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Premenstrual dysphoric disorder
as a potential predisposing factor
for Alzheimer’s disease: a review
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JinNan Zhao2, Zhenliang Luo1*† and Zhen Zhang1,2,3*

1Yangsheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese
Medicine, Guiyang, Guizhou, China, 2Qinhuangdao Shanhaiguan Pharmaceutical Co., Ltd,
Qinhuangdao, Hebei, China, 3Department of Integrated Traditional Chinese & Western Medicine, The
Second Xiangya Hospital, Central South University, Changsha, Hunan, China
Premenstrual dysphoric disorder (PMDD) and Alzheimer’s disease (AD) differ

significantly in terms of onset period and clinical manifestations. However,

recent studies suggest that the two conditions may share potential links at the

neuroendocrine and molecular levels. This review synthesizes current research

progress and explores the intersecting biological pathways between PMDD and

AD, with a particular focus on dynamic fluctuations in estradiol (E2) and

allopregnanolone (ALLO), dysregulation of the g-aminobutyric acid (GABA)ergic

system and serotonergic (5-HT) neurotransmitter systems, and sex-specific

vulnerability associated with the apolipoprotein E epsilon 4 (APOE e4) allele.
These mechanisms suggest that PMDD may serve as a potential biological

precursor state for AD, offering valuable implications for early screening and

intervention. The analysis provides new theoretical insights and research

directions for identifying high-risk female populations, understanding sex

differences in AD pathogenesis, and developing targeted therapeutic strategies.
KEYWORDS

premenstrual dysphoric disorder, Alzheimer’s disease, neurotransmitters, hormonal

fluctuations, neuroinflammation
1 Introduction

PMDD and AD are representative disorders of emotional (1) and neurodegenerative

conditions occurring at distinct stages of life (2). Although the two conditions differ

markedly in terms of clinical presentation, age of onset, and disease trajectory, emerging

research in neuropsychiatry has begun to uncover potential overlaps in their underlying

biological mechanisms, particularly in relation to neurotransmitter system dysfunction,

hormonal fluctuations, and chronic inflammatory responses.

However, existing studies have primarily focused on PMDD as a precursor to major

depressive disorder (MDD) or anxiety disorders, with limited literature systematically

exploring its potential role as an early risk state for AD. In particular, although E2, ALLO,
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GABAergic and 5-HT systems, and the APOE gene have all been

implicated in the regulation of cognition, emotion, and

neuroinflammation in both PMDD and AD, integrative analyses

of their shared mechanistic roles across the two disorders remain

scarce (1, 3, 4). Current literature has yet to adequately identify or

systematically elucidate whether PMDD may reflect a sex-specific

neurobiological vulnerability that predisposes individuals to

AD pathogenesis.

Therefore, this review aims to build upon current

neuroendocrinological and psychopathological research by

integrating the roles and interrelationships of five key

mechanisms— E2, ALLO, GABAergic system, 5-HT transmission,

and the APOE genotype—in the context of both PMDD and AD,

thereby attempting to construct a theoretical framework linking the

two disorders. By elucidating the potential shared mechanisms

between PMDD and AD, this study not only addresses a critical

gap in the literature, but also offers new theoretical support for early

screening of AD, identification of high-risk populations, and the

development of personalized intervention strategies (Figure 1).
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2 Premenstrual dysphoric disorder

2.1 Diagnosis and epidemiology of
premenstrual dysphoric disorder

PMDD is an emotional disorder listed in the Diagnostic and

Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). The

diagnostic criteria for PMDD in DSM-5 include 11 symptoms, of

which 4 emotional symptoms are core (depressed mood, irritability,

anxiety and mood instability), and the remaining 7 are related to

cognitive, behavioral, and somatic symptoms (difficulty

concentrating, feeling overwhelmed, reduced interest in daily

activities, low energy, changes in appetite, hypersomnia or

insomnia, and physical symptoms) (5, 6). A survey study by

Richards and Oinonen developed a retrospective premenstrual

screening questionnaire consistent with DSM-5 criteria for

PMDD. The study found that 34% of women in their sample

might have PMDD (7). Notably, PMDD diagnoses based on

retrospective self-report are fundamentally unreliable and prone
FIGURE 1

PRISMA flow diagram illustrating the study selection process. A total of 753 records were initially identified through database searches (Google
Scholar, PubMed, Web of Science, and other sources). After removing 278 duplicates, 475 records were screened. Of these, 230 reports were not
retrieved and 77 were excluded due to irrelevance, resulting in 168 studies being included in the final review.
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to false positives (8), studies have indicated that using retrospective

symptom recall for diagnosis may result in a false-positive rate as

high as 60% (9). The DSM-5 Text Revision (DSM-5-TR) (10) the

first revision since the original DSM-5 was published in 2013, has

made revisions to the PMDD criteria. According to DSM-5-TR, the

DSM-5-TR (11) provides supplementary clarification and

refinement of the diagnostic criteria for PMDD. While the core

diagnostic items (A–G) remain unchanged, the revised text

significantly enhances clinical applicability and diagnostic

precision in several aspects. Major updates include: further

emphasizing that symptoms must cause clinically significant

social or occupational impairment; mandating at least two cycles

of prospective daily symptom ratings, with standardized tools such

as the Daily Record of Severity of Problems (DRSP) being

recommended; revising the prevalence rate to 1.3% based on

more rigorous prospective research; and incorporating new

content regarding suicide risk, cultural influences, and responses

to hormonal treatments. These changes reflect stricter clinical

recognition criteria for PMDD and establish a more standardized

diagnostic foundation for future research on underlying

mechanisms and population-level screening. Future studies

should incorporate large-scale longitudinal cohorts and multi-

center samples, utilizing prospective designs and biomarker

validation to systematically track symptom fluctuations and

relevant neurobiological indicators in PMDD patients, thereby

enhancing the objectivity and credibility of PMDD diagnoses.
2.2 Pathogenesis of premenstrual
dysphoric disorder

The most prominent feature of Premenstrual Syndrome (PMS)/

PMDD is the temporal relationship between symptom onset and

the menstrual cycle, indicating the influence of gonadal steroids and

their metabolites, which play a role in adjusting various biological

systems required for reproductive goals (1). PMDD symptoms

follow a predictable pattern in relation to menstruation (with

symptoms being more severe in the week before menstruation

compared to the week after), leading many to hypothesize that

estrogen, progesterone, or their combination may trigger emotional

symptoms (12). Research on rodents has shown that E2 has

proconvulsant effects, accelerating seizures induced by the

amygdala (13, 14). A study by Schmidt et al. suggests that abrupt

changes in E2 and progesterone levels, from low to high, may be the

mechanism behind PMDD symptoms, rather than the steady-state

levels causing PMDD onset. This finding is consistent with multiple

studies both domestically and internationally and is widely accepted

in the academic community (15–17). The 5-hydroxytryptamine (5-

HT)ergic system is a plausible neurobiological cause of PMDD.5-

HT is a neurotransmitter that plays a key role in mood regulation,

and its reduced levels are associated with depressive symptoms (18).

In women with PMS/PMDD, serotonergic dysregulation is

characterized by atypical neurotransmission, reduced transporter

and receptor density, decreased peripheral 5-HT levels during the

luteal phase, and elevated levels during the follicular phase (19).
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Positron emission tomography (PET) can be utilized to observe in

vivo neurochemical changes and metabolic activity during

depressive episodes (20). A PET study (21) demonstrated the

direct role of 5-HT in PMDD. The study found a significant

correlation between daily mood ratings in PMDD women and

changes in 11C-labeled 5-HT brain uptake in different brain

regions across the menstrual cycle. A study by Brzezinski and

Menkes et al. found that the 5-HT agonist fenfluramine improved

PMS symptoms, whereas acute depletion of the 5-HT precursor

tryptophan exacerbated them (22, 23). Selective serotonin reuptake

inhibitors (SSRIs) block the reuptake of 5-HT in the presynaptic

cleft, thereby increasing 5-HT concentrations in the synaptic space

and enhancing serotonergic neurotransmission. SSRIs are

considered first-line therapy for PMDD (24). The rapid effects of

SSRIs on PMS/PMDD women may be due to their simultaneous

influence on 5-HT receptors and ALLO levels in the brain, thereby

indirectly modulating the function of gamma-aminobutyric acid A

receptors (GABA_AR) (25, 26). ALLO is a metabolite of

progesterone, synthesized in the brain (such as the hippocampus),

adrenal glands, and gonads (27, 28),and its presence has been

confirmed through human brain tissue and animal studies and its

presence has been confirmed through human brain tissue and

animal studies (29). In normal reproductive-age women, serum

ALLO levels range from 0.2 to 0.5 nmol/L during the follicular

phase, increase to 4 nmol/L during the mid-luteal phase (30), and

fluctuate between 0.9 and 2 nmol/L during the late luteal phase (31–

33). However, compared to the normal luteal phase ALLO levels,

both high and low ALLO concentrations are associated with more

severe mood changes, suggesting a bimodal or inverted “U” effect of

ALLO on mood fluctuations (34). In the nervous system, ALLO is a

potent positive allosteric modulator. It binds to specific sites on

GABA_AR, enhancing the receptor’s sensitivity to GABA,

increasing chloride ion influx, and leading to neuronal

hyperpolarization, thus exerting inhibitory effects (35, 36), This

mechanism gives ALLO significant sedative, anxiolytic,

antidepressant, anticonvulsant, and neuroprotective properties

(37). The pathogenesis of PMDD is complex and multifaceted,

and is still evolving, thus requiring further in-depth exploration.
3 Alzheimer’s disease

3.1 Diagnosis and pathogenesis of
Alzheimer’s disease

AD is the most common neurodegenerative disease globally,

leading to severe cognitive decline and irreversible memory loss

(38). TheWorld Health Organization (WHO) predicts that by 2050,

approximately 132 million people worldwide will be affected by

dementia (39, 40). In 2018, based on the diagnostic framework of

the National Institute on Aging and the Alzheimer’s Association,

abnormal biomarkers of amyloid b-protein (Ab) and tau protein

(Tau) were defined as AD, even in the absence of cognitive

symptoms (41). The 2024 updated guidelines on “Alzheimer’s

Disease Diagnosis and Staging” categorize biomarkers into three
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broad categories: core biomarkers for Alzheimer’s Disease

Neuropathological Changes (ADNPC) (42); nonspecific

biomarkers that are important in the AD pathogenesis but also

involved in other brain diseases; and biomarkers for common

comorbidities not related to AD. This update includes three new

categories of biomarkers: inflammation/immune mechanisms (I),

vascular brain injury (V), and a-synucleinopathy (S) (43). The most

prominent morphological feature of AD is the extracellular

deposition of Ab, forming characteristic amyloid plaques.

Additionally, hyperphosphorylated tau protein accumulates

within neurons, forming neurofibrillary tangles (NFTs), which

disrupt the function of the neuronal cytoskeleton (44). APOE is a

lipid-binding protein abundant in human plasma, and

polymorphisms at the APOE gene locus have been identified as a

risk factor for AD (45). The exact molecular mechanisms of AD

remain unclear, and there are no effective drugs available to halt or

reverse the progression of the disease (46).
3.2 The incidence of Alzheimer’s disease is
higher in women than in men

There are significant sex differences in the incidence,

prevalence, and clinical experience of Alzheimer’s disease (AD),

with two-thirds of patients being women (47), Multiple biological

mechanisms may be involved, including hormones, pregnancy,

brain structure and function, inflammation, genetics, epigenetics,

and sex-specific differences in frailty (48). One potential

explanation for the higher prevalence of AD in women is their

longer average life expectancy compared to men (49, 50). As of

2022, none of the AD clinical trials have specifically investigated sex

differences in treatment efficacy or outcomes (51). However, recent

studies have highlighted the critical neuroprotective roles of ovarian

steroid hormones and their receptors in cognitive aging and AD

development (52, 53). During the prodromal and mild cognitive

impairment (MCI) stages of AD, circulating and cortical levels of

ALLO decline sharply, which is associated with AD pathogenesis

(54, 55).
4 Analysis of premenstrual dysphoric
disorder as a potential risk factor for
the development of Alzheimer’s
disease

4.1 Role of estradiol in cognitive function,
Alzheimer’s disease and premenstrual
dysphoric disorder and its mechanisms

Ovarian hormones, particularly E2, are involved in many

neurophysiological processes, including the maintenance of

cognitive function.E2 plays a key role in the neurobiology of

aging, as there is extensive interconnection between the nervous

and endocrine systems (56). E2 is primarily produced in the ovaries,
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but it is also locally synthesized in other tissues, including the brain.

Recent studies suggest that the brain itself is a steroidogenic organ

(57). Estrogens are products of aromatase activation, a type of

steroid hormone, which can act on estrogen receptors in both

peripheral and brain tissues. The synthesis of estrogen begins in the

mitochondria, where cholesterol is converted into pregnenolone.

Through a series of steps, pregnenolone is converted into

androstenedione, which is further converted into testosterone and

estrone. Finally, through the action of aromatase (CYP19A),

testosterone is converted into E2 (58). After menopause, as E2

levels decline, the incidence of cognitive impairment may

significantly increase. However, women who maintain higher E2

levels perform better in executive functions compared to those who

do not receive E2 therapy during menopause (59).

Some studies have found that E2-based therapy may help slow

cognitive decline and could be a protective factor in the

development of AD (60), Different hippocampal subpopulations

are composed of various neuronal cell types, and their coordinated

action generates distinct forms of network activity, which form the

foundation for cognitive functions such as spatial navigation,

learning, and memory (59, 61). In the hippocampus, the

concentrations of sexual neurosteroids (SN) like 5a-
dihydrotestosterone (5a-DHT) and E2 are significantly higher

than those found in male and female serum (62). E2 enhances

hippocampal object recognition and spatial memory, depending on

the rapid activation of extracellular signal-regulated kinase (ERK) in

the dorsal hippocampus (dHPC) (63). Estrogen receptors (mainly

Estrogen Receptor a (ERa) and Estrogen Receptor b) are expressed
in multiple brain regions associated with reproductive and cognitive

functions (64). The ER-a gene (ESR1) is located on chromosome

6q25.1, while the ER-b gene (ESR2) is located on chromosome

14q22-24 (65). ERa and ERb have different distribution densities in

regions such as the hippocampus, amygdala, and hypothalamus.

ERa is predominantly found in hypothalamic nuclei related to

sexual behavior, while ERb is more abundantly expressed in regions

associated with cognition, such as the basal forebrain, prefrontal

cortex, temporal and parietal regions, and posterior cingulate gyrus

(66). ERb has been shown to be involved in cognitive functions and

is believed to promote learning and memory, neuroplasticity, and

the regulation of neurotrophic factors (67)Large population studies

have reported an independent relationship between ESR2

polymorphismsadolescent depression (68) and AD risk (69, 70).

Fluctuations in hormone levels are considered a contributing factor

to the development of PMDD. The impact of hormonal changes,

particularly in estrogen and progesterone, may not act solely

through the ligands themselves, but rather through their

corresponding receptors (71). A study conducted by Huo et al.

(2007) found significant differences in the genotypic and allelic

distribution of four single nucleotide polymorphisms (SNPs) in

intron 4 of the ESR1 gene between women with PMDD and control

subjects (72). SNPs are among the most common forms of genetic

variation in the human genome. Many occur in non-coding regions,

where they can play a critical role in regulating gene expression,

particularly by altering the binding affinity of transcription factors

to their motifs or through changes in epigenetic patterns such as
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DNA methylation (71). Another study found a strong association

between the PvuII-ESR1 gene polymorphism and depression in

women. However, these findings remain preliminary due to the

limited number of studies and inconsistent results, requiring further

validation (73). PMDD is strongly associated with irritability,

anxiety, depressed mood, anger, and somatic symptoms.

Therefore, further studies are warranted to validate the

association between the PvuII-ESR1 genotype and the PMDD

phenotype (74). The role of E2 in the nervous system is highly

complex and closely linked to cognitive function, emotional

stability, and neuroprotection. In AD, prolonged decreases in E2

levels are thought to contribute to cognitive decline, while in

PMDD, rapid fluctuations in E2 levels may underlie symptom

manifestation. Furthermore, polymorphisms in E2 receptor genes

may play a pivotal role in the susceptibility to both PMDD and AD.
4.2 The role of the GABAergic system in
Alzheimer’s disease and premenstrual
dysphoric disorder: mechanistic insights
and therapeutic potential

GABA is the primary inhibitory neurotransmitter in the central

nervous system (75), Research by Giovanna Carello-Collar et al.

(76) demonstrated an overall reduction in components of the

GABAergic system in the brains of AD patients, along with

decreased levels of GABA in the cerebrospinal fluid (CSF),

indicating that the GABAergic system is particularly vulnerable to

AD-related pathology. GABAergic neurons exhibit a high degree of

heterogeneity in terms of their morphology, electrophysiological

properties, and molecular markers. Current research suggests that

GABAergic neurons can be categorized based on the calcium-

binding proteins and buffering molecules they express, with

common subtypes including parvalbumin-positive (PV+)

interneurons and somatostatin-positive (SST+) interneurons (77,

78). PV and SST neurons represent the major GABAergic neuronal

subpopulations in the AD brain, accounting for 70% of the total,

and are currently the most extensively studied subgroups.PV

neurons primarily target the soma, proximal dendrites, and axon

initial segments of pyramidal neurons, whereas SST neurons

predominantly innervate dendrites (77). PV and SST neurons

represent the major GABAergic neuronal subpopulations in the

AD brain, accounting for 70% of the total, and are currently the

most extensively studied subgroups.PV neurons primarily target the

soma, proximal dendrites, and axon initial segments of pyramidal

neurons, whereas SST neurons predominantly innervate dendrites

(79). Ab induces neurotoxicity in GABAergic neurons by

interacting with the receptor tyrosine kinase ErbB4, which is

encoded by the ERBB4 gene (Erb-B2 receptor tyrosine kinase 4).

The ERBB4 gene is predominantly expressed in PV neurons, and its

specific deletion in PV neurons significantly alleviates Ab-induced
memory deficits in hAPP-J20 mice (80).

Imbalance in the excitatory (E)/inhibitory (I) balance of

neuronal network activity can lead to various neurological

disorders. The emergence of excessive neuronal excitability in AD
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is considered one of the potential factors contributing to the rapid

decline in cognitive abilities (81),Evidence currently suggests that E/

I imbalance, representing the instability of glutamatergic (Glu -

ergic) and GABAergic system synaptic inputs, is the underlying

cause of brain dysfunction in AD (82, 83). AD patients and AD

animal models exhibit excessive activity in hippocampal neurons,

which is caused by dysfunction of GABAergic system interneurons

(INs) (84–86). Experimental studies by Shu Shu (87)and colleagues

indicate that PPswe/PS1dE9 mice (AD mice) exhibit depressive-like

behavior and short-term spatial memory deficits as early as 9–11

weeks of age, Electrophysiological analysis reveals an E/I imbalance

in the prefrontal cortex (PFC).This E/I imbalance is caused by a

significant reduction in the number and activity of parvalbumin-

positive interneurons (PV INs) in this region. Furthermore,

optogenetic and chemogenetic activation of remaining PV INs

effectively improved depressive-like behavior and rescued short-

term spatial memory in AD mice. A proton magnetic (88)

resonance spectroscopy study indicates that GABA levels in the

cortical regions of PMDD patients significantly differ from normal

controls during the menstrual cycle, suggesting the involvement of

the GABAergic system in the pathogenesis of PMDD. During

hormonal fluctuations, the adaptability of the GABA system is

essential for maintaining the E/I balance. Inability to regulate the E/

I balance is associated with changes in cognitive function, emotional

shifts, and increased susceptibility to psychiatric disorders (89). The

brain is highly responsive to changes in E2, progesterone, and

ALLO, enhancing plasticity during hormonal fluctuations (90, 91),

Due to the effects of ovarian hormones and their metabolites (such

as ALLO), the activity of the GABAergic system changes during the

hormonal transition period (92).The main symptoms of PMDD are

emotional, not sensory, but neurofunctional abnormalities

associated with this disorder even appear in the visual cortex.

Changes in the neuronal E/I balance in the visual cortex of

PMDD female patients are likely explained by increased

excitability of principal cells and/or impaired synaptic excitability

regulation (93). There is currently limited research on E/I

imbalance in PMDD females, and the specific mechanisms need

further investigation. Both PMDD and AD exhibit alterations in the

GABAergic system and E/I balance disruption. In AD, dysfunction

of GABAergic interneurons leads to cognitive impairment, while in

PMDD, changes in the GABA system may be the underlying cause

of emotional symptoms and cognitive fluctuations. Both conditions

may lead to similar neurofunctional abnormalities due to excessive

neuronal excitability and impaired synaptic regulation, Therefore,

the importance of the GABA system in both disorders may provide

insights for the development of therapeutic strategies.
4.3 The role and mechanistic insights of
allopregnanolone in Alzheimer’s disease
and premenstrual dysphoric disorder

In the ALLO biosynthesis pathway, 5a-reductase first converts
progesterone to 5a-dihydroprogesterone (5a-DHP), and then, 3a-
hydroxysteroid dehydrogenase (3a-HSD) further converts 5a-DHP
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to ALLO. At the same time, 5b-reductase converts progesterone to
5b-DHP, after which 3a-HSD converts 5b-DHP to pregnanolone,

which is another positive modulator of GABA_AR (94), The role of

ALLO in the AD brain is closely related to brain cholesterol

homeostasis. ALLO significantly reduces Ab generation in the

hippocampus, cortex, and amygdala, while also decreasing

amyloid beta-binding alcohol dehydrogenase (ABAD) levels in

mitochondria, thereby reducing microglial activation, as reflected

by decreased expression of ionized calcium-binding adapter

molecule 1 (Iba-1) (95), ABAD is a mitochondria-associated

enzyme that promotes the reverse conversion of ALLO to 5a-
DHP (96). Studies have found that ABAD is abnormally

overexpressed in activated astrocytes, and its levels are higher in

the AD brain (97). Furthermore, ALLO also regulates cholesterol

homeostasis by influencing liver X receptors (LXR) and their

associated pregnane X receptors (PXR) system (98), In APP/PS1

double transgenic mice, the deletion of either LXRa or LXRb

subtypes exacerbates AD pathology (99), LXRs promote the

expression of apolipoproteins by recruiting to the ABCA1 gene

promoter region, thereby reducing the formation of Ab plaques and

enhancing Ab clearance (95, 100). In addition, studies have shown

that ALLO can induce increased expression of LXR in the pre-

pathological state, while also increasing PXR expression in the

brains of pre-pathological 3xTgAD mice (95), By activating PXR

(mainly in neurons), ALLO further modulates the activity of

cytochrome P450 3A (CYP3A) enzymes, including CYP3A4 and

CYP3A13, ultimately promoting cholesterol hydroxylation and

clearance (101). As AD pathology progresses, neurogenesis
Frontiers in Endocrinology 06
gradually decreases in AD animal models (including 3xTgAD

mice) (101–104), particularly in the hippocampal SGZ of the

dentate gyrus and the SVZ of the lateral ventricles, which is

closely related to changes in cortical areas, including migration of

the migratory flow in the septal region (105). Previous studies have

shown that the production of ALLO can increase neuronal

generation (106–108). ALLO significantly increases the number of

newly generated cells and improves their survival rate, restoring the

brain’s regenerative potential to normal levels (109). The

regenerative effect of ALLO is dose-dependent, exhibiting a

characteristic inverted U-shaped dose–response curve, indicating

that higher doses do not necessarily enhance efficacy. At

supraphysiological concentrations, ALLO induces sedative effects

rather than promoting neurogenesis. From a safety perspective, the

inverted U-shaped dose–response curve of ALLO is particularly

critical. Supraphysiological or sustained high levels of ALLO may

inhibit neurogenesis, thereby preventing uncontrolled cell

proliferation (110). ALLO is currently under clinical development

as a novel regenerative therapy for AD, with an upcoming phase II,

multicenter, randomized, double-blind, placebo-controlled trial

aimed at evaluating its efficacy and further assessing its safety

(111).The emotional effects of ALLO in PMDD also exhibit a U-

shape Figure 2, and blocking ALLO on the GABA_AR receptor

represents a novel therapeutic strategy for PMDD. Sepranolone is a

progesterone antagonist that can be administered via subcutaneous

injection. In a randomized, placebo-controlled trial, bi-daily

subcutaneous injections of sepranolone significantly improved the

severity of PMDD symptoms, with its efficacy similar to that of
FIGURE 2

Dose-dependent effects of allopregnanolone on mood in postmenopausal women. The graph displays the mean ratings of negative mood (solid
line) and positive mood (dashed line) across different serum concentrations of allopregnanolone (nmol/L). Data were derived from 37
postmenopausal women receiving estrogen and progestogen therapy. Mood ratings were collected on the same day as serum hormone
assessments and grouped into eight allopregnanolone concentration intervals (n values per group shown in original figure). A U-shaped response is
observed for both mood dimensions, indicating significant mood worsening at intermediate allopregnanolone levels. Error bars represent SEM.
Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001. Adapted from Andreen et al. (2006b).
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SSRIs and combined oral contraceptives (COCP) containing

drospirenone (34).

Given ALLO’s dual role in PMDD and AD pathophysiology,

future research should focus on its clinical potential as a

neurosteroid modulator. Specifically, longitudinal monitoring of

cognitive function and neurobiomarkers in PMDD populations is

recommended to evaluate whether ALLO analogs can prevent or

delay AD onset. Moreover, integrating neuroimaging and

biomarker analyses may help optimize ALLO dosing strategies to

mitigate adverse effects from suboptimal concentrations. In

addition, the combinatorial use of ALLO with other treatments

(e.g., SSRIs, hormone therapy(HT)) warrants further investigation

for potential synergistic effects.

In summary, ALLO serves as a critical molecular link between

PMDD and AD, with considerable therapeutic and preventive

value. Future clinical studies should focus on its dual-modulatory

mechanism, facilitating innovative intervention strategies that span

from mood disorders to neurodegenerative diseases, thereby

offering more effective therapeutic options.
4.4 The role of serotonin receptor
subtypes in premenstrual dysphoric
disorder and Alzheimer’s disease
mechanism overlap and research gaps

With the continuous improvement of diagnostic strategies for

prodromal AD and the lack of effective early interventions, there is

an urgent need to explore more proactive treatment strategies.

Given the increased anxiety symptoms in the prodromal and

preclinical stages of AD, targeting emotional regulatory circuits

such as the hypothalamic-pituitary-adrenal (HPA) axis may offer a

promising therapeutic direction (112); HPA activity is regulated by

5-HT (113). 5-HT primarily acts on G protein-coupled receptors

and is a key signaling molecule in neuroactive ligand-receptor

interactions, serving as an important central neurotransmitter

(114). In AD patients, the expression and function of 5-HT

receptors exhibit complex and region-specific changes, which

further exacerbate cognitive and neuropsychiatric symptoms.

Additionally, the dorsal raphe nucleus responsible for 5-HT

synthesis in the AD brain shows marked neuronal loss and dense

neurofibrillary tangles (115). 5-HT receptors are typically divided

into 7 families and 14 subtypes (116), Among them, the 5-HT1A

receptor is involved in the HPA axis stress response and is closely

associated with anxiety, depression, cognitive changes, and

psychiatric disorders such as schizophrenia (117). Activation of

the serotonergic system has been shown to block Ab oligomer-

induced inflammation in AD, thereby affecting disease pathology

(118). Compared with AD model rats, those treated with 5-HT1A

receptor antagonists and 5-HT2A receptor agonists showed

significant biochemical improvements, including reductions in

brain inflammatory markers, oxidative stress, and Ab deposition

(119). Moreover, 5-HT6 receptor antagonists not only improve

cognition in AD patients but also exert neuroprotective and anti-

inflammatory effects by modulating neurotransmitter release and
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enhancing synaptic function (120). Xin-Rong Wu et al. (121)

reported aberrant 5-HT receptor expression in the basolateral

amygdala (BLA) prior to AD onset, with concurrent upregulation

of 5-HT1AR in parvalbumin-positive interneurons (PV INs) and 5-

HT2AR in pyramidal neurons, contributing to excitatory/inhibitory

(E/I) imbalance and cognitive impairment. As a subregion of the

amygdala, the BLA plays a central role in emotional and behavioral

regulation (122). The amygdala (AMY) itself is a core node in

emotional processing, and BLA hyperactivity has been associated

with increased anxiety levels (123). Notably, BLA dysfunction has

also been observed in PMDD patients (124), suggesting it may

represent a shared pathological node between PMDD and AD.

Serotonergic dysfunction is one of the proposed mechanisms

underlying PMDD. A PET study found that in healthy women, 5-

HT1A receptor levels in the brainstem increase during the late luteal

phase, whereas no such increase was observed in PMDD patients

(125). This suggests that PMDD patients may exhibit impaired

dynamic regulation of the serotonergic system, particularly during

the luteal phase, with diminished stress adaptation to hormonal

fluctuations. This state-dependent dysregulation may underlie the

recurrent mood symptoms of PMDD. Victoria Puig et al. (126)

further showed that presynaptic 5-HT1A receptors in the raphe

nuclei are excitatory, whereas postsynaptic cortical 5-HT1A

receptors are inhibitory. Additionally, 5-HT3 receptor subtypes

are implicated in depressive pathology (127, 128). The traditional

Chinese medicine formula Shuyujiaonang has been shown to

alleviate PMDD symptoms by reducing the expression of 5-

HT3AR and 5-HT3BR (129).

Taken together, both AD and PMDD involve intricate

regulatory networks of 5-HT receptor subtypes. In particular, 5-

HT1A, 5-HT2A, 5-HT3A and 5-HT6A receptors are emerging as

critical mediators of mood regulation, cognitive function, and

neuroinflammation. The BLA, as a key region in emotion-

cognition circuitry, may serve as a convergent site of pathology.

Current evidence suggests spatial heterogeneity in receptor

expression across brain regions and cell types (e.g., PV

interneurons vs. pyramidal neurons), as well as dynamic

interactions among receptor subtypes that collectively shape E/I

balance. Therefore, integrating the functional dynamics of 5-HT

receptor subtypes and their interactions over time holds potential

for uncovering overlapping mechanisms of PMDD and AD, as well

as for identifying novel therapeutic targets.
4.5 The pathological link between major
depressive disorder and Alzheimer’s
disease: neuroinflammation and stress
starting from remenstrual dysphoric
disorder

Recent studies suggest that PMDD may trigger Major

Depressive Disorder(MDD) and subsequently increase the risk of

developing AD, forming a potential pathological pathway of

“PMDD → MDD → AD” . The mediating mechanisms

underlying this association primarily involve neuroinflammation
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and chronic stress responses. Typical symptoms of MDD include

depressed mood, loss of interest or pleasure, and, in severe cases,

thoughts of self-harm or suicidal behavior (130). Studies have

shown that individuals with MDD have a significantly increased

risk of developing late-onset AD, with approximately one-quarter of

AD patients also suffering from MDD (131). Neuroinflammation is

a common feature in brain pathology and is recognized as a

contributing factor in both AD and MDD (132, 133). Microglia,

the principal innate immune cells in the brain, play a central role in

initiating neuroinflammation (134), MDD patients exhibit

chronically elevated circulating pro-inflammatory cytokines,

which have been shown to be modifiable by anti-inflammatory

treatments. Similarly, in the brain tissue of AD patients, activated

microglia are densely localized around amyloid plaques, indicating

a strong inflammatory response associated with Ab pathology

(131), Ab peptides are core pathological agents in AD, formed by

proteolytic cleavage of amyloid precursor protein (APP) (135, 136),

Dysregulated production of Ab1–40 and Ab1-42, which can cross

the blood-brain barrier, may contribute to structural brain

abnormalities and cognitive decline (137). Under chronic stress

conditions, Ab production may become dysregulated, exacerbating

neurotoxicity. Colaianna et al. (138) demonstrated that

intracerebroventricular injection of soluble Ab into 250–300g

adult male Wistar rats led to increased immobility in the forced

swim test, indicating depressive-like behaviors. This suggests that

Ab burden may not only drive AD pathology but also trigger

affective symptoms.

Further studies have revealed shared neuroinflammatory

features in MDD and AD, including aberrant Factor-alpha (TNF-

a) signaling and impaired Brain-Derived Neurotrophic Factor

(BDNF) and Transforming Growth Factor Beta 1 (TGF-b1)
pathways. TGF-b1 is a key anti-inflammatory cytokine that exerts

neuroprotective effects against Ab-induced neurodegeneration and

plays a vital role in memory formation and synaptic plasticity.

Studies have shown that TGF-b1 levels are reduced in the plasma of

MDD patients, correlating with symptom severity and treatment

resistance (139). In a study by Sebastiano Alfio Torrisi et al., it was

found that the SSRIs fluoxetine and vortioxetine exert therapeutic

effects on non-transgenic AD animal models through a mechanism

involving the upregulation of TGF-b1 levels. In mice injected with

Ab, a significant reduction in hippocampal TGF-b1 was observed,

which correlated with memory deficits and depressive-like

phenotypes, alongside marked decreases in the synaptic protein

synapsin and postsynaptic density protein 95 (PSD-95). Fluoxetine

and vortioxetine significantly increased hippocampal levels of TGF-

b1, synapsin, and PSD-95 in Ab-injected mice (140). This study

provides experimental evidence for the neuroprotective role of

TGF-b1 and reinforces the potential contributory role of MDD in

the pathogenesis of AD.

According to DSM-5, both MDD and PMDD are classified as

mood disorders (141), Clinically, PMDD is often considered a

prodromal state of MDD, with significant overlap in affective

symptoms and underlying mechanisms (142).Epidemiological

research further supports this link: a study by HARTLAGE S A

et al. (143) found that 7 out of every 8 women diagnosed with
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PMDD developed MDD within two years, suggesting that PMDD

may serve as a potential precipitating factor for MDD. A recent

study investigating the relationship between PMDD and

inflammatory markers established a PMDD rat model using the

Forced Swim Test (FST), and found elevated expression of TLR-4,

nuclear factor kappa B (NF-kB) p65, TNF-a, IL-6, and IL-1b in the

basolateral amygdala (BLA) of the model group compared to

controls (124). These findings indicate abnormal activation of

central inflammatory pathways under the pathological condition

of PMDD. Ming Cheng et al. (144) systematically reviewed that

stress-induced neuroinflammation constitutes a key pathogenic

mechanism underlying the development and progression of PMS/

PMDD. Given the critical role of inflammatory pathways in the

pathophysiology of PMDD, further investigation into its association

with other mood disorders and neurodegenerative diseases has

become a major focus of current research.

Both MDD and AD involve chronic neuroinflammation as a

central pathological feature and are currently focal points in

neuropsychiatric research. Given that PMDD also exhibits

elevated pro-inflammatory markers, it can be hypothesized that

PMDDmay act as an “inflammatory initiator” in the progression of

mood disorders—first contributing to the onset of MDD, and

subsequently exacerbating the neuroinflammatory milieu and

disrupting neurotrophic factor signaling, thereby promoting the

development of AD. Therefore, integrating the connections among

PMDD, MDD, and AD from the perspective of stress and

inflammatory pathways may not only help elucidate the

progression mechanisms of female-specific neuropsychiatric

disorders, but also provide novel targets for early screening and

individualized intervention in AD.
4.6 Supplementary discussion of
bidirectional causality: potential reverse
impact of early Alzheimer’s disease
pathology on premenstrual dysphoric
disorder

Although this study focuses on the pathological pathway from

PMDD to MDD to AD, it is noteworthy that core AD pathological

changes, including Ab deposition and pathological tau, may occur

decades before clinical symptoms emerge (145). These early

alterations may disrupt central nervous system function, thereby

interfering with emotional regulation circuits and endocrine axis

stability, potentially leading to cyclic mood disturbances resembling

PMDD. Furthermore, existing literature indicates a bidirectional

relationship between MDD and AD: on one hand, depression is

considered a major risk factor for AD; on the other hand, early AD

pathology may induce anxiety- and depression-like symptoms

(146). PMDD, characterized by cyclic mood fluctuations, may be

influenced by similar mechanisms. In other words, a subset of

women with PMDD may exhibit abnormal hormonal responses

and emotional reactivity due to early Ab-related brain pathology.

Future research should specifically examine whether early AD

biomarkers (e.g., Ab PET, cerebrospinal fluid p-Tau, abnormal
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TGF-b1) are present in women with PMDD, to determine whether

PMDD represents a prodromal manifestation of AD in certain

individuals. Exploring this direction may not only enhance our

understanding of the disease spectrum of neuropsychiatric

disorders but also provide new insights for sex-specific screening

and intervention strategies for AD.
4.7 Sex-specific effects and
neuropathological roles of APOE
genotypes in Alzheimer’s disease and
premenstrual dysphoric disorder

APOE is considered the strongest genetic risk factor for sporadic

Alzheimer’s disease (AD), influencing both the average age of onset

and the lifetime risk of developing the disease. The APOEe4 allele

markedly increases the risk of AD (147). In the pathogenesis of AD,

the sex-specific effects of APOE are particularly notable, with women

generally exhibiting higher incidence and lifetime risk compared to

men (148) Female APOEe4 carriers show the highest risk and tend to

develop the disease at an earlier age (149, 150). Additionally, sex

differences in AD risk may be related to early developmental

processes of sexual differentiation, which predispose women to a

higher susceptibility to AD and related dementias (151). At the

biomarker level, studies have shown that female APOEe4 carriers

exhibit higher levels of AD-related biomarkers in CSF (152) along
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with reduced hippocampal volume (153); Regarding Ab pathology,

APOE genotypes influence cerebral Ab deposition in a dose-

dependent manner (e4 > e3 > e2) (154–156), and its regulation of

tau-related pathology appears to be independent of Ab (157).

Christina B. Young et al. (158) demonstrated that APOE genotypes

differentially affect regional tau burden during early AD pathology,

with e4 being specifically associated with elevated tau in the medial

temporal lobe (MTL), while the protective effects of e2 are observed

in both theMTL and neocortex. Sex further modulates APOE’s effects

on tau pathology (152),and one proposed mechanism is the lifelong

difference in exposure to sex hormones, particularly E2 (159, 160),

Low E2 levels have been strongly associated with increased AD risk,

and E2-based HT is considered a potential preventive strategy.

Several case-control and prospective studies have reported reduced

dementia risk in women who are current or past users of HT (161–

163). Animal studies have further shown that E2 can suppress

abnormal tau phosphorylation, with females exhibiting greater

sensitivity. Notably, estrogen receptor alpha (ERa) has been found

to colocalize with neurofibrillary tangles in neurons (164). ERa levels

are elevated in AD patients (165), and have been linked to APOEe4 in
EFAD mouse models (166).

It is also noteworthy that APOEe4 is associated with an

increased risk of depressive disorders (167), Considering that

PMDD is an estrogen-fluctuation–sensitive mood disorder closely

associated with changes in estradiol (E2) levels and exhibits a high

risk of depression, there may be a potential interaction mechanism
FIGURE 3

Schematic diagram of factors influencing the development of PMDD and AD. (A) ESR1 and ESR2 Genetic polymorphisms as factors influencing AD
and PMDD.(B) ①PV INS affects E/I imbalance through reduced numbers,② reduced GABA synthesis and release, ③ and abnormalities in AD-related
brain networks (e.g., impaired hippocampal-cortical loops) partially connected to GABAerqic INs. (C) Concentrations of ALLO have important effects
in PMDD mood treatment and AD neurogenesis. (D) 5HT1R can affect PMDD and AD. (E) Neuroinflammation: In MDD and AD, anti-inflammatory
TGF-b1 is reduced while TNF-a, IL-6, IL-1b rise with microglial activation (around Ab), suggesting a pathway linking PMDD-related stress to AD.
(F) APOEe4 genotypes can influence PMDD and AD.
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between APOE and PMDD. Specifically, female carriers of the

APOEe4 allele may exhibit heightened hormonal sensitivity and

increased reactivity to E2 fluctuations, thereby exacerbating

emotional instability. Although current research lacks systematic

data on the relationships among E2 levels, brain function, and

mood disorders in women with PMDD carrying APOEe4,
preliminary evidence suggests the existence of such mechanisms.

For example, increased emotional susceptibility associated with

estrogen receptor gene polymorphisms (e.g., ESR1) has been

observed in the PMDD population, which may synergize with the

APOE pathway.

Future studies should focus on the dynamic changes in sex

hormone levels, polymorphisms of estrogen receptor genes, and

their roles in emotional regulation in APOEe4 carriers with PMDD.

Such efforts aim to identify high-risk female populations and explore

potential biomarkers for early screening of neuropsychiatric disorders.

Investigating this area will not only help elucidate the molecular

underpinnings of PMDD but may also offer novel perspectives for

identifying a subgroup of women at elevated risk for developing AD.

Therefore, the intersection of APOE, E2, and female mood

disorders underscores the necessity of incorporating PMDD into

the early screening framework for neurodegenerative diseases and

advancing prevention and intervention strategies based on sex and

genetic risk profiles (Figure 3).
5 Conclusion

Although this study proposes a potential pathway linking

PMDD and AD, it is important to emphasize that most of the

current evidence remains correlational. There is still a lack of direct

causal evidence supporting PMDD as an independent risk factor for

AD. This limitation reflects one of the core challenges in current

research. Longitudinal cohort studies, prospective clinical follow-

ups, and mechanistic animal experiments are urgently needed to

systematically track cognitive trajectories and dynamic changes in

AD-related biomarkers in PMDD populations, in order to

rigorously assess whether a causal relationship exists between the

two. If this hypothesis is confirmed, it could provide a new

framework for early detection and personalized intervention for

AD, especially among high-risk female populations, with significant

translational potential. Future studies should continue to explore

the dual roles of neurobiological mechanisms in PMDD and AD,

particularly regarding neuroactive steroids, GABA receptors, and

the serotonergic system. A deeper understanding of these

mechanisms may offer more compelling evidence to support the

development of novel therapeutic strategies, alleviating symptoms

and improving quality of life for affected individuals.
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