podocyte depletion.

Notably, KK-Ay mice maintain preserved renal function without

progression to end-stage renal failure, establishing this model as

particularly suitable for investigating early-to-mid-stage DKD

pathogenesis (219). The NONcNZO10/LtJ murine model

represents a polygenic T2DM characterized by development of

insulin resistance with enhanced gluconeogenesis, progressing to

moderate obesity and diabetes accompanied by visceral lipid

deposition. This model show the intricate pathogenesis of human

T2DM through polygenic interactions that mirror the multifactorial

etiology of the disease (220). Rat models are increasingly employed

in T2DM research, complementing mice systems. The Goto-

Kakizaki (GK) rat model exhibits pancreatic b-cell dysfunction
resulting from reduced GLUT2 expression and downregulation of

SNARE complex components, coupled with mild insulin resistance,

collectively (221). OLETF rats, characterized by a deficiency in the

cholecystokinin-1 receptor (CCK-1R), exhibit hyperphagia and

insulin resistance, progressing spontaneously to obese T2DM. The

renal pathology in this model manifests through distinct

morphological and functional alterations, including glomerular

basement membrane thickening, mesangial matrix expansion,

increased urinary albumin excretion, and tubular epithelial injury

(222). ZSF1 rats, harboring inherited leptin signaling impairment,

spontaneously develop obesity, hyperglycemia, hyperlipidemia, and

mild hypertension, ultimately progressing to T2DM. This model

demonstrates characteristic pathological manifestations including

albuminuria, glomerular mesangial matrix expansion, and

tubulointerstitial fibrosis (223). Zucker Diabetic Fatty (ZDF) rats,

a substrain derived from obese Zucker rats, progress to T2DM. This

diabetic model exhibits characteristic features including obesity,

hyperglycemia, albuminuria, and glomerular hyperfiltration,

accompanied by concurrent dilation of both afferent and efferent

arterioles (224).

Additionally, zebrafish and rabbit models may be employed in

modeling both type 1 and type 2 diabetic nephropathy. The

pathological alterations and renal microcirculatory injury

characteristics across these animal models are summarized

in Table 1.
5 Techniques and methods for
assessing renal microcirculation

The kidney contains a highly complex vascular system, and

DKD is associated with glomerular vascular endothelial dysfunction
Frontiers in Endocrinology 17
and capillary injury. Therefore, methods and tools capable of

monitoring vascular lesions and hemodynamic changes are

needed to better understand the pathophysiological processes of

DKD (Table 2).
5.1 Synchrotron radiation

The main characteristics of SR are its high intensity and broad-

band energy spectrum, which make it valuable in medical research

(259). Additionally, SR offers higher resolution compared to

conventional X-rays (259). These advantages enable it to be

particularly useful for imaging vascular structures smaller than

100 mm in diameter and visualizing intricate structures within

renal units (260). A study demonstrated that angiography of rat

arteries using synchrotron radiation successfully observed four

levels of branching in the renal arteries, with resting diameters

ranging from 28 to 400 mm (261). The main limitation of this

technique is its difficulty in accurately reflecting the three-

dimensional structure inside the kidney (262).
5.2 Microcomputed tomography

The principle of mCT application is based on the attenuation of

X-rays as they pass through the imaged object. This technique is

now widely used for the quantitative evaluation of cardiac, bone,

and soft tissue structures (263). mCT enables the visualization and

quantitative analysis of blood vessels in three dimensions (264) and

has been employed to study blood supply to tumors, vascular

calcification, and vascular regeneration (265–267). A study

demonstrated that mCT can provide stable, noninvasive

monitoring of blood vessels in a mouse model, reflecting changes

in renal blood volume, as well as renal vessel diameter, branching,

and tortuosity (268). However, this method also has some

limitations, such as the risk of exposure to X-rays and the need

for iodine-based contrast agents.
5.3 Electron microscopy

Glomerular endothelial cell injury plays a crucial role in the

progression of glomerular disease. In progressive kidney diseases

such as DKD, angiogenesis is impaired due to endothelial cell

injury, leading to sclerosis in the affected areas (269).

Additionally, it has been demonstrated that mice models with

site-specific renal microvascular endothelial injury are more

prone to thrombosis in glomerular and peritubular microvessels,

which subsequently affects renal microcirculation (270). Electron

microscopy is an effective method for visualizing fine ultrastructure

and detecting changes in endothelial cells. It can reveal the

separation of endothelial cells from the glomerular basement

membrane, the loss of glomerular endothelial cells, and

glomerulosclerosis in chronic glomerular lesions (271).

Additionally, electron microscopy can observe the loss of
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podocytes due to renal ischemia (272). These findings highlight the

potential of electron microscopy to assess renal microcirculation.

However, this method often requires the sacrifice of animals and

may be subject to sampling errors (273).
5.4 Fluorescence microangiography

Fluorescence microangiography is a simple and widely

applicable technique for assessing renal microcirculation and

effectively delineating the renal microvasculature in three

dimensions (274). Additionally, fluorescence microangiography

allows for the quantitative assessment of renal microvascular

changes. One study demonstrated a 40% ± 7.4% reduction in the

number of peritubular capillaries, a 36% ± 4% reduction in

individual capillary cross-sectional area, and a 62% ± 2.2%

reduction in total peritubular perfusion 8 weeks after AKI. Thus,

fluorescence microangiography has distinct advantages in detecting

capillary perfusion and its ultrastructure (275).
5.5 Intravital multiphoton microscopy

Intravital multiphoton microscopy technology enables the

tracking and detection of single cells in living organisms, making

it particularly well-suited for studying cellular and molecular

changes during the progression of chronic diseases (276).

Additionally, this technology supports the simultaneous study of

renal function and morphology. It allows for the visualization of

renal structures and cells, including the glomerular and peritubular

vascular systems, podocytes, mesangial cells, endothelial cells, and

endothelial glycocalyxes (277). In the study of renal hemodynamics,

intravital multiphoton microscopy detected renal capillary

diameters of 8.7 ± 0.5 mm in 5/6 nephrectomy rats, which

increased to 10.1 ± 1.3 mm after two weeks. This technique also

enabled the quantification of the average cross-sectional blood

velocity and the volume flow rate of the renal capillaries (278).

However, altered renal hemodynamics induced by general

anesthesia, animal movement, and nephron heterogeneity may

affect the imaging resul ts of intravi ta l mult iphoton

microscopy (279).
5.6 MRI

5.6.1 Intravoxel incoherent motion imaging-MRI
IVIM-MRI has its origins in diffusion MRI, where IVIM refers

to translational movements within a given voxel that, during the

measurement time, present a distribution of speeds in orientation

and/or amplitude (280). IVIM-MRI can provide information on

tissue microcirculation as well as blood flow, making it highly

valuable for studying tumor blood supply and renal

microvasculature (281). In practice, IVIM-MRI can quantitatively

assess renal microcirculation in rats with diabetic nephropathy by

evaluating pure molecular diffusion (D), pseudo-diffusion
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coefficient (D*), perfusion fraction (f), mean diffusion (MD), and

mean kurtosis (MK) (282). However, the use of contrast media may

affect renal structure and function, a consideration that should be

the focus of future studies (282).

5.6.2 Blood oxygen level-dependent-MRI
The basic principle of BOLD-MRI is that changes in renal tissue

deoxyhemoglobin concentrations generate phase incoherence of

magnetic spins, leading to an increase in the apparent relaxation

rate R2* (283). Renal microcirculatory pathology is often associated

with alterations in renal perfusion, which subsequently results in

tissue hypoxia. Therefore, BOLD-MRI, as a noninvasive technique

to assess renal oxygenation, can indirectly reflect the status of renal

microcirculation (284). In specific studies, R2* serves as an estimate

of tissue oxygenation, with lower R2* values indicating higher tissue

oxygenation. Additionally, as the strength of the magnetic field

increases, the change in R2* value is more pronounced, effectively

improving the stability and sensitivity of BOLD-MRI (285).

Although there are various analytical techniques for BOLD-MRI,

a unified standard method has not yet been established, which may

lead to inconsistencies in analytical results.

5.6.3 Magnetic resonance elastography-MRI
Organ stiffness is altered in various diseases, such as cirrhosis

and renal fibrosis. Therefore, the quantitative assessment of tissue

stiffness can be valuable in studying disease progression. MRE-MRI,

a technique that detects tissue stiffness within the body, was initially

used for the evaluation of liver fibrosis. As this technology has

advanced, it has become a viable alternative to liver biopsy for the

diagnosis of cirrhosis (286). Today, the application of this

technology is gradually expanding to include kidney research. A

study demonstrated that the average stiffness of the renal

parenchyma was 4.35 kPa in normal subjects and 5.10 kPa in

CKD patients, regardless of disease stage (287). Additionally,

measurements of kidney stiffness can serve as a predictive

indicator of renal function decline (288). In assessing renal

microcirculation, one study found that renal medulla stiffness was

inversely related to renal blood flow (289). Another study found

that renal cortical stiffness decreased as renal blood flow decreased,

suggesting that the renal blood flow profile may mask the presence

of renal fibrosis (290). This finding is consistent with another study,

which showed that as chronic kidney disease worsens, kidney

stiffness is paradoxically reduced (291). Due to the diversity of

relationships between renal stiffness and renal blood flow, MRE-

MRI can only be used as an indirect method to assess

renal microcirculation.
5.6.4 Arterial spin labeling-MRI
The principle of ASL-MRI involves using water protons in the

blood as tracers. Water protons are magnetized and tagged before

entering the target tissues, and signals are acquired when these

labeled water protons pass through the arterial vasculature and

reach the imaging plane, producing the labeled image.

Simultaneously, control images without applied magnetic markers
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are acquired in the same imaging plane. The difference in signal

intensity between the two images reflects tissue perfusion, allowing

for an understanding of hemodynamic and microcirculatory

changes during the disease process (292). This technique was

initially used in cerebrovascular-related diseases and has shown

great potential, leading to its widespread application in perfusion

imaging for chronic kidney disease (292). A study demonstrated

that MRI can quantitatively compare changes in renal cortical and

medullary blood flow between patients with acute kidney injury and

normal subjects (293). In mice, MRI can also detect renal blood

flow. One study showed that blood flow to the kidney on the side

with a clamped renal pedicle dropped to 412 ± 46 mL/min

(moderate) and 239 ± 48 mL/min (severe) within 28 days

compared to a normal kidney (294). Although this method does

not require a contrast agent and offers high reproducibility, it has

the disadvantages of a low signal-to-noise ratio and slow temporal

and spatial resolution (292).
5.7 Contrast-enhanced ultrasound

CEUS is an advanced ultrasonographic technique that utilizes

ultrasound contrast agents (UCAs) to achieve detailed visualization

of anatomical and vascular structures, including the depiction of

renal microcirculation. CEUS enables precise imaging through the

unique physical properties of UCAs and their hemodynamic

contrast mechanisms. Briefly, UCAs (e.g., SonoVue®) consist of

inert gas encapsulated within a phospholipid/protein shell, with a

diameter of 2.5–3 micrometers (mm) (295). This allows them to

traverse capillaries and microvasculature unimpeded. Under low

mechanical index (MI <0.1) ultrasound fields, microbubbles

undergo nonlinear oscillations, emitting harmonic signals. These

signals are captured via harmonic-specific imaging techniques,

enabling dynamic assessment of tissue microcirculation (296).

CEUS demonstrates superior spatial resolution compared to

conventional ultrasound. Regarding safety, the inert gas

component is eliminated via pulmonary exhalation, while the

shell components undergo hepatic metabolism, ensuring non-

nephrotoxicity and absence of tissue deposition, with an excellent

safety profile (297). In clinical practice, the mechanism of CEUS

enables its application in assessing microcirculation impairment in

renal tissues. Its radiation-free nature, cost-effectiveness, and

repeatability make it particularly advantageous for long-term

monitoring of patients with renal insufficiency, positioning CEUS

as a valuable complement or alternative to CT/MRI (298).
6 Application of new techniques in
the study of microcirculation in DKD

In DKD, the renal microcirculation can undergo various

lesions. Currently, methods and techniques for studying the

mechanisms underlying renal microcirculation pathology are still

evolving. The following section describes several common methods

used to investigate the mechanisms of renal pathology.
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6.1 Single-cell RNA-sequencing

Single-cell sequencing (scRNA-seq) has emerged as a state-of-

the-art method for revealing the heterogeneity and complexity of

RNA transcription within individual cells, as well as for identifying

different cell types and functions within tissues. This technique is

therefore valuable for exploring the expression of specific markers

and genes across a wide range of cells within the kidney. Given the

critical role of GECs in the renal microcirculatory system, scRNA-

seq is widely recognized for its ability to explore endothelial cell

heterogeneity. It has been demonstrated that under pathological

conditions, such as tumorigenesis, quiescent endothelial cells are

activated and become involved in neovascularization and disease

progression (306). In the kidney, scRNA-seq has been used to

analyze more than 40,000 mouse renal endothelial cells, revealing

the extensive heterogeneity of these cells across the cortex,

glomerulus, and medulla, as well as changes in gene expression in

response to hypertonicity or dehydration (307). Additionally,

scRNA-seq can detect changes in the distribution and number of

cells within the glomerulus. It has been demonstrated that the

proportion of GECs in the glomeruli of diabetic mice is significantly

higher, while the proportion of mesangial cells (MCs) and

podocytes is reduced compared to normal mice (308). From a

genetic perspective, single-cell sequencing technology can be used

to explore and screen key genes associated with DKD. Through

GSEA analysis and other approaches, researchers can study the

specific signaling pathways of these key genes and the mechanisms

by which they influence DKD (309). In one study, researchers found

that MRTF-SRF transcriptional regulation was activated in

mesangial cells (MCs) in DKD, affecting the expression of the

downstream VEGFA-VEGFR2 signaling pathway and the

PDGFRB pathway, which may contribute to glomerular

hyperfiltration in DKD. This finding was further supported by in

vitro experiments, demonstrating the usefulness of scRNA-seq

technology in guiding future research (310). In summary, scRNA-

seq plays a crucial role in studying the mechanisms of renal

microcirculatory lesions in DKD by revealing the gene structure

and expression status of individual cells and reflecting intercellular

heterogeneity through high-throughput sequencing analyses of

genomes, transcriptomes, and epigenomes at the single-cell level.

However, scRNA-seq also has several limitations: 1) Isolating

glomerular cells is challenging; 2) No effective standardized

pipelines are currently available; 3) It does not comprehensively

show all cell markers; 4) There is no harmonized methodology for

analysis and statistics, requiring variation based on the choice of

calculation tools and databases (66, 309); 5) It is difficult to explore

information about the spatial location of gene expression (311).
6.2 Spatial transcriptomics

To fully understand the gene function of cells within the kidney

and the signaling pathways that facilitate crosstalk between cells, it

is essential to explore the extent, timing, and spatial location of

relevant gene expression. However, scRNA-seq disrupts cellular
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structural organization and fails to provide spatial information. The

emergence and development of ST have enabled the dual

determination of both quantification and localization of target

genes (311). ST technologies broadly fall into two categories:
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imaging-based and sequencing-based. Imaging-based ST can

provide single-cell or subcellular resolution with high RNA

capture efficiency, while sequencing-based ST technologies offer

whole transcriptome analysis, albeit with relatively lower RNA
FIGURE 3

Renal microcirculation pathological changes of DKD. This schematic delineates the pathological mechanisms underlying microcirculatory
dysfunction in DKD. The figure is organized into two interconnected sections: Mechanistic Pathways of DKD and Pathologic Progression of DKD.
The Mechanistic Pathways section illustrates molecular drivers of microvascular injury, including signaling cascades and cellular interactions. The
Pathologic Progression section highlights structural and functional alterations observed in advanced DKD. Cross-referenced pathways between
these sections elucidate the dynamic interplay between molecular events and clinical manifestations, providing a comprehensive overview of
DKD pathogenesis.
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capture efficiency (311). In practice, ST has been performed on

renal biopsy specimens from DKD patients to obtain gene

expression profiles of renal tissues. Gene expression in the

glomerular neovascularization region revealed increased

expression of genes involved in angiogenic signaling, endothelial

cell proliferation, and neointimal maturation, elucidating potential

mechanisms of glomerular neovascularization in DKD (312). The

advantages of spatial transcriptomics are clear, but several caveats

remain: 1) Requirement for high RNA integrity; 2) Resolution and

RNA capture rates vary across different spatial platforms; 3)

Imaging-based techniques analyze a limited number of genes (311).
7 Conclusion

In conclusion, this review summarizes the lesions in the renal

microcirculatory system in DKD and the mechanisms involved

(Figure 3), with a focus on the alterations in the structure of renal

microvessels and the dysfunction of renal vascular endothelial cells.

The evidence we have presented sheds light, to some extent, on the

mechanisms underlying renal microcirculatory pathology in DKD,

highlighting the potential for developing therapeutic strategies by

targeting these pathways and mechanisms. However, these

mechanisms are relatively complex and do not function

independently; rather, they interact to form a complex network of

signaling pathways. Therefore, it is essential to continue elucidating

these intricate processes and interrelationships, necessitating further

exploration in this field. Additionally, we have summarized the animal

models, assessment methods, and detection techniques that may be

used to study renal microcirculatory lesions in DKD, with the aim of

providing a reference for DKD-related research.
Author contributions

XH:Writing – original draft. JM: Writing – original draft. YuW:

Writing – original draft. YaW: Writing – review & editing. XZ:

Writing – review & editing. PX: Writing – review & editing. LiZ:

Funding acquisition, Writing – review & editing. LinZ: Resources,

Writing – review & editing.
Frontiers in Endocrinology 21
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. (1) Beijing Natural

Science Foundation(7244497); (2) Clinical Research Center

Construction Project of Guang’anmen Hospital, CACMS (Grant

No.2022LYJSZX28); (3) The Fundamental Research Funds for the

Central Public Welfare Research Institutes(No. ZZ16-XRZ-042); (4)

Young Elite Scientists Sponsorship Program by CACM(CACM-

2023-QNRC2-A08); (5) The Escort Project of Guang’anmen

Hospital, China Academy of Chinese Medical Sciences (Backbone

Talent Training Project) (Grant No. GAMHH9324025); (6)

Scientific and Technological Innovation Project of China

Academy of Chinese Medical Sciences (CI2023C024YL); (7)

Noncommunicable Chronic Diseases-National Science and

Technology Major Project (2023ZD0509306).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF
Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for
2021 and projections for 2045. Diabetes Res Clin Pract. (2022) 183:109119.
doi: 10.1016/j.diabres.2021.109119

2. Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress,
and possibilities. Clin J Am Soc Nephrol. (2017) 12:2032–45. doi: 10.2215/cjn.11491116

3. Vučić Lovrenčić M, Božičević S, Smirčić Duvnjak L. Diagnostic challenges of
diabetic kidney disease. Biochem Med (Zagreb). (2023) 33:30501. doi: 10.11613/
bm.2023.030501

4. Tan KS, McDonald S, Hoy W. The diagnostic performance of a clinical diagnosis
of diabetic kidney disease. Life (Basel). (2023) 13:1492. doi: 10.3390/life13071492

5. Wu Y, Xiong T, Tan X, Chen L. Frailty and risk of microvascular complications in
patients with type 2 diabetes: a population-based cohort study. BMC Med. (2022)
20:473. doi: 10.1186/s12916-022-02675-9
6. Tateyama Y, Shimamoto T, Uematsu MK, Taniguchi S, Nishioka N, Yamamoto K,
et al. Status of screening and preventive efforts against diabetic kidney disease between 2013
and 2018: analysis using an administrative database fromKyoto-city, Japan. Front Endocrinol
(Lausanne). (2023) 14:1195167. doi: 10.3389/fendo.2023.1195167

7. White S, Chadban S. Diabetic kidney disease in Australia: current burden and
future projections. Nephrol (Carlton). (2014) 19:450–8. doi: 10.1111/nep.12281

8. Thomé GG, Bianchini T, Bringhenti RN, Schaefer PG, Barros EJG, Veronese FV.
The spectrum of biopsy-proven glomerular diseases in a tertiary Hospital in Southern
Brazil. BMC Nephrol. (2021) 22:414. doi: 10.1186/s12882-021-02603-8

9. Shestakova MV, Vikulova OK, Zheleznyakova AV, Isakov MA, Dedov II. Diabetes
epidemiology in Russia: what has changed over the decade]? Ter Arkh. (2019) 91:4–13.
doi: 10.26442/00403660.2019.10.000364

10. Detournay B, Simon D, Guillausseau PJ, Joly D, Verges B, Attali C, et al. Chronic
kidney disease in type 2 diabetes patients in France: prevalence, influence of glycaemic
frontiersin.org

https://doi.org/10.1016/j.diabres.2021.109119
https://doi.org/10.2215/cjn.11491116
https://doi.org/10.11613/bm.2023.030501
https://doi.org/10.11613/bm.2023.030501
https://doi.org/10.3390/life13071492
https://doi.org/10.1186/s12916-022-02675-9
https://doi.org/10.3389/fendo.2023.1195167
https://doi.org/10.1111/nep.12281
https://doi.org/10.1186/s12882-021-02603-8
https://doi.org/10.26442/00403660.2019.10.000364
https://doi.org/10.3389/fendo.2025.1580608
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Hang et al. 10.3389/fendo.2025.1580608
control and implications for the pharmacological management of diabetes. Diabetes
Metab. (2012) 38:102–12. doi: 10.1016/j.diabet.2011.11.005

11. Galiyeva D, Gusmanov A, Sakko Y, Issanov A, Atageldiyeva K, Kadyrzhanuly K,
et al. Epidemiology of type 1 and type 2 diabetes mellitus in Kazakhstan: data from
unified National Electronic Health System 2014-2019. BMC Endocr Disord. (2022)
22:275. doi: 10.1186/s12902-022-01200-6

12. Cunningham A, Benediktsson H, Muruve DA, Hildebrand AM, Ravani P.
Trends in biopsy-based diagnosis of kidney disease: A population study. Can J
Kidney Health Dis. (2018) 5:2054358118799690. doi: 10.1177/2054358118799690

13. Hallan SI, Øvrehus MA, Romundstad S, Rifkin D, Langhammer A, Stevens PE,
et al. Long-term trends in the prevalence of chronic kidney disease and the influence of
cardiovascular risk factors in Norway. Kidney Int. (2016) 90:665–73. doi: 10.1016/
j.kint.2016.04.012

14. Heller T, Blum M, Spraul M, Wolf G, Müller UA. Diabetic co-morbidities:
prevalences in Germany. Dtsch Med Wochenschr. (2014) 139:786–91. doi: 10.1055/s-
0034-1369889
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