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Background: Accurate preoperative evaluation of cT1N0M0 papillary thyroid

carcinoma (PTC) is essential for guiding appropriate treatment strategies.

Although ultrasound is widely used for clinical staging, it has limitations in

detecting lymph node metastasis (LNM) and capsular invasion (CI), which may

lead to misclassification of high-risk patients. Such undetected risks pose safety

concerns for those undergoing radiofrequency ablation. This study aimed to

develop an artificial intelligence (AI)-assisted predictive model that integrates

ultrasound radiomics and deep learning features to improve the identification of

LNM and CI, thereby enhancing risk stratification and optimizing treatment

strategies for cT1N0M0 PTC patients.

Methods: A total of 203 PTC patients were divided into high-risk (CI or LNM) and

low-risk groups, with 142 assigned to the training set and 61 to the internal test

set. Regions of interest delineation was performed using ITK-Snap. Radiomic

features were extracted with PyRadiomics, and embedding features were

obtained through the Vision Transformer (ViT) model. Risk-related features

were selected using least absolute shrinkage and selection operator (LASSO),

variance thresholding, and recursive feature elimination (RFE). Single-modal and

multimodal models were developed using feature-level and decision-level

fusion. Feature importance was assessed using Shapley Additive exPlanations

(SHAP). Model performance was evaluated using recall, accuracy, and area under

curve (AUC).

Results: Among 1,001 radiomics features, 47 were selected via LASSO and RFE,

and 15 relevant features from 768 ViT features. In the internal test set,

NeuralNet models based on radiomics and 2D deep learning achieved AUCs

of 0.756 and 0.708, respectively, and 0.829 and 0.840 in the training set. The

multimodal RandomForest model outperformed single-modality models, with

an AUC of 0.763 in the test set and 0.992 in the training set. Decision-level

fusion models, such as DLRad_LF_Avg and DLRad_LF_Max, improved the

external test set AUC to 0.843. SHAP analysis identified key features linked to

tumor heterogeneity.
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Conclusion: The multimodal AI model effectively predicts high-risk cT1N0M0

PTC, outperforming single-modality models and aiding clinical decision-making.
KEYWORDS

papillary thyroid cancer, artificial intelligence, ultrasound radiomics, prediction model,
risk stratification
Introduction
In 2022, over 821,000 new thyroid cancer cases were reported

globally, ranking it the 7th most common cancer, with women

affected at nearly three times the rate of men. Despite its high

incidence, the mortality rate was low, with around 44,000 deaths

(1). This is mainly due to the widespread use of imaging and biopsy,

which have increased the incidence of papillary thyroid cancer

(PTC) (2). The management of low-risk PTC has been debated,

especially regarding overtreatment. Recently, some researchers have

suggested radiofrequency ablation (RFA) as a viable treatment

option (3). RFA is a minimally invasive treatment technique that

uses heat generated by high-frequency electrical currents to target

and destroy diseased tissue. Although studies have evaluated the

short-term clinical safety and efficacy of RFA in treating solitary

T1N0M0 PTC, the indications for RFA in low-risk PTC patients

have not yet been standardized (4–7).

Currently, research on the application of RFA in PTC primarily

focuses on patients with T1N0M0 staging (5, 8). Clinical and

pathological staging are critical for cancer management. Clinical

staging, based on preoperative evaluations like ultrasound (US) and

biopsy, guides treatment decisions but is often limited by diagnostic

methods or subjective interpretation, especially for lymph node

assessment (9). Pathological staging, derived from histological

analysis of postoperative specimens, provides more accurate

evaluations of capsular invasion (CI) and lymph node metastasis

(LNM)but requires surgery. Accurate preoperative staging is

essential for tailoring treatment plans, avoiding unnecessary

overtreatment in low-risk PTC patients, and identifying those at

risk for CI or LNM to ensure timely and appropriate intervention.

Recent advancements in artificial intelligence (AI) are

transforming the medical field, especially in disease diagnosis and

prediction. Leveraging deep learning (DL) and machine learning, AI

extracts complex features from medical images, enhancing diagnostic

accuracy and consistency. In thyroid cancer research, AI is widely

used in US analysis for lesion segmentation, distinguishing benign

from malignant lesions, and risk stratification, providing new

approaches to personalized treatment (10–13).

This study aims to develop a predictive model that integrates

clinical and US features with AI-extracted imaging data. The model

will identify risk indicators for LNMor CI in cT1N0M0 PTC patients.

It will assist clinicians in making informed decisions regarding
02
treatment plans, identifying candidates for ablation or surgery, and

optimizing RFA indications and management strategies.
Materials and methods

Patients and baseline information

The study included PTC patients (cT1N0M0) who underwent

surgery at Hunan Cancer Hospital from January 2019 to July 2024.

The retrospective study was approved by the Ethics Committee of

Hunan Cancer Hospital. Patients were randomly split into training

and internal test sets at a 7:3 ratio. To mitigate class imbalance in

the dataset, the Synthetic Minority Oversampling Technique

(SMOTE) was employed to achieve a balanced distribution

between low-risk and high-risk patients. Clinical stage cT1N0M0

was defined by preoperative computed tomography or US showing

no significant CI or cervical LNM, with tumor size ≤2 cm and no

evidence of distant metastasis. US images were reviewed by a senior

radiologist (S.-C.T.) with over 30 years of experience.

Inclusion criteria: (i) complete clinical data; (ii) high-quality US

images recognizable by AI. Exclusion criteria: (i) incomplete clinical

or pathological data; (ii) poor-quality or AI-incompatible US

images; (iii) preoperative evidence of LNM on CT or US; (iv)

multifocal cancers. The study flowchart is shown in Figure 1A.

Postoperative pathology reports confirming CI or LNM were

identified as risk factors. Baseline clinical and US data, including

tumor size, age, gender, Hashimoto’s thyroiditis, benign nodules,

nodule location, microcalcification, aspect ratio, nodule echo,

tumor-to-capsule distance, and Color Doppler flow imaging

(Adler grading system), were retrieved from medical records. The

shortest tumor-to-capsule distance was measured using

MicroDicom viewer (https://www.microdicom.com/) on US

images (Figure 1B).
US image acquisition

B-mode US and color Doppler flow images were obtained using

a Super Sonic Aixplorer system (Super Sonic Imagine, Aix-en-

Provence, France) with a 5–14 MHz linear transducer. The patient

was placed in a supine position on the examination table with the

neck slightly extended. The head was tilted backward to expose the
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thyroid gland and allow optimal imaging of both the right and left

lobes. US scanning typically began at the lower part of the neck and

continued upward to the thyroid isthmus. Both transverse and

sagittal planes were imaged. All images were acquired by a senior

radiologist (S.-C.T.) in the Hunan Cancer Hospital. One US image

with the largest diameter of each tumor was used for analysis.
ROI delineation and intraclass correlation
coefficient analysis

An experienced (T.O-Y.) independently delineated the tumor

regions using the ITK-Snap 3.8 software (http://www.itksnap.org)

in a blinded manner to define the regions of interest (ROI). The

delineated ROI primarily focused on the demarcation of the

primary tumor area. To systematically assess the reliability and

consistency of our ROI delineation, 50 patient cases were randomly

selected for a second round of ROI delineation two weeks later. A

thyroid surgeon (Y.-L.T.) trained in thyroid US independently
Frontiers in Endocrinology 03
annotated the tumor regions for the same 50 patients during this

process. Inter- and intra-rater reliability were subsequently

evaluated using ICC analysis.
US image feature extraction based on
PyRadiomics

Quantitative imaging features were extracted from US images

using PyRadiomics (v3.0.1, https://github.com/Radiomics/

pyradiomics) in Python (v3.10.14). Features were derived from

original and mathematically transformed images, including

Laplacian of Gaussian filtering, wavelet, exponential, square,

square root, and logarithmic transformations. Extracted features

included first-order statistics, Gray Level Co-occurrence Matrix,

Gray Level Size Zone Matrix, Neighboring Gray Tone Difference

Matrix, Gray Level Dependence Matrix, and others. Statistical

features (e.g., mean, variance) described global properties, while

texture features (e.g., Gray Level Co-occurrence Matrix) captured
FIGURE 1

Study workflow and imaging analysis: (A) Study population flowchart, (B) Measurement of the shortest distance between the nodule and capsule
using MicroDicom Viewer software on DICOM ultrasound images, (C) Feature extraction from entire image using deep learning approach. DICOM,
digital imaging and communications in medicine; PTC, Papillary Thyroid Carcinoma.
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local variations. All analyses used PyRadiomics, with detailed

feature definitions available at https://pyradiomics.readthedocs.io/

en/latest/radiomics.html.
US image embedding feature extraction
based on vision transformer

US image embedding features were extracted using a pre-

trained ViT-B/16 model (14). The model includes a convolutional

projection layer to extract initial features, an encoder with self-

attention mechanisms to capture long-range dependencies and local

patterns, and a linear classifier head to map features to specific

labels. The pre-trained weights were obtained from the ImageNet-

1k dataset. To adapt the model to the current prediction task, we

modified the classification head and incorporated a dropout layer

with a dropout rate of 0.5. During fine-tuning, we used the Adam

optimizer with an initial learning rate of 1e-3 and applied a

ReduceLROnPlateau scheduler to dynamically adjust the learning

rate (with a decay factor of 0.1 triggered after five consecutive

epochs without improvement in validation loss). The batch size was

set to 32, and the weight decay coefficient was 0.01. In this study, the

convolutional layer extracted features, and the encoder output,

excluding the classification head, was used to generate image

embeddings with rich semantic and contextual information for

subsequent analysis and diagnosis (Figure 1C).
Feature selection

Feature selection was performed on features extracted from the

ViT pre-trained model and PyRadiomics. First, the variance threshold

method was applied to remove features with a variance below 0.05 to

reduce noise. The remaining features were then standardized using the

z-score method (mean = 0, standard deviation = 1). Subsequently, least

absolute shrinkage and selection operator (LASSO) regression and

Recursive Feature Elimination (RFE) were employed to identify

features associated with risk factors. Finally, the union of features

selected by LASSO and RFE, with an ICC greater than 0.75, was used

for subsequent model construction. LASSOwas implemented using the

glmnet package (v4.1_8), and RFE was performed using the caret

package (v6.0_94). Feature correlations were visualized using the

pheatmap package (v1.0.12).
Construction and evaluation of models

In this study, two multimodal fusion strategies were employed

to construct predictive models (1): Feature-level fusion (early

fusion, DLRad_EF): Radiomic features extracted using

PyRadiomics were concatenated with 2D DL features derived

from a fine-tuned ViT model to form a unified feature vector,

which was then input into classifiers for retraining. This approach

enables integration of multimodal information at the feature level,

aiming to exploit complementary information between the two
Frontiers in Endocrinology 04
modalities and enhance the model’s ability to recognize complex

patterns (2). Decision-level fusion (late fusion, DLRad_LF): The

output probabilities of the Radiomics and 2D-DL models were

combined using ensemble strategies such as maximum and

averaging operations, leveraging the strengths of each single-

modality model to improve predictive accuracy and stability. For

both single-modality and DLRad_EF models, we employed a variety

of advanced machine learning algorithms, including NeuralNet,

XGBoost, LightGBM, CatBoost, ExtraTrees, RandomForest, and

KNeighbors. This study employed a comprehensive evaluation

approach based on multiple metrics. The performance of the

Radiomics, 2D-DL, DLRad_EF, and DLRad_LF models was

thoroughly compared using several key metrics, including

accuracy, recall, precision, F1-score, model complexity.
Feature interpretability analysis

Shapley Additive exPlanations (SHAP) was used to explain feature

importance. SHAP is a method for interpreting machine learning

models based on Shapley value theory from game theory. It

decomposes the contribution of each feature to the prediction

outcome, providing a relative importance ranking for each feature.

SHAP can generate importance rankings for individual samples,

individual features, or feature combinations, which is useful for

understanding the overall behavior of the model and the influence of

specific features on a given prediction.
Statistical analysis

Analyses were conducted using R software version 4.4.1

(https://www.r-project.org/) and Python software version 3.10.14

(https://www.python.org/). The Mann–Whitney U test was

employed to compare characteristics among different groups for

continuous variables (not normally distributed), while the

independent samples t-test was utilized for continuous variables

that followed a normal distribution. The chi-square test was applied

to assess differences in categorical variables. All levels of statistical

significance are bilateral, with a P value less than 0.05.
Results

Patient characteristics

A total of 203 PTC patients who underwent surgical treatment

between January 2019 to July 2024 at Hunan Cancer Hospital were

included in the study. The training cohort consisted of 142 patients

(median age: 41.50 years [31.00, 49.25]; age range: 12–65 years),

including 62 patients with risk factors (22 with CI and 51 with

LNM) and 80 patients without risk factors. The validation cohort

included 61 patients (median age: 42.00 years [33.00, 50.50]; age range:

21–58 years), comprising 23 patients with risk factors (8 with CI and 17

with LNM) and 38 patients without risk factors. There was no
frontiersin.org
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significant difference in composition ratio of patients between the two

cohorts. The baseline characteristics of patients in the training and

validation cohorts are shown in Table 1. Univariate analysis was

performed using the clinical and US features of patients in the

training cohort. The results showed that tumor diameter and tumor

location (whether located in the upper pole) exhibited significant

differences between the invasive group and non-invasive

groups (Table 2).
TABLE 1 Clinical and ultrasound information of patients in the training
and validation cohorts.

Characteristic Training
Cohort
(n=142)

Validation
Cohort
(n=61)

P value

Age, median ±
interquartile
range, years

[41.50
(31.00, 49.25)]

[42.00
(33.00, 50.50)]

0.630‖

Capsular invasion or
lymph node metastasis

0.443§

Positive 62 (43.66) 23 (37.70)

Negative 80 (56.34) 38 (62.30)

Gender 0.393§

Male 42 (29.58) 14 (22.95)

Female 100 (70.42) 47 (77.05)

Microcalcification 0.539§

Positive 62 (43.66) 30 (49.18)

Negative 80 (56.34) 31 (50.82)

Diameter, median ±
interquartile range, cm

[0.80
(0.60, 1.10)]

[0.80
(0.70, 1.10)]

0.976‖

Aspect ratio 0.647§

>1 76 (53.52) 35 (57.38)

≤1 66 (46.48) 26 (42.62)

Hashimoto’s thyroiditis 0.484§

Positive 34 (23.94) 18 (29.51)

Negative 108 (76.06) 43 (70.49)

With benign lesions 0.424§

Positive 47 (33.10) 24 (39.34)

Negative 95 (66.90) 37 (60.66)

Nodule location 0.802§

Upper 14 (9.86) 7 (11.48)

Other location 128 (90.14) 54 (88.52)

CDFI (Adler
grading system)

0.558§

Grade 0 (avascular) 19 (13.38) 5 (8.20)

Grade I (minimal) 75 (52.81) 37 (60.66)

(Continued)
F
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TABLE 1 Continued

Characteristic Training
Cohort
(n=142)

Validation
Cohort
(n=61)

P value

Grade II (moderate) 30 (21.13) 10 (16.39)

Grade III (marked) 18 (12.68) 9 (14.75)

Nodule echo 0.714§

Very hypoechoic 10 (7.04) 5 (8.20)

Hypoechoic 128 (90.14) 53 (86.88)

Hyperechoic or
mixed echogenicity

4 (2.82) 3 (4.92)

Distance from tumor
to thyroid capsule,
median ± interquartile
range, mm

[0.91
(0.51, 1.48)]

[1.03
(0.54, 1.40)]

0.677‖
fro
Data expressed as n (%), unless otherwise stated.
CDFI, color Doppler flow imaging.
§By the Chi-square test.
‖By the Mann–Whitney U test.
TABLE 2 Clinical characteristics of patients in the training cohorts.

Characteristic Non-invasive
Group (n=80)

Invasive
Group
(n=62)

P value

Age, mean ±
SD, years

41.50 ± 10.30 40.47 ± 10.79 0.563¶

Gender 0.197§

Male 20 (25.00) 22 (35.48)

Female 60 (75.00) 40 (64.52)

Microcalcification 0.197§

Positive 32 (40.00) 30 (48.39)

Negative 48 (60.00) 32 (51.61)

Diameter, median ±
interquartile
range, cm

[0.80(0.60, 1.00)] [0.90(0.70, 1.20)] 0.011‖

Aspect ratio 0.127§

>1 38 (5.74) 38 (13.33)

≤1 42 (94.26) 24 (86.67)

Hashimoto’s
thyroiditis

0.074§

Positive 24 (33.61) 10 (35.00)

Negative 56 (66.39) 52 (65.00)

With benign lesions 0.596§

Positive 24 (30.00) 10 (16.13)

Negative 56 (70.00) 52 (83.87)

Nodule location 0.001§

Upper 2 15

(Continued)
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Feature selection and model construction

Total of 1001 radiomics features were extracted, with 980 stable

features retained (ICC > 0.75). Using LASSO with lambda.min, 10

features were selected, while RFE identified 38 features most

associated with risk factors. LASSO and RFE selection processes

are shown in Figures 2A–D, and their union was used for further

analysis. For the 768 imaging features extracted via the ViT model,

similar processing was applied. Figures 2E–H illustrate the feature

selection, where LASSO identified no features, and 15 RFE-selected

features were used for model construction. Final features are

detailed in Supplementary Table 1.

Principal component analysis and heatmaps were used for

dimensionality reduction and visualization of selected features.

Figures 3A–D depict associations between radiomics and 2D DL

features with risk factors. Spearman correlation analysis (Figure 3E)

revealed redundancy within radiomics and DL features, but limited

correlation between the two, indicating complementary

information. In multivariate analysis integrating clinical and

ultrasound features with radiomics, tumor diameter and location

(P > 0.05) were excluded from the final predictive model.
Comparison of model performance

High-risk thyroid patients were predicted using various machine

learning algorithms, evaluated by receiver operating characteristic
TABLE 2 Continued

Characteristic Non-invasive
Group (n=80)

Invasive
Group
(n=62)

P value

Other location 78 47

CDFI (Adler
grading system)

0.538§

Grade 0 (avascular) 13 (16.25) 6 (9.68)

Grade I (minimal) 42 (52.50) 33 (53.23)

Grade II (moderate) 17 (21.25) 13 (20.96)

Grade III (marked) 8 (10.00) 10 (16.13)

Nodule echo 0.719§

Very hypoechoic 6 (7.50) 4 (6.45)

Hypoechoic 71 (88.75) 57 (91.94)

Hyperechoic or
mixed echogenicity

3 (3.75) 1 (1.61)

Distance from tumor
to thyroid capsule,
median ±
interquartile
range, mm

[0.91(0.50, 1.46)] [0.93(0.52, 1.50)] 0.858‖
Data expressed as n (%), unless otherwise stated.
CDFI, color Doppler flow imaging.
¶By the Independent samples t-test.
§By the Chi-square test.
‖By the Mann–Whitney U test.
FIGURE 2

Feature selection process for radiomics and vision transformer (ViT) features: (A, B) LASSO regression for radiomics features, (C) RFE accuracy versus
number of selected radiomics features, (D) Union set of LASSO/RFE-selected radiomics features, (E, F) ViT-derived feature LASSO analysis (no
features met criteria), (G, H) ViT feature RFE curve with peak accuracy at 15 features. LASSO, Least Absolute Shrinkage and Selection Operator; RFE,
Recursive Feature Elimination; SD, standard deviation.
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FIGURE 3

Radiomics and DL features for high-risk patient identification and correlation analysis: (A-D) Heatmap and PCA were applied for feature dimensionality
reduction and visualization. Figures (A, B) show the relationship between radiomics features and high-risk status, while Figures (C, D) display the relationship
between 2D DL features and high-risk status. (E) Spearman correlation analysis revealed significant redundancy between radiomics and 2D deep learning
features. The size of the circles represents the absolute value of the correlation coefficient, while the color of the circles indicates the direction of the
correlation: red for positive correlation and blue for negative correlation, *P<0.05. DL, deep learning, PCA, Principal Component Analysis.
FIGURE 4

Comparison of model performance: (A, B) The NeuralNet method achieved the best performance among models trained with radiomics features
and 2D deep learning features on the test set. (C) RandomForest exhibited superior performance in the multimodal model combining radiomics and
2D deep learning features. (D) The average ensemble of the two single-modality models improved the AUC on the external test set to 0.843. (E-H)
Confusion matrices display the prediction accuracy of the models on the test set. AUC, area under the curve; DL, deep learning; DLRad_EF, deep
learning radiomics early fusion; DLRad_LF, deep learning radiomics late fusion.
Frontiers in Endocrinology frontiersin.org07
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curves, confusion matrices, and metrics such as recall, precision,

accuracy, and F1 score. In the internal test set, NeuralNet achieved

the best performance amongmodels trained on radiomics and 2DDL

features, with area under the curve (AUC) values of 0.756 and 0.708,

respectively, and was selected for further analysis (Figures 4A, B). For

multimodal models combining radiomics and 2D DL features,

RandomForest outperformed others, resulting in the final

DLRad_EF model with an AUC of 0.763, slightly better than

single-modality models due to complementary feature information,

despite some redundancy (Figure 4C).

DLRad_LF_Avg and DLRad_LF_Max, decision-level fusion

methods based on averaging and maximum output values,

improved the external test set AUC to 0.843 through ensemble

predictions of the single-modality models (Figure 4D). The

confusion matrix of the best model showed a 76% correct

classification rate for low-risk patients and a 65% success rate for

identifying high-risk patients (Figures 4E–H).
Comparison of performance based on
different data

We compared the AUC performance of single-modality models

using radiomics and DL features, as well as multimodal models with

DLRad_EF and DLRad_LF. The results (Figures 5A, B) showed that

the radiomics model had an AUC of 0.829 in the training set and 0.756
Frontiers in Endocrinology 08
in the testing set, while the 2D DL model achieved AUCs of 0.840 and

0.708, respectively. DLRad_EF reached an AUC of 0.992 in the training

set and 0.763 in the testing set, and DLRad_LF had AUCs of 0.874 and

0.843, respectively. A default threshold of 0.5 was used for model

classification. Additional evaluation metrics are provided in Table 3.

These results suggest that combining radiomics and 2D DL features

allows effective prediction of high-risk cT1N0M0 PTC patients.
Feature interpretability analysis

SHAP-based interpretability analysis was performed for the

radiomics, 2D DL, and DLRad_EF models to rank feature

importance. The top 10 contributing features were visualized in

Figures 5C–E. For the radiomics model, certain first-order statistical

and second-order texture features predicted CI or LNM. Key features

l i k e e xponen t i a l _g l r lm_RunLeng thNonUn i f o rm i t y ,

square_glcm_DifferenceVariance, square_ngtdm_Busyness, and

square_glcm_Contrast highlighted increased heterogeneity, rougher

textures, and greater irregularity in high-risk tumors (Figure 5F).

In the DL-extracted features, lower values of DL_702, DL_418,

DL_527, DL_472, and DL_96 and higher values of DL_256,

DL_300, DL_6, DL_732, and DL_27 were linked to CI or LNM

(Figures 5G). For the combined model, features indicating tumor

heterogeneity, such as wavelet-H_glszm_SizeZoneNonUniformity,

squareroot-glszm_ZoneEntropy, and DL_96, were strongly

associated with high-risk tumors (Figure 5H). The box plots
FIGURE 5

Performance comparison across different datasets and SHAP-based interpretability analysis: (A) Model performance on the training set. (B) Model
performance on the test set. SHAP analysis was applied to the radiomics model (C–F), 2D DL model (D–G), and DLRad_EF model (E–H) to visualize
the top 10 most contributing features. AUC, area under the curve; DL, deep learning; DLRad_EF, deep learning radiomics early fusion; DLRad_LF,
deep learning radiomics late fusion; SHAP, SHapley Additive exPlanations.
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demonstrate the distributional differences of these features between

low-risk and high-risk patients (Figures 6A–C).

Spearman analysis revealed redundancy within the top 10

features of the radiomics and 2D DL models (Figure 6D) and

among the top features of the DLRad_EF model (Figure 6E).

Features from different types were complementary, while those

within the same type exhibited partial redundancy.
Discussion

RFA has emerged as a promising minimally invasive treatment for

low-risk PTC, particularly in cT1N0M0 patients. Several studies have

shown that compared to traditional surgery, RFA achieves good

outcomes in terms of local tumor control, reduced complications,

and preservation of thyroid function (15–17). However, significant

controversy remains regarding the safety and applicability of RFA in

cT1N0M0 PTC patients, with key concerns centered around

undetected LNM and CI, which could lead to disease progression or

incomplete treatment (18, 19). Studies have shown that CI is a

significant independent risk factor for LNM in PTC, with a stronger

predictive value (20, 21). Subcapsular location (≤2 mm from capsule)

was identified as an independent risk factor for local tumor progression

after RFA (5). Besides, the routine use of prophylactic central neck

dissection is advocated by many scholars, as it has been shown to

significantly reduce local recurrence rates and reoperation rates, while

facilitating accurate pathological staging to more precisely identify

patients who may benefit from adjuvant therapy. This viewpoint is

supported by studies indicating a high incidence of occult central LNM

in patients with PTC (22, 23).

Current clinical guidelines recommend considering RFA for

low-risk thyroid cancer patients who have undergone rigorous

preoperative imaging evaluation (24). While these imaging

techniques provide valuable insights, their sensitivity in detecting

small LNM and CI remains suboptimal. Specifically, US is highly

operator-dependent and has limited ability to visualize deep or

retrotracheal lymph nodes, potentially leading to missed lymph
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node metastases. On the other hand, computed tomography offers

superior depth penetration and may detect more extensive disease,

but it still faces challenges in accurately characterizing smaller or

less conspicuous metastatic lymph nodes, particularly in the central

compartment (25, 26). These limitations underscore the need for

more advanced diagnostic tools that can enhance both sensitivity

and accuracy, thereby improving patient stratification and enabling

more precise treatment decisions. Therefore, reliance on these

imaging methods alone for preoperative staging may result in an

underestimation of the true extent of disease, which could impact

subsequent treatment planning and patient outcomes (27, 28).

The predictive value of clinical and ultrasonographic features in

assessing LNM or CI in low-risk PTC remains without a unified

standard. Existing evidence suggests that tumor size and its spatial

relationship with key anatomical structures may serve as important

predictors (29–31). Several studies, particularly those focused on

RFA and active surveillance, have incorporated tumor size, capsular

invasion, and other factors when determining appropriate

management strategies for low-risk PTC patients (32, 33). In our

study, tumor size and location in the upper pole were associated

with LNM or CI in univariate analysis. However, in the multivariate

analysis incorporating the AI model, the P-values were all greater

than 0.05. This indicates that radiomic features substantially

outperform tradit ional c l inical and ultrasonographic

characteristics in prediction.

Although several studies have utilized imaging or pathological

features of thyroid lesions to predict cervical lymph node status or

CI, few have focused on cT1N0M0 patients with PTC (34, 35). Most

research has concentrated on papillary thyroid microcarcinoma

(PTMC) patients, regardless of whether LNM or CI is suspected

based on imaging or physical examination (36, 37). Given the

ongoing debate regarding overtreatment versus conservative

management in thyroid cancer, and the fact that current

indications for active surveillance or RFA often pertain to this

group of patients, our prediction model has demonstrated good

diagnostic performance by leveraging radiomics features extracted

from ultrasound images of tumors. It holds the potential to provide
TABLE 3 Comparison of the performance of predictive models.

Model and metric AUC, 95%CI Accuracy Precision Recall F1-score

Training set

Radiomics 0.829 [0.761, 0.890] 0.754 0.696 0.774 0.731

2D DL 0.840 [0.779, 0.900] 0.772 0.712 0.677 0.694

DLRad_EF 0.992 [0.980, 0.999] 0.958 0.945 0.945 0.945

DLRad_LF 0.874 [0.819,0.925] 0.803 0.774 0.774 0.774

Internal test set

Radiomics 0.756 [0.629, 0.870] 0.721 0.625 0.652 0.638

2D DL 0.708 [0.539, 0.858] 0.610 0.667 0.609 0.636

DLRad_EF 0.763 [0.632, 0.872] 0.721 0.842 0.533 0.653

DLRad_LF 0.843 [0.745, 0.934] 0.754 0.722 0.565 0.634
AUC, area under the curve; CI, confidence interval; DL, deep learning; DLRad_EF, DL Rad early fusion; DLRad_LF, DL Rad late fusion.
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FIGURE 6

Comparison of the Top 10 SHAP features and their correlations across radiomics, 2D DL, and DLRad_EF Models in High-Risk and Low-Risk Groups:
Boxplots of the top 10 SHAP features in the high-risk and low-risk groups for the radiomics model (A), 2D DL model (B), and DLRad_EF model (C).
Spearman correlation analysis revealed redundancy between the top 10 features of the radiomics and 2D DL models (D), and the correlation among
the top 10 features of the DLRad_EF model (E). The size of the circles represents the absolute value of the correlation coefficient, while the color of
the circles indicates the direction of the correlation: red for positive correlation and blue for negative correlation. *P < 0.05, **P < 0.01. DL, deep
learning; DLRad_EF, deep learning radiomics early fusion; SHAP, SHapley Additive exPlanations.
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valuable insights for personalized treatment, precise risk

stratification, and the formulation of evidence-based clinical

guidelines for thyroid cancer.

The multimodal AI model in this study demonstrates distinct

performance characteristics. For medical institutions favoring

conservative treatment (such as active surveillance or

radiofrequency ablation), the DLRad_EF model exhibits a higher

positive predictive value (Precision=0.842), indicating its

effectiveness in reducing unnecessary thyroidectomies. However,

its relatively lower recall (Recall=0.533) suggests potential

underdiagnosis risks. Conversely, in clinical settings prioritizing

definitive treatment, the radiomics-based model (Recall=0.652) can

reduce the likelihood of missing high-risk cases, though its lower

positive predictive value (Precision=0.625) may lead to

overtreatment. Notably, the decision-level fusion model

DLRad_LF achieves a balanced performance in both AUC (0.843)

and F1-score (0.634), offering a compromise for institutions

needing to balance overtreatment and undertreatment risks.

The improved performance is supported by two technical

considerations: (1) The integration of ViT-derived DL features,

which provide global perspectives and inter-regional interaction

patterns, with radiomics features that offer localized texture and

morphological detai ls , creates complementary feature

representations; (2) A combined strategy of early feature fusion

and late decision fusion was adopted to optimize model

performance. Early feature fusion integrates DL and radiomics

features at the feature level, enhancing the model’s representation

and pattern recognition capabilities. Late decision fusion combines

the output probabilities of single-modality models, leveraging their

respective strengths to improve prediction accuracy and

model robustness.

Our study has some limitations. Firstly, it is a retrospective

study that collected data from only one hospital, which may

introduce selection bias. Additionally, the relatively small sample

size of 203 patients may raise concerns regarding the model’s

generalizability and the risk of overfitting. To mitigate these

issues, we employed data augmentation techniques, such as

random rotation, flipping, and cropping, to increase the diversity

of the training data and enhance the model’s ability to generalize to

unseen data. Furthermore, we incorporated regularization methods,

including Dropout and L2 regularization, to prevent overfitting.

Dropout was applied to the fully connected layers, with a 50%

probability of randomly dropping neurons during training, which

forces the model to learn more robust and diverse features. L2

regularization, implemented through weight decay, helped

constrain the model’s complexity by penalizing large weights,

thereby promoting simpler, more generalizable models. While

these techniques helped improve model robustness, we

acknowledge that the limited sample size and the need for

external validation remain challenges. We plan to expand the

dataset and perform external validation using independent

multicenter cohorts in future studies to enhance model diversity

and further assess its clinical applicability.

This study developed and validated an AI-based multimodal

predictive model integrating radiomics and 2D DL features to
Frontiers in Endocrinology 11
predict high-risk factors, including CI and LNM, in cT1N0M0

PTC patients. The model demonstrated robust predictive

performance, with an ensemble approach yielding superior results

compared to single-modality models. Our findings highlight the

complementary value of combining radiomics and DL features, as

these modalities capture distinct yet synergistic aspects of tumor

heterogeneity and microenvironmental changes. It should be noted

that in addition to its predictive accuracy and robustness, the

model’s effective clinical integration further requires deployability

and practical utility. In terms of computational resources, although

model training relies on GPU acceleration, inference during

deployment can be efficiently performed on standard CPU

devices, with an average processing time of approximately 2–3

minutes per image. The model can be integrated into existing

hospital information systems (e.g., Picture Archiving and

Communication System), enabling automatic image import,

preprocessing, feature extraction, and output of prediction results,

thereby facilitating real-time clinical decision-making. Successful

implementation also depends on interdisciplinary collaboration

among AI engineers, clinicians, and information technology

personnel, as well as structured training for physicians to enhance

their understanding and appropriate use of AI tools. Moving

forward, continuous incorporation of new data and clinical

feedback will be essential for further optimizing model

performance and improving its adaptability and scalability across

diverse clinical settings.
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