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Université de Sherbrooke, Canada
Steven D. Beyea,
Izaak Walton Killam Health Centre, Canada

*CORRESPONDENCE

Alejandro Santos-Dı́az

alejandro.santos@tec.mx

RECEIVED 22 February 2025
ACCEPTED 26 May 2025

PUBLISHED 17 June 2025

CITATION

Garcı́a JA, Noseworthy MD and Santos-Dı́az A
(2025) Assessment of reconstruction
accuracy for under-sampled 31P-MRS data
using compressed sensing and a low rank
Hankel matrix completion approach.
Front. Endocrinol. 16:1581328.
doi: 10.3389/fendo.2025.1581328

COPYRIGHT

© 2025 Garcı́a, Noseworthy and Santos-Dı́az.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 17 June 2025

DOI 10.3389/fendo.2025.1581328
Assessment of reconstruction
accuracy for under-sampled
31P-MRS data using compressed
sensing and a low rank Hankel
matrix completion approach
Jossian A. Garcı́a1, Michael D. Noseworthy2

and Alejandro Santos-Dı́az1*

1Tecnologico de Monterrey, School of Engineering and Sciences, Mexico City, Mexico, 2Electrical and
Computer Engineering, McMaster University, Hamilton, ON, Canada
Phosphorus magnetic resonance spectroscopy and spectroscopic imaging (31P-

MRS/MRSI) are techniques to evaluate energy metabolism in vivo, they are

capable of measuring metabolites such as phosphocreatine and inorganic

phosphate in muscle and brain tissue. Despite their capability, these

techniques are not very often used in clinical settings due to the long

acquisition times required. In recent years, compressed sensing has been

widely used as an acceleration method for MRI signal acquisition and

translated to MRS. In order to use it, one of the main criteria states that the

aliasing resulting from the undersampling scheme must be incoherent, which is

achieved using a pseudo-random sampling strategy. However, when a set of

pseudo-random sampling patterns are applied for the same acceleration factor,

there is significant variability in the quality of the reconstructed signal. We present

an evaluation of the influence of the undersampling pattern in the quality of the

signal reconstruction through a series of experiments in 31P-MRS data using the

low rank Hankel matrix completion as the reconstruction method. Our results

demonstrate that the reconstruction accuracy is heavily influenced by the

selection of specific samples rather than the undersampling factor.

Furthermore, the noise level in the signal has a more pronounced impact on

reconstruction quality. Additionally, reconstruction accuracy is significantly

correlated with the density of samples collected at early sampling times,

making it possible to set large time values to zero without producing any

statistical difference in the error distribution means for some cases.
KEYWORDS

31P-MRS, energy metabolism, compressed sensing, low rank Hankel matrix completion,
reconstruction accuracy
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1 Introduction

Phosphorous Magnetic Resonance Spectroscopy (31P-MRS)

provides valuable information about energy metabolism,

membrane degradation and pH in vivo. 31P-MRS is able of

tracking metabolites such as phosphocreatine (PCr), adenosine

triphosphate (ATP), and inorganic phosphate (Pi), information

useful in the medical study of many disorders related to

bioenergetic abnormalities in the brain (1). Despite the medical

utility, 31P-MRS is not often used in clinical settings due to a

number of limitations. First, the low concentration of metabolites,

which leads to a low signal-to-noise ratio (SNR). Second, a low

gyromagnetic ratio which causes low nucleus sensitivity, and third,

the relatively short T2 relaxation times of some metabolites that

induce 31P-MRS acquisition to take longer times.

Some efforts have been made to translate common acceleration

methods in magnetic resonance imaging (MRI) to 31P-MRS, for

instance echo planar spectroscopic imaging (EPSI) (2, 3), spiral

trajectories (4), and variations of compressed sensing (CS) (5, 6).

Among these, CS has emerged as an effective acceleration method

by reconstructing undersampled signals. In order to apply this

technique there are three main requirements that need to be met

(7): (1) the data have a sparse representation in a transformed

domain; (2) the aliasing generated due to the subsampling scheme is

incoherent (noise-like); and (3) a non-linear reconstruction method

is to be used in order to enforce consistency with the measurements

and sparsity of the data. The problem can be formulated as

reconstructing the spectrum x from the equation Fux = ŷ , where

ŷ represents the acquired data points, with zeros filling the positions

where no sampling occurs. Here, Fu denotes the undersampled

inverse Fourier transform operator. CS approach solve this problem

by finding the sparsest solution for the measurements ŷ , this is

achieved by minimizing Equation 1. The claim of a sparse spectrum

means that only few frequencies give rise to true peaks while the rest

of the spectra contain only baseline noise (8).

argmin  jjx 1   subjectto  k j Fux − ŷj k2< ϵ (1)
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Here, L1 norm xk k1=oi xij j and by minimizing it we promote

sparsity while Fux − ŷk k2< ∊   enforces data consistency.
However, the low rank Hankel Matrix completion approach has

demonstrated superior performance in the context of 31P-MRS

signals compared to traditional CS (5, 9). This method addresses the

problem by operating in the time domain. The free induction decay

(FID) signal y is recovered by solving the optimization problem

presented in Equation 2.

min
y

    Ryk k*+
l
2

ŷ − Uyk k22 (2)

Where y is the complete FID to be estimated, R is an operator

that converts y into the Hankel matrix showed in Equation 3:
02
H(y) = Ry =

f1 f2 f3 … fQ

f2 f3 f4 … fQ+1

⋮ ⋮ ⋮ ⋱ ⋮

fn−Q fn−Q+1 fn−Q+2 … fn−1

fn−Q+1 fn−Q+2 fn−Q+3 … fn

2
666666664

3
777777775

(3)

U is an undersampling operator, l is the data consistency

parameter, and the nuclear norm is denoted as ||…||∗. It has been

proven that the rank of the Hankel matrix is equal to the number of

decaying exponentials in the FID, so the low rank approach

reconstructs a spectrum with the least number of spectral peaks.

Finally, the solution to Equation 2 can be found using the

alternating direction minimization method (ADMM) (8).

To implement the subsampling schemes, a novel pulse sequence

that combines a flyback EPSI readout with compressed sensing

(fidepsiCS) has been used (9–11). The fidepsiCS sequence has the

characteristic that when applying CS, the subsampling is performed

in the temporal dimension due to gradient blips incorporated in the

phase encoding direction. The use of the fidepsiCS sequence can

reduce acquisition times considerably when compared to traditional

chemical shift imaging and EPSI (9, 11).

Recently, our group showed that when a series of different

undersampling patterns are applied for the same acceleration factor

over 31P-MRS data, there is significant variability in the quality of

the reconstructed signal (10). Furthermore, we observed that the

performance of the reconstruction depends almost entirely on the

samples selected by the pseudo-random pattern. In this work we

expand the research by presenting an evaluation of the influence of

a Non-Uniform Sampling (NUS) scheme in the quality of the signal

reconstruction throughout a series of experiments over simulated

and in vivo 31P-MRS data using the low rank Hankel matrix

completion approach originally presented by Qu et al. (8).
2 Materials and methods

2.1 31P-MRS data simulation

Simulated spectra were generated using a modified version of

the FID-A toolbox, adapted for the simulation of 31P-MRS (12). All

simulations were performed assuming a magnetic field strength of

3T and a spectral bandwidth of 2000 Hz. To generate a robust and

comprehensive dataset, various conditions were considered,

including linewidths of 10 Hz and 30 Hz, three levels of Gaussian

noise (with standard deviations of s = 0, s = 2.5, and s = 5), and three

distinct scenarios based on the metabolite peaks present in each

spectrum as shown in Figure 1. First, a control simulation was

generated, containing five amplitude peaks at -10, -5, 0, 5, and 10

ppm. Second, simulations of human skeletal muscle tissue included

PCr, Pi, and ATP metabolites. Third, brain tissue simulations
frontiersin.org
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incorporated PCr, Pi, ATP, glycerophosphocholine (GPC),

glycerophosphoethanolamine (GPE), phosphoethanolamine (PE),

nicotinamide adenine dinucleotide (NAD), and phosphocholine

(PC). Peak amplitudes were assigned according to metabolite

peak ratios observed in vivo acquisitions. Control, brain, and

skeletal muscle simulations each contained 512 data points.

Additionally, simulations with 1024 data points were generated

for control and brain conditions.
2.2 31P-MRS data acquisition

Data were collected using a 60 cm bore 3T GE MR750 (GE

Healthcare, Milwaukee, WI) scanner (50 mT/m amplitude and 200

T/m/s slew rate gradient system). Phantom acquisitions were

performed on a custom-built spherical phantom containing 25

mmol/L and 10 mmol/L concentrations of sodium phosphate

(P1) and phosphocreatine disodium salt (P2) respectively, using

an in house designed/built 24 cm diameter quadrature birdcage coil

tuned to 51.720 MHz. On the other hand, in vivo 31P-MRS data

were acquired from eight healthy volunteers (all males, 24 ± 6 years

of age) who provided informed consent to participate in this

study. Five brain signals were acquired from the parietal lobe of

five of the volunteers using a 12.7 cm diameter home designed/built

surface coil (51.705 MHz) and a single volume pulse-acquire

sequence, squared excitation pulse (0.5 ms, 60°flip angle), 2000

Hz spectral bandwidth, 512 points, 128 averages. Three skeletal
Frontiers in Endocrinology 03
muscle signals were collected from the gastrocnemius in the calf

muscles of the remaining three participants using an in-house

designed/built 31P-tuned (51.705 MHz), 7.62-cm-diameter surface

coil. Radiofrequency excitation was calibrated to achieve a 90°flip

angle at approximately 3.5 cm from the coil’s center. All procedures

were conducted in compliance with the ethical standards of our

institutional research ethics board, following the principles outlined

in the 1964 Helsinki Declaration on human ethics.
2.3 Undersampling and reconstruction

FID signals were retrospectively undersampled using

pseudo-random uniform distributions. For 1024samples signals,

undersampling factors (USF) of x2 (512 out of 1024), x3 (341 out of

1024) and x4 (256 out of 1024) samples were implemented. For 512-

sample acquisitions, acceleration factors resulted in 256, 170 and

128 out of 512 sample signals, respectively. A total of 1000 different

schemes per USF were generated through a Monte Carlo-like

simulation. In addition, an exponentially decaying Non-Uniform

Sampling (NUS) approach, based on the NUSSAMPLER program

from the MDDNMR package (13), was also used to generate

sampling patterns biased toward the origin.

Compressed Sensing was applied over each type of FID signal

using the sets of undersampled schemes previously generated. The

low rank Hankel matrix completion was used as the reconstruction

method, specifically, the ADMM approach presented by Qu et al
FIGURE 1

Three types of 31P-MRS simulated spectra (control, brain and muscle) including different noise levels, as well as two different linewidths: top row
corresponds to 10Hz and bottom row to 30 Hz.
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(8),. The value of the trade-off was set as l = 103 since the authors

stated that results of calculations are not sensitive to the setting of l.
On the other hand, the ADMM requires another parameter which

influence the reconstruction accuracy, the Q value, which was set to

Q = 256 for 512-sample signals andQ = 512 for 1024 sample signals.

The low rank calculations were performed using Matlab (The

MathWorks Inc.) on a laptop computer with Intel Core i5-

1155G7 with 4 Cores, 2.5 GHz CPU and 16 GB RAM. Single

reconstructions of skeletal muscle signals using USFs of x4, x3, x2

took 14.18, 6.49 and 2.47 seconds respectively.
2.4 Statistical analysis

A series of statistical experiments were executed to find patterns

and explain the behaviors in the data. The root mean square error

(RMSE) was the metric used to measure the performance of the

reconstruction compared to the original spectra. The statistical

analysis included: RMSE distribution plots, Lilliefors tests,

correlation matrices, violin plots, Kruskal-Wallis tests. Violin

plots were useful to visualize general behavior of error in different

scenarios, while RMSE distribution and Lilliefors test were used to

determine if the error followed a Gaussian distribution.

In addition, we used the number of samples taken per octile of

the signal as a metric to assess the impact of sample density at the

onset of the pseudo-random acquisition. This metric was then

used to compute Pearson correlation coefficients in relation to the

RMSE of the reconstructions. Subsequently, different thresholds

were set at the midpoint, the fourth, and the eighth part of the FID

signal. Time values exceeding these thresholds (as shown in

Figure 2) were set to zero, and the reconstructions were

performed again. The Kruskal-Wallis test was conducted to

determine whether truncation led to statistically significant

differences among the error distributions means.
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3 Results

Figure 3 shows examples of the best and worst reconstructed

spectra for control, brain and skeletal muscle simulated sets, as well

as their residual against the fully sampled (original) signal. These

reconstructed spectra correspond to 512-samples simulations with

noise level of 2 and USF x2.

The Pearson correlation coefficients obtained (Supplementary

Tables S1, S2) indicated a moderate to strong correlation for both

512 and 1024 samples simulations. Notably, these coefficients

tended to increase as the USF became more aggressive. This

suggests that reconstructions with lower errors tend to have a

higher density of samples taken at the onset of the FID.

Regarding the truncation experiments presented in Section 2.4,

Figure 4, Supplementary Figures S1, S5 illustrate that truncation

had minimal impact on the RMSE distribution variance for signals

with 512 samples and a linewidth of 30 Hz. However, for

reconstructions with lower linewidths, the error distribution

variance showed a notable increase, particularly in the case of

one-eighth truncation. In contrast, when truncation was applied

to signals with 1024 samples, the RMSE distribution variance

remained barely affected, as shown in Supplementary Figures S2, S4.
3.1 In vivo 31P-MRS data results

In total, eight different in vivo 31P-MRS signals were acquired

and analyzed: four brain signals with 512 sampled points, one brain

signal with 1024 sampled points and three skeletal muscle signals

with 1024 sampled points. Examples of the best and worst

reconstructed spectra (x4 USF) for phantom, brain, and skeletal

muscle are shown in Figure 5.

Supplementary Figure S6 illustrates the reconstruction error

distributions for Phantom signals, while Supplementary Figure S7
FIGURE 2

Example of simulated FID control data with thresholds marked with vertical lines, pseudorandom subsampling scheme (USF x2) with red dots and
the original signal in color blue.
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presents examples of reconstructed spectra. The USF had a small

impact on the reconstruction error distribution variability.

However, truncation experiments resulted in a clear increase in

RMSE variability, highlighting the sensitivity of reconstructions to

early signal truncation.

Figure 6 and Supplementary Figures S8–S11 illustrate the error

distributions for truncation experiments across five in vivo brain

acquisitions. All acquisitions exhibited a similar trend, as truncation

did not lead to a noticeable increase in the distribution means even

with maximum truncation. However, the reconstruction error for

signals with 1024 samples (acquisition 1) showed lower variance.

The corresponding plots for skeletal muscle acquisitions are shown

in Supplementary Figures S12–S14. Similar to brain signals, the

error variability for skeletal muscle did not exhibit an evident

increase in their means, indicating that truncation had limited

impact on reconstruction errors.

Figure 7, Supplementary Figure S16 present examples of

reconstructions for in vivo 31P MRS brain and skeletal muscle

spectra recovered from exponentially and constant NUS signal

reconstruction, both with USF x4.
4 Discussion

The results in Supplementary Tables S1, S2 highlight the crucial

role of early-time samples in reconstruction accuracy, as the correlation

coefficients are significant in most cases. Overall, a more aggressive USF

generally leads to an increase in Pearson’s correlation coefficient,

particularly when reconstructing the sparsest signals with 512 samples.
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Supplementary Figures S1–S5 illustrate that signal reconstructions

with higher linewidth values are minimally affected by truncation. This

can be attributed to the fact that signals with lower linewidth exhibit a

slower exponential decay, causing their values to take longer to

approach zero. Consequently, truncation excludes significant values,

leading to an increase in the RMSE mean under aggressive limits.

However, reconstruction errors for 1024-sample simulations appear to

be more robust to aggressive truncation limits, even in cases with a

small linewidth. Since not all error distributions are normal, a Kruskal-

Wallis test was performed on each RMSE reconstruction distribution

against its corresponding truncations, the maximum truncation of 1
8

was not considered in the test as it provoked a profound increase in

variability in some of the distributions. Considering only linewidth of

30 Hz, analysis showed that for ideal signals (noise level 1) there was no

statistical difference between fully undersampled reconstructions and

those using truncation at one-fourth of the signal, with p = 0.05 for

both 512 and 1024-sample spectra reconstructions. Regarding

linewidth = 10 Hz, truncation over reconstructions only provoke a

slight variation in the RMSE distribution.

On the other hand, to explain the error increment observed in

Supplementary Figure S6, it is important to analyze two factors

regarding phantom experiments and truncation: 1) Brain and

skeletal muscle chemical environments provokes different relaxation

times and change the metabolite peaks amplitude in the spectrum. 2)

As Kazimierczuk et al. and Rovnyak et al. concluded in (14) and (15)

respectively, an extreme signal truncation can discard too much

information at long times and deteriorates the spectra resolution. 3)

The RMSE metric aggressively penalizes larger errors due to squaring.

As illustrated in Supplementary Figure S7, the phantom spectrum
FIGURE 3

Examples of original (fully sampled), best and worst reconstruction (512-samples, x2 USF, noise level 2 and linewidth of 10 Hz) for brain and skeletal
muscle simulations along with their difference.
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FIGURE 4

RMSE violin plots for 512-sample brain simulation reconstructions with truncation. Columns correspond to undersampling factors (USF = 2, 3, 4),
and rows to linewidths (LW = 10 Hz, 30 Hz). Subplots (a–f) represent all LW–USF combinations: (a–c) for LW = 10 Hz and (d–f) for LW = 30 Hz.
Each violin subplot shows RMSE distribution across three noise levels and truncation levels ("Full", 1/2, 1/4, 1/8), where "Full" corresponds to
no truncation.
FIGURE 5

Examples of original (fully sampled), best and worst reconstruction (x4 USF) for phantom, brain and skeletal-muscle along with their difference.
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contains peaks with significantly higher amplitudes compared to brain

and skeletal muscle spectra. Greater truncation results in increased

resolution loss, which in turn increases error.

Violin plots of in vivo error spectra reconstructions exhibit

a behavior similar to that observed in simulated spectral

reconstructions. For instance, the in vivo brain and skeletal muscle

spectra analyzed in Figure 6, Supplementary Figure S13, respectively,

show no significant variation in distributions when comparing the fully

undersampled signal with a truncation threshold at the middle (1/2), as

confirmed by the Kruskal-Wallis test, even in schemes with USF ×4.

Moreover, in the case of USF x3 in Figure 6, all distribution means can

be considered equivalent. It is important to notice that although in vivo

error distributionmeans are higher than in simulations, the effect of the
Frontiers in Endocrinology 07
truncation is more similar to simulations with linewidth of 30 Hz,

where even the higher level of truncation does not produce a relevant

increase in the error distributions. The above indicate that simulations

using linewidth of 30 Hz imitate better the real properties of the in vivo

FID acquisitions.

Some studies in nuclear magnetic resonance (NMR) have shown

that selecting samples randomly, following an exponentially decaying

distribution with a time constant T2, results in improved performance

when using methods such as traditional compressed sensing (CS) and

minimum entropy reconstruction (14, 15). It was observed that to

further enhance the SNR, it is necessary to apply an extreme bias

toward early-time sampling (by reducing the Tsvalue), but without

exceeding Ts < T2 in order to preserve spectral resolution.
FIGURE 6

RMSE violin plots corresponding to in vivo brain signal reconstructions for the second acquisition. USF of x2: using 256 out of 512. x3: using 170 out
of 512. x4: using 128 out of 512.
FIGURE 7

Examples of in vivo 31P MRS brain signal reconstructions using an exponentially NUS and constant NUS along with their differences. The original is
the fully sampled (512 points) signal and both NUS patterns with USF x4: 120 out of 512 points.
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To compare the improvement in reconstruction accuracy using this

exponentially decaying probability distribution, we performed a

single reconstruction for each type of signal and for each different

undersampling factor (USF). A T2 value of 50 ms was selected, which

is a relatively long relaxation time for 31P compounds at 3T.

The RMSE of reconstructions using exponentially biased NUS

were, in most of the cases, better than the best value reached by the

Monte Carlo simulation of 1000 31P-MRS reconstructions.

Furthermore, experiments using in vivo 31P-MRS data presented a

RMSE up to 85.84% lower using an exponential NUS compared to

constant NUS, and a 60.40% lower error for the worst case of the
31P-MRS brain spectrum. Regarding skeletal muscle spectra,

reconstructions showed a RMSE up to 74.12% lower and a

minimal enhancement of 25.8%. Finally, selecting an

undersampling pattern that prioritizes samples near the origin, as

done with exponentially biased NUS, yields better results. However,

this approach may not be universally applicable to all types of MRS

signals as the challenge falls into the realm of pulse sequence design.

One important limitation of this study was that the evaluation of

reconstruction performance was based on global spectral metrics, such

as RMSE and overall spectral SNR, without a detailed analysis of

individual metabolite peaks. It is well known that CS can differentially

impact spectral features depending on their contrast-to-noise ratio

(CNR), potentially leading to selective attenuation of low-amplitude

peaks during iterative denoising. Therefore, future work will require a

more targeted, metabolite-by-metabolite quantitative assessment to

more accurately validate the fidelity of the proposed method in

reconstructing individual spectral components.
5 Conclusion

In conclusion, this study performed an exhaustive analysis of

the reconstruction accuracy over control, brain and skeletal muscle

simulated 31P-MRS data with two different linewidths of 10 and

30Hz. Additionally, three levels of noise were added to FID signals

in order to generate a coarse dataset useful to analyze in deep the

effects of CS using low rank Hankel matrix completion as the

reconstruction method. Data was retrospectively undersampled

using USFs of x2, x3 and x4 for 1024 and 512-samples signal

acquisitions. In vivo acquisition corresponded to 4 brain signals

with 512 spectral points, one brain signal with 1024 spectral points

and 3 skeletal muscle signals with 1024 spectral points. Our results

show that the reconstruction accuracy is highly dependent on the

selected samples. Our main contributions can be expressed in

the following:
Fron
• Spectra with higher linewidth were minimally affected by

setting large time values to zero.

• Reconstruction accuracy is significantly correlated with the

density of samples taken at early times.

• According to in vivo results, it is possible to establish a

threshold at the middle and set large time values to zero

without producing a statistical difference in the error

distribution means, even in the schemes with USF x4.
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• The use of exponentially NUS meant a reconstruction

accuracy enhancement up to 85.84% and 74.12% for 512-

samples 31P-MRS brain and 1024-samples 31P-MRS skeletal

muscle data respectively.

• The increase of the sampling density near to the origin is

especially useful in 512-samples signals where it showed the

best reconstruction results.
Despite the advantages of exponentially decay NUS, studies

have been concentrated in the analysis of synthetic biased signals

and no effort has been made in the study of pulse sequences to

acquire a FID signal with these characteristics. Further analysis

should be focused on the development of pulse sequences.
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