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Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21OHD) is

a complex endocrine disorder characterized by impaired cortisol synthesis and

androgen excess. Beyond its hormonal and metabolic implications, CAH has been

increasingly associated with an elevated risk of cardiovascular complications,

including endothelial dysfunction, a critical precursor to atherosclerosis and a

risk factor for cardiovascular and metabolic diseases. This review explores the

current knowledge on endothelial function in patients with CAH, focusing on the

interplay between chronic hormonal imbalance, prolonged glucocorticoid

treatment, and associated metabolic disorders. We also discuss in vivo methods

for assessing endothelial function alongside the potential utility of novel

biomarkers, which may facilitate earlier identification of vascular dysfunction and

stratification of cardiovascular risk. By summarizing emerging concepts in this field,

we aim to highlight areas for future research and opportunities for improving long-

term cardiovascular outcomes in individuals with 21OHD.
KEYWORDS

congenital adrenal hyperplasia (CAH), 21-hydroxylase deficiency, endothelial
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1 Introduction

Congenital adrenal hyperplasia (CAH), due to 21-hydroxylase deficiency (21-OHD), is

an autosomal recessive condition that is caused by mutations in the gene CYP21A2. It is

characterized by impaired cortisol secretion and androgen excess. 21-OHD is the most

common cause of CAH, accounting for 95% of cases (1). Based on the residual enzyme

activity, CAH shows a spectrum of phenotypes, varying from a severe classic CAH (CCAH),
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usually diagnosed in newborns, to a non-classic CAH (NCCAH),

which is a mild variant often diagnosed late, if ever. CCAH is

classified into two forms based on aldosterone deficiency: salt-

wasting (SW) and simple virilizing (SV). The primary treatment

for CAH, particularly CCAH, involves glucocorticoid and

mineralocorticoid replacement to prevent adrenal crises and

manage excess androgen production. Achieving a balance between

these treatments is essential to avoid both under- and over-treatment,

as both extremes can have detrimental effects on long-termmetabolic

and cardiovascular health. However, even in an era of continuously

advancing knowledge about CAH, improved patient care, and the

availability of effective treatments, such as those mimicking the

circadian rhythm of cortisol, the presence of CAH remains

associated with numerous metabolic complications and increased

cardiovascular morbidity (2).

Mounting evidence has shown that the dysfunction of

endothelial cells in the vasculature is profoundly implicated in the

pathogenesis of cardiovascular and metabolic diseases (3).

Furthermore, there is a bidirectional relationship between

endothelial dysfunction and these disorders. Components of

metabolic syndrome, such as abdominal obesity, hypertension,

and impaired glycemic control, can contribute to endothelial

dysfunction (4). Conversely, structural and functional changes in

the endothelium promote the progression of metabolic diseases and

atherosclerosis (5). Given the hormonal imbalances and systemic

effects of CAH, understanding its potential impact on endothelial

function is crucial, as individuals with CAH are at higher risk for

these conditions (6, 7).

Despite the growing body of evidence linking CAH to endothelial

dysfunction, significant research gaps persist. To date, no studies have

systematically assessed the relationship between endothelial

dysfunction and glucocorticoid dose, type, or treatment duration.

Importantly, the differential impact of various chronic glucocorticoid

replacement regimens on endothelial function has not been evaluated

in controlled studies (8). Moreover, the progression of endothelial

dysfunction over time in individuals with CAH remains insufficiently

understood. To date, no randomized controlled trials have been

conducted in this area, and no meta-analyses are available to

synthesize the existing evidence.

In this review, we provide an overview of current knowledge on

endothelial function in individuals with CAH, with a particular

focus on the factors that contribute to endothelial damage, methods

of endothelial assessment, and novel biomarkers that could help to

detect patients at higher risk. We also discuss gaps in knowledge

and areas for future research.
2 Endothelial dysfunction and its role
in cardiovascular disease

The endothelium, a single-cell layer lining the inner surface of

blood vessels, plays a vital role in maintaining vascular homeostasis.

The endothelium releases various autocrine, paracrine, and

endocrine substances, such as nitric oxide (NO), C-type
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natriuretic peptide, prostacyclin, and endothelium-derived

hyperpolarizing factor (9). These factors collectively inhibit

smooth muscle cell proliferation and migration, prevent platelet

adhesion and aggregation, and regulate processes that influence

thrombogenesis (10).

Endothelial dysfunction involves a shift in endothelial cell

behavior, leading to various maladaptive changes in their

functional phenotype. This results in disturbances in the

regulation of hemostasis, thrombosis, vascular tone, redox

balance, and inflammatory processes (11). The underlying

pathophysiology is multifaceted, involving several mechanisms.

A key factor in the development of endothelial dysfunction is

oxidative stress, which arises from multiple enzymatic sources such

as xanthine oxidase, NADPH oxidases, uncoupled endothelial nitric

oxide synthase (eNOS), and malfunctioning mitochondria. It occurs

when the balance between pro-oxidants and antioxidants is

disrupted (12). Elevated reactive oxygen species (ROS) levels can

oxidize cellular macromolecules and reduce NO production by

promoting the formation of peroxynitrite (12), a toxic compound

that degrades the eNOS cofactor tetrahydrobiopterin (13), leading

to the “uncoupling” of eNOS and increased oxidative stress. This

oxidative imbalance also contributes to impaired endothelial

vasodilation and a proinflammatory environment, as well as the

upregulation of adhesion molecules such as intercellular adhesion

molecule 1 (ICAM-1) and vascular cell adhesion molecule 1

(VCAM-1), along with chemotactic molecules (12) (Figure 1).

Inflammation plays a crucial role in the pathogenesis of

cardiovascular disease (14). In response to vascular injury,

endothelial cells release a variety of inflammatory molecules,

including chemokines, interleukin-8, colony-stimulating factors,

monocyte chemoattractant protein-1 (MCP-1), adhesion

molecules such as ICAM-1 and E-selectin, and growth factors

and other inflammatory mediators (15), leading to the attachment

of monocytes and their migration into the vessel wall. Monocyte-

derived macrophages ingest oxidized low-density lipoprotein

(LDL), forming foam cells and fatty streaks, which lead to the

development of plaques affecting the coronary arteries, aorta, and

carotid arteries, ultimately resulting in atherosclerosis (16). This

cascade promotes the adhesion and migration of leukocytes across

the endothelial barrier, further activating an inflammatory state

(17). In addition, proinflammatory cytokines such as tumor

necrosis factor-alpha (TNF-a) and interferon-gamma (IFN-g) are
released by endothelial cells, activating a vicious circle (18).

Endothelial dysfunction is often widespread throughout the

body, as individuals with diagnosed atherosclerosis frequently

exhibit endothelial dysfunction in peripheral vascular regions that

may not yet show overt signs of the disease. It is also observed in

those with a family history of early cardiovascular disease despite

the absence of other risk factors (19); in individuals with

hypertriglyceridemia (20), dyslipidemia (21), nicotine use (22),

and insulin resistance (23, 24); first-degree relatives with type 2

diabetes; and elderly patients regardless of the presence of other

comorbidities (25). The advancement of endothelial dysfunction is
frontiersin.org

https://doi.org/10.3389/fendo.2025.1581681
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Hubska et al. 10.3389/fendo.2025.1581681
influenced by the severity and duration of established risk factors

and the overall risk profile of individual patients (26).
3 The risks for endothelial dysfunction
in CAH

The exact mechanisms behind the higher prevalence of

cardiometabolic risk elements in patients with CAH remain unclear.

Nonetheless, both disease-related and treatment-related elements are

being discussed. Importantly, cardiovascular disease is the second

most common cause of death in patients with CAH after adrenal crisis

(27), and is closely linked to endothelial dysfunction (28).

Individuals with CAH are at an increased risk of developing

metabolic syndrome, which is characterized by a cluster of

metabolic abnormalities, including central obesity, insulin

resistance, hypertension, and atherogenic dyslipidemia (29)

(Figure 2). Obesity is the most common component of metabolic

syndrome in both children and adults with CAH and acts as a major

independent risk factor for cardiovascular diseases (1). In patients

with CAH, the prevalence of obesity ranges from 30% to 40% (30–

34). It contributes to endothelial dysfunction through associated

complications such as hypertension, dyslipidemia, type 2 diabetes,

and obstructive sleep apnea (35, 36). The excess fat accumulation in

obesity leads to adipocyte dysfunction, triggering oxidative stress

and insulin resistance, while also serving as a source of pro-

inflammatory cytokines, all of which contribute to endothelial

dysfunction (36, 37). Additionally, patients with CAH are more

likely to develop increased visceral adipose tissue, a well-established

risk factor for cardiovascular diseases (38).

Notably, endothelial dysfunction is a key component of

metabolic syndrome, with involvement in both the initiation and

propagation of this condition (39). In patients with CAH, these

abnormalities arise from cortisol deficiency, excess androgen

secretion, and hypercortisolism due to possible glucocorticoid

overtreatment. Additionally, dysfunction of the adrenomedullary

system, marked by deficient epinephrine secretion, may contribute

to reduced lipolysis of triglyceride stores and disruptions in insulin

and adipokine regulation (40–42).

Abnormal androgen levels in CAH should be considered among

the risk factors for endothelial dysfunction (Figure 2). Both

hypoandrogenism in male patients and hyperandrogenism in female

patients can contribute to adverse metabolic effects, thereby increasing

cardiovascular risk (43–45). Arlt et al. (31) found that the majority of

patients with CAH exhibited either elevated or suppressed androgen

levels, with only 36% showing normal androstenedione levels. The

detrimental effects of androgen excess in CAH were further confirmed

in a cohort of women with CCAH SV untreated with glucocorticoids;

insulin resistance and unfavorable metabolic markers were notably

increased in these patients compared to the control group, and showed

a direct correlation to testosterone levels (46). Paizoni et al. (30) also

supported the role of androgens in insulin resistance development in

women with CCAH, especially in those with poor androgen control.

Similarly, there are studies in NCCAH that emphasize the relationship

of increased testosterone levels with insulin resistance (47). Moreover,
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studies in patients with polycystic ovary syndrome (PCOS) have

shown a link between hyperandrogenism and impaired endothelial

function (48, 49), suggesting that elevated androgen levels may

significantly contribute to endothelial dysfunction.

Hypertension is another major risk factor for cardiovascular

disease, and in CAH, an increased frequency of hypertension overall

is observed across age groups, although more prevalent in children

compared to adults (50, 51). Importantly, the relationship between

systemic arterial hypertension and endothelial dysfunction is

bidirectional, amplifying the severity of both conditions.

Endothelial cells influence the development of systemic

hypertension through various mediators, while systemic

hypertension exacerbates endothelial dysfunction, contributing to

a prothrombotic, proinflammatory, and proatherosclerotic state

(52). It is well established that excess glucocorticoids can elevate

arterial blood pressure mainly through mineralocorticoid mimetic

effects, vascular remodeling, and impaired NO signaling (53).

However, the role of mineralocorticoid treatment should also be

considered; patients with CAH receiving fludrocortisone tend to

experience elevated blood pressure more frequently than those who

do not (54).

The majority of studies have reported elevated blood pressure

values in patients with CAH (32, 55, 56). In youth with CAH, a

positive correlation between body mass index (BMI) and blood

pressure has been observed (57, 58), highlighting a significant

association between hypertension and obesity in this population.

Furthermore, even in the absence of clinically overt hypertension

(47), individuals with CAH may show a reduced physiological

nocturnal dip in blood pressure (30, 59, 60). Gender differences

have been examined in a limited number of studies, with most

finding a similar prevalence of hypertension between men and

women with CAH (32, 61–63). However, two studies suggested that

women with CAH may be more affected than men, likely due to

excessive androgen exposure (47, 64).

The cardiometabolic status in CAH is strongly affected by the

medications used in therapy, as the mainstay of CAH management

involves the intake of glucocorticoids and mineralocorticoids

(Figure 2). The doses should be substitutive; however, patients

frequently fail to adhere to the guidelines. Excessive intake of

glucocorticoids and mineralocorticoids can raise cardiovascular

risk factors, while inadequate glucocorticoid therapy or poor

adherence may result in androgen excess, infertility, and the

formation of adrenal rest tumors (65, 66). Therefore, preventing

long-term metabolic and cardiovascular complications depends on

maintaining an optimal balance between overtreatment and

undertreatment, however, it remains a significant challenge in

both CCAH and NCCAH (67).

Chronic glucocorticoid therapy has been shown to heighten the

risk of developing insulin resistance and, subsequently, type 2

diabetes in patients with CAH (2, 31, 32). Adult patients with

CAH exhibit elevated fasting plasma glucose levels (31), reduced

insulin sensitivity, and a b-cell response that is unable to

compensate for insulin resistance (68). Significantly, insulin

resistance in CAH seems to be related not only to the cumulative

dose of glucocorticoids but also to the type of glucocorticoid used.
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Patients on long-term dexamethasone show a higher prevalence of

insulin resistance compared to those taking prednisolone or

hydrocortisone (8).

The impact of glucocorticoids on vascular function, particularly

in the context of treatment adherence, remains poorly understood.

Non-adherence to treatment in CAH has been correlated with

detrimental effects on health, including greater intima–media

thickness (69) and a poorer quality of life (70). Finkielstain et al.

(32) emphasized the critical importance of consistent treatment

adherence in modulating disease outcomes, further highlighting the

urgent need for longitudinal investigations in this population.

Interestingly, the effects of systemic glucocorticoid therapy in

CAH can also be influenced at the receptor level. Variations in the

glucocorticoid receptor gene (NR3C1) may be associated with

either negative or positive metabolic and cardiovascular profiles

(71). For example, the A3669G polymorphism is linked to

unfavorable lipid profiles in pediatric patients with CAH, while

the ER22/23EK haplotype reduces glucocorticoid sensitivity,

leading to a more favorable metabolic profile. In contrast, the

N363S and BclI restriction fragment length polymorphisms

increase glucocorticoid sensitivity, raising the risk of type 2

diabetes, obesity, and cardiovascular diseases (72, 73). BclI

heterozygotes with CAH show higher body mass index (BMI),

waist circumference, and systolic blood pressure compared to those

with the wild-type (74), though this polymorphism is less common

in patients with CAH than in the general population (71).
4 Assessment of endothelial function
in CAH in vivo

The pivotal role of the endothelium in vascular-related diseases

has driven increased scientific attention in examining the

endothelial function as a tool for screening, as well as for
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monitoring the course of the diseases and evaluating treatment

outcomes (75). Traditionally, endothelial function is evaluated

through endothelium-dependent vasomotion, which can be

measured in either the coronary or peripheral circulation. While

invasive angiography is still considered the gold standard for

measuring coronary endothelial function (76), there is no

agreement on the gold standard for the measurement of

peripheral endothelial function (77).

Well-established non-invasive techniques for evaluating

peripheral endothelial function include strain-gauge venous

occlusion forearm plethysmography (78, 79), flow-mediated dilation

(FMD) (79, 80), peripheral arterial tonometry (PAT) (79), and laser

Doppler flowmetry (79). Less conventional non-invasive techniques

include pulse wave velocity (PWV) (81) and indirect endothelial

assessment via intima-media thickness (IMT) measurement (82)

(Table 1). Unlike invasive techniques, which are associated with

risks such as vascular injury, infection, and procedural

complications, non-invasive methods are inherently safer, cost-

efficient, logistically simpler, and well-suited for implementation in

both clinical practice and large-scale epidemiological studies.

According to several studies, non-invasive assessment of peripheral

vascular function may be useful in identifying patients at risk for

cardiac adverse events, including cardiac death, myocardial infarction,

revascularization, or hospitalization for cardiac causes (83).
4.1 Flow-mediated dilatation

One of the most used techniques to study endothelial function

in vivo is FMD, which is assessed using ultrasound to measure

changes in the diameter of the brachial artery in response to

increased blood flow following a period of vascular occlusion

created by a blood pressure cuff. This response is highly

dependent on the availability of NO. Endothelial dysfunction is
TABLE 1 Non-invasive methods of assessment of endothelial function.

Method Technique Advantages Limitations

FMD Measures endothelium-dependent vasodilation
by assessing changes in the diameter of the
brachial artery in response to increased blood
flow after occlusion.

Non-invasive, cost-efficient, and widely accessible
method. It utilizes validated digital software for
accuracy and is clinically relevant in detecting
vascular dysfunction.

Requires expertise and is sensitive to variations
in protocols. External factors influence results,
introducing confounding variables. Diagnostic
specificity is limited in diseases with
overlapping mechanisms.

PAT Measures vascular response through pulsatile
arterial volume changes in the finger during
reactive hyperemia, providing an RHI.

Non-invasive, operator-independent, quick
training for operators, and automated results.

Primarily reflects microvascular rather than
macrovascular function. RHI cutoff values may
not be reliable in younger populations due to
limited post-occlusion arterial dilation.

PWV Measures arterial stiffness by assessing the
velocity of blood pressure waves between two
arterial sites (e.g., carotid-femoral or
brachial-ankle).

Simple, non-invasive, cost-effective, and
reproducible. Considered the gold standard for
assessing arterial stiffness. Provides insights into
both central and peripheral arterial stiffness.

Does not directly measure endothelial function
but arterial stiffness. Influenced by confounding
factors such as blood pressure and arterial wall
properties. Vasodilators are required to isolate
the endothelial contribution to measurements.

IMT Measures the thickness of arterial walls using
ultrasound, commonly in the carotid arteries, to
assess subclinical atherosclerosis and
vascular health.

Non-invasive and well-established. Can track
disease progression over time. Elevated IMT is a
recognized marker of atherosclerosis and
endothelial dysfunction.

Does not provide a direct functional assessment
of the endothelium. Results may vary with
operator expertise and differences in
measurement protocols.
FMD, flow-mediated dilation; PAT, peripheral arterial tonometry; RHI, reactive hyperemia index; PWV, Pulse Wave Velocity; IMT, intima-media thickness.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1581681
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Hubska et al. 10.3389/fendo.2025.1581681
indicated by decreased vasodilation, as shown by lower FMD in the

brachial artery.

The benefits of the FMD technique encompass cost-efficiency,

non-invasiveness, accessibility, and the use of validated digital

software for automated analyses. However, achieving optimal

examination is technically demanding, and variations in

techniques and protocols can impact the consistency and

reliability of results. Moreover, factors such as diet, coffee

consumption, medication, vitamins, physical activity, tobacco use,

air temperature, and the menstrual cycle can influence a patient’s

FMD, potentially introducing confounding variables into the study

outcomes (28). Nonetheless, the brachial FMD method provides a

validated, non-invasive evaluation of endothelial function (76).

Wierzbicka-Chmiel et al. (84) reported that 19 patients with

CAH had decreased mean FMD compared with the control group.

Farghaly et al. (16) showed that FMD was impaired in 40 patients

with CAH and associated with elevated levels of neopterin and high

sensitivity C-reactive protein (hs-CRP), the markers of vascular

inflammation. According to Harrington et al. (85), impaired FMD

was observed in a group of 14 adolescents with CAH, similar to

obese control subjects. Given the limited number of studies

assessing FMD in CAH, it is noteworthy that impaired FMD is a

well-recognized indicator of endothelial dysfunction in other

conditions associated with increased cardiovascular risk, such as

type 2 diabetes (86–88), PCOS (89–91), obesity (92–94), heart

failure (95), and peripheral artery disease (96).
4.2 Peripheral arterial tonometry

The PATmethod, which is used in the EndoPAT device (Itamar

Medical Inc., Caesarea, Israel), has emerged as a newer than FMD,

non-invasive technology for measuring endothelial dysfunction.

The device uses non-invasive pneumatic probes placed on both

index fingers to measure pulsatile arterial volume changes at rest

and during reactive hyperemia, which occurs in response to

increased shear stress. A blood pressure cuff is placed over the

brachial artery and inflated to occlude blood flow, and the response

after deflation is recorded. The pulse wave amplitude (PWA) is

measured, and the reactive hyperemia index (RHI) result is

automatically calculated. The RHI is calculated as the ratio of the

average PWA during the reactive phase to the average amplitude

measured during the stabilization period. A suggested RHI

threshold for indicating endothelial dysfunction is <1.67 (97–99).

To adjust for systemic changes, this ratio is normalized using the

concurrent signal from the contralateral finger. The EndoPAT

device also assesses the peripheral augmentation index (AI),

which measures arterial stiffness, calculated based on PWA.

The main advantages of PAT technology include its easy

accessibility, operator independence, automated calculation, and

control by the contralateral arm (83). PAT operators can be trained

in a relatively short amount of time and do not require specialized

certification. A major limitation is the unclear understanding of its

pathophysiological basis (100). Unlike FMD, which evaluates
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macrovascular dilation, PAT assesses microvessel dilation. The

endpoint measured by PAT, PWA, is thought to reflect arterial

distensibility and venous capacitance in the digital vasculature,

suggesting that changes in PWA may indicate vascular function.

However, the structure of the digital vasculature is complex,

comprising both nutritive vessels and arteriovenous anastomoses.

The sympathetic nervous system primarily regulates the resting

vascular tone in these vessels, with NO playing a minimal role (101).

There are also concerns regarding the cutoff point for RHI,

particularly in relation to age. Jujic et al. (102) postulated that an

RHI result under 1.67, an early marker of endothelial dysfunction,

may not be a suitable measure of endothelial function in individuals

under 30 years of age. Their findings suggest that low RHI in young,

healthy individuals may not necessarily indicate true endothelial

dysfunction, but rather be an artefact of the limited ability of

healthy arteries to dilate post-occlusion (102).

Available data on the positive predictive value (PPV) and

negative predictive value (NPV) of the EndoPAT test are

heterogeneous and vary depending on the studied population and

clinical context. For instance, in the evaluation of erectile

dysfunction, the PPV was relatively low at 43%, whereas the NPV

reached 90%, indicating a greater utility in excluding rather than

confirming organic endothelial dysfunction (103). In contrast, when

EndoPAT was compared to the acetylcholine provocation test—the

gold standard for diagnosing coronary endothelial dysfunction—

the sensitivity was reported at 80% and specificity at 85%,

supporting its potential role in identifying coronary artery spasm

(99). These differences highlight the importance of interpreting

EndoPAT results within the appropriate clinical framework.

Despite several limitations, numerous studies in both adult and

pediatric literature reveal PAT’s satisfactory reproducibility and

reliability (104–106). To date, no study utilizing PAT technology in

individuals with CAH has been published. However, reduced RHI

values have been reported in patients with other conditions

associated with increased cardiovascular risk, including coronary

artery disease (107), type 2 diabetes (108, 109), and metabolic

syndrome (110). In contrast, the levels of RHI were consistent

with preserved endothelial function in both groups of patients with

PCOS, whether or not they had non-alcoholic fatty liver disease

(NAFLD) (111).
4.3 Pulse wave velocity

PWV is the proposed gold standard for arterial stiffness and an

indicator of early atherosclerosis (112), however, this technique can

also be applied to studies of endothelial function (81). The

predictive value of PWV for the occurrence of cardiovascular

diseases has been demonstrated in both the general population

and patients with various clinical conditions, including

hypertension (113, 114), type 2 diabetes (115), end-stage renal

disease (116), stroke (117), and coronary artery disease (118).

Measuring PWV involves the delay in the peak of the peripheral

pulse wave, typically in relation to the QRS complex recorded
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simultaneously using electrocardiography. Increased vessel stiffness

results in faster pulse wave propagation. The delay is determined by

measurements taken at two different body sites, such as the carotid

and femoral arteries (carotid-femoral PWV) or brachial and ankle

arteries (brachial-ankle PWV). These two PWVs aremost widely used

in clinical and research fields. By selecting specific pulse wave

recording points, it is possible to assess both central arterial stiffness

and peripheral stiffness, independent of aortic condition. In

endothelial studies, PWV measurements rely on the assumption

that administering vasodilators isolates the contribution of vascular

tone (119). PWV measurement is clinically beneficial due to

its simplicity, non-invasive nature, cost-effectiveness, and

reproducibility (120). Currently, no data are available on the PPV or

NPV of PWVmeasurement in the assessment of endothelial function.

Costa et al. (121) did not observe any significant differences in

PWV between 47 women with NCCAH and controls, nor across

different therapy groups (dexamethasone vs. contraceptive pills).

Similarly, Rosenbaum et al. (122) reported no significant differences

in PWV values between 84 patients with CAH (both CCAH and

NCCAH) and controls.

However, outside the CAH population, many studies have

recently revealed an association between increased PWV and

coronary atherosclerosis (123–125). In patients with PCOS, PWV

measured at the brachial artery was found to be significantly

elevated, although aortic PWV did not differ between the PCOS

and control groups (126). Moreover, Wang et al. (127) reported that

brachial-ankle PWV was associated with metabolic syndrome and

increased progressively with the number of metabolic syndrome

components in the general population.
4.4 Intima-media thickness

IMT is a measurement of the thickness of artery walls by

ultrasound to detect the presence or track the progression of

cardiovascular disease. In clinical practice, the IMT measurement

is most commonly performed in the carotid arteries. A common

carotid intima-media thickness (cIMT) measurement greater than

0.9 mm has been considered a significant factor influencing

cardiovascular prognosis (128). Since increased IMT is a widely

recognized sign of endothelial impairment (82) and a recognized

indicator of atherosclerosis (129), which is closely linked to

endothelial dysfunction, it can be used as an indirect measure of

endothelial condition. Several studies have linked endothelial

dysfunction with cIMT in patients with established atherosclerosis

or coronary artery disease (130, 131). Consistently, endothelial

dysfunction, defined as endothelium-dependent vasodilation

(EDV) ≤4.5%, has been associated with a sensitivity of 71%, a

specificity of 81%, and a PPV of 95% for the presence of coronary

artery disease, further supporting the role of early vascular changes

as markers of impaired endothelial function (130).

The exploration of IMT in relation to CAH has been the subject

of multiple studies (60, 122, 132–138), with results varying

significantly. Most of the studies (133–139) have reported notable

differences in IMT between patients with CAH and controls,
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however, some research has shown normal IMT values, similar to

those of control groups (60). The increase in cIMT is more

pronounced in adults compared to youth (56), however, only three

studies have examined adults (122, 133, 140), while the rest have

focused on pediatric and adolescent populations (60, 134–140).

Rosenbaum et al. (122) observed no significant difference between

cIMT values in 84 adult patients with CAH and controls. Kim et al.

(140) found that cIMT was associated with elevated androgen levels

in 20 adolescents and young adults with CAH, with a loss of sex

differences observed in female patients with excess androgen

exposure. However, the subjects with CAH did not have

significantly different cIMT values compared to controls. They also

found that cIMT was significantly greater in obese than in non-obese

individuals with CAH (140). Amr et al. (137) reported significantly

higher CIMT in 32 children with CAH, without differences between

the SV and SW forms of CCAH. Wasniewska et al. (138) observed

increased IMT at different sites in 18 adolescents with CAH, with no

differences between CCAH and NCCAH. Rodrigues et al. (136) has

found remarkably higher values of cIMT in 40 patients with CAH,

with no notable differences between those of normal weight and those

who were overweight. Özdemir et al. (139) observed that 25 children

with CAH exhibited higher IMT and decreased distensibility of the

aorta and carotid arteries compared to control subjects, indicating the

potential for early subclinical atherosclerosis. Akyürek et al. (134)

observed that cIMT was higher in hypertensive compared to

normotensive patients with CAH. Metwalley et al. (135) identified

a significant correlation between cIMT and markers of disease

management, including treatment duration and levels of 17-OHP

and testosterone, indicating that elevated androgen levels may

contribute to an increased risk of vascular dysfunction. Notably,

cIMT showed no correlation with the hydrocortisone dose

equivalent (135).
5 Novel biomarkers of endothelial
function in CAH

A broad spectrum of potential biomarkers linked to endothelial

function has been identified in reviews addressing cardiovascular

diseases (11, 141, 142), renal diseases (143), and peripheral vascular

diseases (144, 145). The most extensively studied include

endothelial progenitor cells (146, 147), endothelial microparticles

(148), microRNAs (149, 150), and adhesion molecules such as P-

selectin (151), E-selectin (152), ICAM-1 (153), and VCAM-1 (153),

along with molecules involved in the coagulation pathway,

particularly von Willebrand factor (154). Although the levels of

these well-characterized biomarkers have not yet been investigated

in individuals with CAH, some data are available on less extensively

studied or newly identified biomarkers, including neopterin (155),

osteoprotegerin (132, 156), fetuin A (157), homocysteine (158, 159),

leptin (42, 57, 160–163), adiponectin (60, 164), C-reactive protein

(CRP) (55, 165), hsCRP (38, 57, 135), interleukin 6 (IL-6) (55, 57,

121, 166), and circulating endothelial cells (CECs) (135) (Table 2).

Although biomarkers hold significant promise, standardized

chemistry tests and protocols for evaluating endothelial damage are
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not yet available and are currently limited to clinical research

applications. It has been suggested that the most effective

approach for assessing endothelial function could involve

combining tests for circulating endothelial biomarkers with

vasomotor response assessments (10). More recently, researchers

have been exploring a multibiomarker strategy that integrates both

traditional and novel circulating markers (168), offering a

potentially more robust tool for cardiovascular risk stratification

and therapy monitoring.
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5.1 Neopterin

Neopterin, a metabolite of guanosine triphosphate (GTP), is

synthesized by activated macrophages in response to stimulation by

g-interferon secreted by activated T-lymphocytes (169). Neopterin

promotes atherothrombosis by increasing tissue factor-mRNA

transcription and the expression of adhesion molecules ICAM-1

and VCAM-1 (170), however, it also suppresses TNF-a-induced
expression of MCP-1, ICAM-1, and VCAM-1, reducing adhesion to
TABLE 2 Biomarkers that play a significant role in endothelial dysfunction.

Marker Description Role in the endothelium Role in CAH

Neopterin A metabolite of
GTP, secreted by activated macrophages in
response to interferon-g.

Promotes adhesion molecule expression
(ICAM-1, VCAM-1) and contributes to
oxidative stress, impairing endothelial
NO bioavailability.

Elevated levels are associated with endothelial
dysfunction, contributing to vascular
inflammation and oxidative stress (16).

Osteoprotegerin A protein involved in bone metabolism by
inhibiting osteoclast activity and regulating
RANK/RANKL signaling.

Induces the expression of endothelial adhesion
molecules (VCAM-1, ICAM-1, E-selectin).

Linked to increased cardiovascular risk through
inflammatory pathways. Data regarding the
impact on bone mineral metabolism remain
inconclusive (132, 156, 167).

Fetuin-A A glycoprotein expressed in the liver that
modulates insulin resistance by binding to the
insulin receptor and inhibits
vascular calcification.

Prevents vascular calcification by inhibiting
calcium-phosphate precipitation but contributes
to endothelial dysfunction through insulin
resistance and inflammation.

Elevated levels are associated with androgen
excess and insulin resistance, potentially
exacerbating metabolic complications (154).

Homocysteine A sulfur-containing amino acid involved in
methionine and cysteine metabolism.

Increases ROS production, impairs NO
synthesis, and triggers pro-inflammatory
cytokine release, exacerbating endothelial
activation and dysfunction.

Elevated levels are associated with increased
cIMT, higher left ventricular mass index, and
prolonged mitral deceleration time, indicating a
potential risk for subclinical atherosclerosis and
left ventricular dysfunction in children (159).
Conversely, lower concentrations may be linked
to cardiovascular protection (158).

Leptin A hormone secreted by adipocytes. Promotes endothelial dysfunction through
oxidative stress, inflammation, and vascular
smooth muscle proliferation.

Elevated levels are linked to metabolic
disturbances, including higher BMI, insulin
resistance, obesity, and body fat percentage.
(32, 38, 60, 160).

Adiponectin An adipokine with anti-inflammatory, anti-
fibrotic, and antioxidant properties that
regulates glucose and lipid metabolism and
insulin sensitivity.

Reduces inflammation, increasing NO
bioavailability, and preventing oxidative stress.

Increased levels may act as a compensatory
mechanism to mitigate metabolic and vascular
risks in pediatric patients (60).

PAI-1 A protein that regulates fibrinolysis by
inhibiting tissue and urokinase
plasminogen activators.

Inhibits fibrinolysis, promotes thrombosis, and
enhances vascular inflammation.

PAI-1 levels positively correlate with visceral
and subcutaneous adipose tissue (38).

CRP An acute-phase protein produced by the liver in
response to inflammation.

Induces pro-inflammatory signaling in
endothelial cells, upregulates adhesion
molecules (ICAM-1, VCAM-1), and decreases
NO production, worsening
endothelial dysfunction.

Elevated CRP and hsCRP levels, especially in
poorly controlled CAH, indicate systemic
inflammation and increased cardiovascular risk
(16). A positive correlation between hsCRP
levels and the amount of visceral and
subcutaneous adipose tissue in adolescents and
young adults has been observed (38).

IL-6 A pleiotropic cytokine involved in immune
regulation, inflammation, and vascular function,
influencing endothelial NO bioavailability and
oxidative stress.

Increases endothelial permeability, upregulates
adhesion molecules, reduces NO bioavailability,
and promotes ROS production.

Elevated levels may be linked to dexamethasone
therapy and inflammation (121).

CECs Mature, non-hematopoietic cells shed into the
bloodstream following vascular injury or during
normal endothelial turnover.

CECs are sensitive biomarkers of
endothelial damage.

Higher levels may be linked to subclinical
atherosclerosis and low-grade vascular
inflammation in children with CAH (135).
GTP, guanosine triphosphate; PAI-1, plasminogen activation inhibitor 1; ROS, reactive oxygen species; cIMT, carotid intima-media thickness; CRP, C-reactive protein; hs-CRP, high sensitivity
C-reactive protein; IL-6, interleukin 6; CECs, circulating endothelial cells.
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FIGURE 1

Molecular mechanisms underlying endothelial dysfunction. IL-6 and TNF-a induce eNOS dysfunction, leading to reduced NO bioavailability and
vasoconstriction. ROS contribute to oxidative stress, further impairing eNOS activity and promoting chronic inflammation. ROS also upregulate
adhesion molecules (ICAM-1, VCAM-1), facilitating monocyte recruitment. This cascade promotes the adhesion and migration of lymphocytes across
the endothelial barrier, further activating an inflammatory state. Platelet aggregation is simultaneously enhanced, increasing the risk of thrombosis.
Collectively, these processes drive endothelial dysfunction and contribute to the progression of cardiovascular disease. eNOS, endothelial nitric
oxide synthase; ICAM-1, intercellular adhesion molecule 1; IL-6, interleukin-6; NO, nitric oxide; ROS, reactive oxygen species; TNF, tumor necrosis
factor; VCAM-1, vascular cell adhesion molecule 1.
FIGURE 2

The interplay between CAH, the pathophysiology of comorbidities, and endothelial dysfunction. The figure illustrates the interconnected
mechanisms through which CAH contributes to an increased risk of endothelial dysfunction. Hormonal imbalances in CAH promote obesity, insulin
resistance, diabetes, and cardiovascular diseases. Glucocorticoid therapy, essential for managing cortisol deficiency in CAH, may further exacerbate
endothelial dysfunction and increase cardiovascular risk. Obesity and insulin resistance contribute to the development of hypertension, which, in
turn, accelerates endothelial damage and cardiovascular complications. The bidirectional interactions among these factors create a vicious cycle,
ultimately predisposing individuals with CAH to an elevated risk of cardiovascular morbidity.
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endothelial cells, and inhibiting macrophage foam cell formation

and smooth muscle cell proliferation (171). Neopterin levels

correlate with ROS production and its toxic effects (172), making

neopterin an indirect marker of oxidative stress during cell-

mediated immune responses. Its vascular role in atherosclerotic

processes, either beneficial or deleterious, is still under investigation.

Farghaly et al. (16) reported that patients with CAH had higher

neopterin levels compared to healthy controls. These elevated

neopterin levels were significantly associated with endothelial

dysfunction, as demonstrated by brachial artery FMD measurements

(16). Given the limited research on neopterin in CAH, it is relevant to

note that increased plasma neopterin levels have also been observed in

various other conditions characterized by vascular or systemic

inflammation, including atherosclerosis (173, 174), coronary artery

disease (175), hypertension (176), and ischemic stroke (177).
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5.2 Osteoprotegerin

Osteoprotegerin is a member of the tumor necrosis factor (TNF)

receptor superfamily, playing a crucial role in regulating bone

metabolism (178). It is a glycoprotein that prevents the

differentiation and activity of osteoclasts by binding to the receptor

activator of nuclear factor-kappa B ligand (RANKL), thereby

inhibiting RANKL from interacting with its receptor, RANK. This

blockage of the RANK/RANKL pathway leads to decreased osteoclast

formation and reduced survival and activation of mature osteoclasts

(179, 180). Through these mechanisms, osteoprotegerin contributes

to preserving the balance between bone resorption and formation

(179). Additionally, TNF-related apoptosis-inducing ligand (TRAIL),

another member of the TNF superfamily, also interacts with

osteoprotegerin (181).
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FIGURE 3

Pathophysiological links between hormonal dysregulation in CAH, endothelial dysfunction, and potential therapeutic targets. CAH, due to 21-
hydroxylase deficiency, leads to impaired cortisol synthesis and compensatory ACTH overproduction, resulting in adrenal hyperplasia, androgen
excess, and—particularly in salt-wasting forms—aldosterone deficiency. These hormonal disturbances may contribute to endothelial dysfunction
through mechanisms such as increased oxidative stress, chronic inflammation, arterial stiffness, and impaired flow-mediated dilation. Therapeutic
strategies focus on restoring hormonal balance, providing vascular protection, addressing metabolic dysregulation, and utilizing novel biomarkers
and non-invasive vascular assessments to monitor cardiovascular risk. 17-OHP, 17-hydroxyprogesterone; ACE inhibitors, angiotensin-converting
enzyme inhibitors; ACTH, adrenocorticotropic hormone; ARBs, angiotensin II receptor blockers; CRP, C-reactive protein; eNOS, endothelial nitric
oxide synthase; FMD, flow-mediated dilation; GLP-1, glucagon-like peptide-1; hsCRP, high sensitivity C-reactive protein; ICAM-1, intercellular
adhesion molecule 1; IL-6, interleukin-6; IMT, intima-media thickness; NO, nitric oxide; PAI-1, plasminogen activator inhibitor-1; PAT, peripheral
arterial tonometry; PWV, pulse wave velocity; ROS, reactive oxygen species; TNF-a, tumor necrosis factor alpha; VCAM-1, vascular cell adhesion
molecule 1.
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Apart from its role as a regulator of bone metabolism,

osteoprotegerin has recently emerged as a significant factor in in

the pathogenesis of atherosclerosis and cardiovascular diseases

(182, 183), amplifying the adverse effects of inflammation and

several traditional risk factors such as hyperlipidemia, type 2

diabetes, and hypertension (184). Furthermore, genetic studies

have shown associations of osteoprotegerin gene polymorphisms

with cardiovascular disease (185, 186). Notably, osteoprotegerin

binds directly to RANKL, interfering with its interaction with the

RANK receptor on the endothelium and thereby regulating vascular

calcification (187, 188). It can act as a receptor for TRAIL, inhibiting

the effects of TRAIL on the up-regulation of eNOS and down-

regulation of ROS production. In addition, osteoprotegerin also

activates the renin-angiotensin system and induces vascular

endothelial growth factors, leading to inflammatory and fibrotic

processes (189, 190). It has also been demonstrated to induce the

expression of VCAM-1, ICAM-1, and E-selectin on endothelial

cells, promoting leukocyte adhesion, which is an early step in

endothelial cell dysfunction (191).

Although the link between osteoprotegerin concentration and

cardiovascular risk in patients with CAH has not been evaluated yet,

evidence suggests an association between osteoprotegerin and bone

metabolism in people with CAH (132, 156, 167). It was found that

osteoprotegerin levels were significantly higher in children with

CAH compared to controls, indicating a compensatory mechanism

against increased bone resorption in CAH (156). In contrast,

another study showed that children with CAH had significantly

lower serum osteoprotegerin levels (132), similar to a case report in

which a lower serum osteoprotegerin level was found in a child with

CAH (167).

Given the limited and inconsistent data on osteoprotegerin in

CAH, insights from other conditions characterized by endothelial

dysfunction may offer a broader perspective on the potential

vascular implications of altered osteoprotegerin levels. Several

studies have demonstrated a significant association between

osteoprotegerin concentrations and endothelial dysfunction,

particularly in patients with hyperuricemia (192), type 2 diabetes

mellitus (193), and HIV infection (194). However, studies

examining individuals with diabetes (195) or PCOS (196), have

reported no correlation between osteoprotegerin levels and

alterations in endothelial function.
5.3 Fetuin-A

Fetuin-A is a heterodimer plasma glycoprotein of the cystatin

superfamily of protease inhibitors, predominantly expressed in the

liver (197). It contributes to insulin resistance by binding to the

tandem fibronectin type 3 domains in the extracellular b-subunit of
the insulin receptor, inhibiting its activity in peripheral tissues. This

binding occurs away from the a-subunits, where insulin binds, with

both insulin and fetuin-A targeting the receptor’s ectodomain;

however, while insulin activates the receptor’s intrinsic tyrosine

kinase activity, fetuin-A deactivates it (198).
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Increased fetuin-A levels are associated with various metabolic

health factors such as insulin sensitivity (199), glucose tolerance

(200), lipid concentrations (201), and inflammatory cytokine levels

(202). However, fetuin-A plays an important role in preventing

cardiovascular calcification by binding to small calcium-phosphate

complexes, preventing their expansion, aggregation, and

precipitation (203). It also promotes phagocytosis of extracellular

vesicles and apoptotic cells by vascular smooth muscle cells and

macrophages, which helps reduce both apoptosis and calcification

in conditions with elevated extracellular mineral ion concentration

in tissues (204).

Kurnaz et al. (157) observed elevated levels of fetuin-A in 56

patients with CCAH, compared to a control group, along with

increased insulin levels and disrupted insulin signaling.

Furthermore, the high levels of fetuin-A and insulin substances

showed a positive correlation with free and total testosterone. The

authors postulated that these findings could be linked to androgen

excess and prolonged or high-dose glucocorticoid therapy in people

with CAH (157). They suggested that the presence of androgen

receptors in liver cells may allow excess androgens to stimulate the

overproduction of fetuin-A and insulin, potentially contributing to

insulin resistance (157, 205).

The potential involvement of fetuin-A in the metabolic

disturbances observed in CAH is further supported by studies in

other conditions characterized by insulin resistance and increased

cardiometabolic risk. Higher circulating levels of fetuin-A have been

linked to obesity (206) and its related conditions, including type 2

diabetes (207), metabolic syndrome (201, 206), PCOS (208) (209),

and NAFLD (200). Liu et al. (208) observed that patients with PCOS

had higher circulating fetuin-A levels compared to healthy women.

Furthermore, higher fetuin-A levels correlated positively with BMI,

waist-to-hip ratio, LDL cholesterol and triglyceride concentrations,

and other indicators (208). Enli et al. (209) also observed higher

fetuin-A levels in patients with PCOS, which correlated positively

with insulin, the Homeostasis Model Assessment of Insulin

Resistance (HOMA-IR), and the free androgen index.
5.4 Homocysteine

Homocysteine, an amino acid containing a sulfhydryl group, is

an intermediate product in the metabolism of methionine and

cysteine that affects many cellular biological processes, such as

cellular methylation status, cell metabolism, and cell injury (210).

Increased concentration of fasting plasma homocysteine (higher

than 15 mmol/L) is defined as hyperhomocysteinemia (211), and is

associated with various neurodegenerative, metabolic, and

cardiovascular disorders (83, 212–218).

Hyperhomocysteinemia contributes to endothelial dysfunction

through several mechanisms. First, it stimulates the overproduction

of ROS, leading to oxidative stress, which impairs the bioavailability

of NO and results in impaired blood vessel relaxation (219). Second,

high homocysteine levels induce the release of pro-inflammatory

cytokines and other inflammatory mediators, which contribute to
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the activation of endothelial cells and promote vascular

inflammation (220). Lastly, hyperhomocysteine can impair the

activity of eNOS (221).

Metwalley et al. (159) observed elevated homocysteine levels in

36 children with CAH, particularly among those with poor disease

control. This elevation correlated with increased cIMT, left

ventricular mass index, and mitral deceleration time, indicating a

potential risk for subclinical atherosclerosis and left ventricular

dysfunction (159). Krysiak et al. (222) found that the mean

homocysteine concentration was significantly higher in patients

with NCCAH compared to the control group. This difference

remained significant after adjusting for age and BMI. In contrast,

Falhammar et al. (158) reported lower homocysteine levels in male

patients with CAH under 30 years of age compared to controls,

suggesting a potential association with cardiovascular protection.

However, it was proposed that the differing results could be

attributed to variations in age, sample size, ethnicity, dietary

habits, genetic factors, research methods, and the different steroid

treatments (223). Bayraktar et al. found no statistically significant

difference in mean homocysteine concentrations between 50

patients with CAH and the control group.

Beyond CAH, hyperhomocysteinemia has been widely studied

in other conditions characterized by metabolic dysfunction and

increased cardiovascular risk. Elevated serum homocysteine

concentrations have been demonstrated in women with PCOS

(224–226), in obese and overweight patients with hypertension,

and in normotensive obese individuals (227). Furthermore, a study

by Vaya et al. (228) reported that homocysteine levels in morbidly

obese patients were associated with increased waist circumference

and insulin resistance.
5.5 Leptin

Leptin is a pleiotropic hormone secreted by adipocytes that

plays a role in various biological processes, such as angiogenesis,

vascular function, inflammatory response, bone homeostasis, and

reproduction (229). Increased serum leptin levels are directly

associated with higher adipose tissue mass and are a significant

contributor to obesity and its metabolic complications.

The reports on the role of leptin are contradictory in CAH. A

study by Charmandari et al. (42) demonstrated significantly

elevated leptin concentrations in 18 young patients (2–12 years

old) with CCAH, compared to controls, regardless of BMI and sex.

Leptin levels were inversely correlated with epinephrine and free

metanephrine concentrations, suggesting a reduced inhibitory effect

of catecholamines on leptin secretion (42). Additionally, the group

with CAH exhibited a loss of gender dimorphism in leptin

concentrations, possibly due to androgen excess in female

patients (42). Increased leptin levels and strong correlations

between leptin, obesity (32, 38, 60), and HOMA-IR (60) have

been observed in studies including both patients with CCAH and

NCCAH. Interestingly, Borges et al. (160) demonstrated

significantly elevated leptin secretion, along with higher BMI and

body fat percentage, exclusively in male patients with CAH
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compared to controls, while no differences were observed in

female patients. In contrast, several studies have reported leptin

concentrations in patients with CAH to be comparable to those of

controls, despite higher BMI and body fat (57, 161–163). However,

Volkl et al. (161) observed significantly lower concentrations of

soluble leptin receptors in 51 individuals with CAH compared to

the control group, suggesting an increased level of free (unbound)

serum leptin.

In addition to findings in CAH, numerous studies have

investigated the role of hyperleptinemia in cardiovascular

diseases, including congestive heart failure, myocardial infarction,

hypertension, and coronary artery disease (230, 231), highlighting

its potential contribution to vascular dysfunction. It has been found

that elevated plasma leptin levels are associated with coronary

artery calcification (232) and with higher serum cholesterol,

triglycerides, and CRP levels in patients with coronary artery

disease (233). In contrast to these findings, several other studies

have suggested that leptin may exert protective effects on blood

vessels in obese individuals (234).
5.6 Adiponectin

Adiponectin, an adipokine secreted by adipocytes, is a well-

known homeostatic factor that regulates glucose levels, lipid

metabolism, and insulin sensitivity through its anti-inflammatory,

anti-fibrotic, and antioxidant effects (235). In addition to

adipocytes, adiponectin is also expressed in other tissues,

including liver parenchyma cells (236), myocytes (237), and

epithelial cells (238). The effects of adiponectin are primarily

mediated through adiponectin receptors (AdipoR1 and AdipoR2)

(239), and also via T-cadherin receptor (240). Adiponectin acts

directly on the liver, skeletal muscle (239), and vasculature,

including endothelial cells (241), smooth muscle cells (240), and

pericytes (242).

Increasing evidence suggests that adiponectin plays a protective

role in the cardiovascular system; it was found that adiponectin is

inversely correlated with an increased cardiovascular risk, and

hypo-adiponectinemia is associated with coronary artery disease

and hypertension (243), left ventricular hypertrophy (244), and a

greater risk of myocardial infarction (245). Furthermore,

adiponectin is linked to the regulation of energy balance,

enhanced angiogenes is , anti- inflammatory responses ,

antiapoptotic effects, and the prevention of interstitial fibrosis

(246, 247). It protects the myocardium against oxidative stress

and damage from ischemia/reperfusion, and it reduces cardiac

remodeling caused by pressure overload or following a

myocardial infarction (248, 249).

Adiponectin levels are known to be decreased in conditions

such as obesity, insulin resistance, and type 2 diabetes (250), and the

administration of glucocorticoids and androgens has been shown to

reduce adiponectin levels (251, 252). However, the role of

adiponectin in the cardiometabolic risk of patients with CAH

remains unclear. Völkl et al. (164) reported higher adiponectin

concentrations in 51 individuals with CAH compared to controls,
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regardless of sex, with no observed changes in serum leptin or the

adiponectin/leptin ratio. Adiponectin levels were negatively

correlated with BMI, serum dehydroepiandrosterone, and

testosterone, but no clear relationship was found with

hydrocortisone or fludrocortisone dosage (164). Similarly, Mooij

et al. (60) observed a trend towards elevated adiponectin levels in 27

patients with CAH, compared to controls, which may suggest that

adiponectin has a protective role in these patients.
5.7 Plasminogen activation inhibitor 1

Plasminogen activation inhibitor 1 (PAI-1) is the primary

physiological inhibitor of urokinase plasminogen activator (u-PA)

and tissue-plasminogen activator (tPA) and is a member of the

serpin superfamily (serine proteinase inhibitors). Its most

important function is to regulate plasminogen activator activity,

thereby controlling plasmin formation. Consequently, PAI-1 plays a

vital role in systemic homeostasis, contributing to the balance of the

coagulation and fibrinolytic processes (253).

Data on PAI-1 levels in individuals with CAH and their

relationship with cardiovascular and metabolic disorders are

limited. Mooij et al. (55) found no significant differences in PAI-1

levels between patients with CAH and controls. Kim et al. (38)

observed a positive correlation between PAI-1 levels and the

amount of visceral and subcutaneous adipose tissue, both of

which were higher in patients with CAH compared to controls.

These findings suggest a potential link between PAI-1 and adverse

metabolic profiles in CAH, although further research is needed to

clarify its role in this population.

Evidence from other conditions shows that elevated PAI-1

levels are linked to the development of cardiovascular and

metabolic disturbances, including atherosclerosis (254), type 2

diabetes, obesity, metabolic syndrome (255–257), and PCOS (258,

259). Moreover, increased levels of glucose (260), insulin (261) and

its precursors (262), and free fatty acids (263) have been

demonstrated to promote PAI-1 expression or to decrease the

degradation rate of PAI-1 mRNA (264), further contributing to a

prothrombotic and hypofibrinolytic state.
5.8 C-reactive protein

CRP is produced by the liver in response to inflammation and is

regulated, in particular, by IL-6 and TNF-a. It is considered a

prototypic marker of inflammation. CRP contributes to

atherosclerosis by inducing pro-inflammatory signaling in

monocytes and increasing cytokine production. In endothelial

cells, it upregulates cell adhesion molecules, MCP-1, endothelin-1,

and PAI-1, while decreasing prostacyclin release and tPA activity

(265). Additionally, CRP has been shown to reduce eNOS activity

and lower NO levels (165).

HsCRP is measured using high-sensitivity tests, which enable

the detection of very low concentrations, making it valuable for

assessing cardiovascular risk in seemingly healthy individuals. A
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body of evidence supports the utility of this marker in evaluating

cardiovascular risk [reviewed by Ridker et al. (266)]. Nevertheless,

although CRP has shown consistency as a cardiovascular risk

biomarker across large prospective studies, with relative risk

ratios approaching those of classical cardiovascular risk factors, its

contribution to the current evaluation model of endothelial

dysfunction remains minor (267).

Despite the clear impact of inflammation on the development of

endothelial dysfunction, data on inflammatory markers in CAH are

scarce. In a study of 40 adult patients with CAH, hsCRP levels were

shown to be markedly elevated compared to controls, and they were

even more pronounced in patients with poorly controlled disease

(16). Similar findings have been reported in 32 children (135) and

21 adolescents (57) with CAH. Kim et al. (38) observed a positive

correlation between hsCRP levels and the amount of visceral and

subcutaneous adipose tissue in 28 adolescents and young adults

with CAH. However, a Dutch study involving a cohort of 27 adult

patients with CAH showed no differences in the levels of CRP or

other inflammatory markers, such as IL-6 and IL-18, compared to

healthy controls (55).
5.9 Interleukin 6

IL-6 is a pleiotropic cytokine involved in the regulation of

immune responses by recruiting macrophages and lymphocytes to

sites of injury or infection, acting as both a pro-inflammatory and

anti-inflammatory agent. It also plays a role in a plethora of other

functions, ranging from shaping the blood-brain barrier

permeability to synovial inflammation, hematopoiesis, embryonic

development, and vascular permeability (268–270). As IL-6 is

involved in the development of autoimmunity and plays a crucial

role in sepsis, targeting the IL-6 axis is an approved

pharmacological option in a number of autoimmune disorders.

IL-6 is synthesized locally at the inflammation site from where it is

transported via the bloodstream and exerts its action on the liver,

immune cells, and endothelium [reviewed by Tanaka et al. (271)].

In hepatocytes, its signaling leads to the synthesis of, in particular,

CRP, serum amyloid A, antitrypsin, hepcidin, fibrinogen,

thrombopoietin, and complement cascade elements (272). In the

vessels, IL-6 not only acts directly on endothelial cells to increase

the production of cytokines and chemokines, thereby activating the

coagulation cascade, but also enhances vascular permeability by

inducing VE-cadherin disassembly and promotes clot formation by

stimulating tissue factor expression on monocytes (270). Moreover,

IL-6 directly affects eNOS activity and increases vascular

superoxide, which rapidly inactivates NO, thereby reducing NO

bioavailability (273). IL-6 contributes to atherosclerosis by

upregulating angiotensin II type 1 receptor expression (274),

while increased binding of angiotensin II in turn increases IL-6

signaling (270, 275).

The unique role of IL-6 in shaping cardiovascular risk is

demonstrated by experiments in mice with conditional

overexpression of IL-6. These experiments demonstrated

significantly impaired endothelium-dependent aortic relaxation,
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ROS formation in the aorta, and vascular dysfunction, all of which led

to a markedly decreased survival rate (276). Due to its action on

endothelial cells, IL-6 is considered both a marker of cardiovascular

risk and a predictor of long-term cardiovascular mortality (277, 278).

According to Ariyawatkul et al. (57), IL-6 was unaltered in the

cohort of 21 adolescents with CAH when compared to their healthy

peers. Similarly, Delai et al. (166) found no significant differences in

IL-6 levels between 31 patients with NCCAH and controls,

suggesting that IL-6 may not directly contribute to insulin

resistance in this population. Costa et al. (121) reported higher

serum IL-6 levels in a group of 28 women with NCCAH treated

with dexamethasone compared to 19 women treated with

contraceptive pills. However, no statistically significant difference

was found in IL-6 serum levels when comparing either group to the

control group (121).
5.10 Circulating endothelial cells

CECs are mature, non-hematopoietic cells shed into the

bloodstream following vascular injury or during normal

endothelial turnover (279). Under physiological conditions, they

are present in minimal numbers; however, elevated CEC counts

have been documented across a variety of cardiovascular,

oncological, and inflammatory diseases, underscoring their

potential as sensitive biomarkers of endothelial damage. The

enumeration and phenotyping of CECs—primarily via advanced

multiparameter flow cytometry protocols—offer a non-invasive

“liquid biopsy” approach to assess vascular health (280, 281).

Unlike traditional endothelial markers, such as soluble adhesion

molecules or von Willebrand factor, CECs directly reflect structural

endothelial injury rather than secondary activation processes (282).

In a case-control study by Metwalley et al. (135), 32 children with

CAH exhibited significantly higher CEC counts compared to healthy

controls, alongside increased CA-IMT and elevated hsCRP levels.

These findings support the presence of subclinical atherosclerosis and

low-grade vascular inflammation in CAH. Moreover, CEC levels

correlated positively with markers of androgen excess (testosterone,

17-OHP) and with measures of cardiac dysfunction, suggesting that

chronic hormonal imbalance and insufficient disease control may

exacerbate endothelial damage (135).

The observed increase in CECs in CAH is consistent with

findings from other clinical contexts, where elevated CEC counts

have been established as markers of endothelial injury and disease

severity. Increased CEC levels have been reported in cardiovascular

conditions such as acute coronary syndromes (283), heart failure

(284), and deep vein thrombosis (285). Similarly, increased CEC

counts have been documented in patients with solid tumors (e.g.,

colorectal, breast, small-cell lung cancer) (286–288) and

hematological malignancies such as multiple myeloma (289, 290),

correlating with tumor progression and response to therapy.

Inflammatory and autoimmune diseases, including systemic lupus

erythematosus (291, 292) and small-vessel vasculitis (293), are also

associated with higher CEC counts, often indicating active disease

and worse prognosis.
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6 Omics-based tools in understanding
endothelial dysfunctions

In parallel with classical biomarkers, omics-based technologies,

including genomics, proteomics, and metabolomics, are emerging

as powerful tools for the discovery of novel biomarkers of

endothelial dysfunction, particularly relevant in CAH. Genomic

studies have identified polymorphisms in genes regulating vascular

tone, inflammation, and oxidative stress [reviewed by Kim et al.

(294)], which may modify individual cardiovascular risk in CAH.

Proteomic analyses facilitate the identification of endothelial-

derived proteins associated with oxidative stress and vascular

remodeling (295, 296), whereas metabolomics provides insights

into metabolic alterations affecting endothelial health, including

disruptions in arginine metabolism and lipid oxidation (297).

Although omics technologies have demonstrated great promise

in various cardiovascular and metabolic diseases, their application

to the assessment of endothelial function in patients with CAH has

not yet been explored. Despite their advantages, such approaches

remain primarily within the domain of scientific research. Their

clinical implementation is currently limited by factors such as high

costs, technical complexity, and the need for specialized equipment

and expertise, which restrict their use to selected research centers.

Consequently, omics-derived biomarkers are not routinely used in

clinical practice, and further research and validation in well-

characterized CAH cohorts are necessary before broader

application can be considered.
7 Therapeutic strategies to enhance
cardiovascular health in CAH

Current glucocorticoid replacement in CAH remains non-

physiological, often leading to androgen excess or glucocorticoid

overtreatment. To address these issues, new approaches aiming to

replicate circadian cortisol rhythms have been developed, including

modified-release hydrocortisone (MR-HC, Efmody/Chronocort),

immediate-release tablets with a sustained-release core (SR-HC,

Plenadren), and continuous subcutaneous hydrocortisone infusion.

MR-HC improves biochemical control of 17OHP but has

shown inconsistent effects on blood pressure, fat mass, and

glucose metabolism; early morning cortisol peaks may transiently

worsen insulin sensitivity (298–300). Interestingly, a 6-month MR-

HC therapy in patients with SW-CAH resulted in a reduction of

plasma renin activity and an increase in sodium levels, suggesting

more effective mineralocorticoid action, likely due to decreased

concentrations of 17OHP, a known mineralocorticoid receptor

antagonist (298). SR-HC, although effective in primary and

secondary adrenal insufficiency, appears suboptimal in CAH due

to insufficient pre-awakening cortisol rise and weak androgen

suppression (301, 302). Continuous hydrocortisone infusion more

closely mimics physiological cortisol rhythms and enables dose

reduction; however, data on its metabolic effects are limited, and its

clinical use will likely remain restricted to highly selected patients
frontiersin.org

https://doi.org/10.3389/fendo.2025.1581681
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Hubska et al. 10.3389/fendo.2025.1581681
due to its complexity (303). Emerging therapeutic options,

including CRF-1 antagonists (crinecerfont and tildacerfont), have

shown potential to reduce adrenocorticotropic hormone (ACTH)

and androgen levels, enabling possible glucocorticoid dose

reduction, although their long-term impact remains to be

established (304–306).

In parallel, adjunctive therapies aiming to counteract androgen

excess, such as oral contraceptives or spironolactone, play a role in the

management of CAH, although they introduce additional metabolic

and cardiovascular concerns requiring careful consideration (307).

Combined hormonal contraceptives have been associated with an

increased risk of venous thromboembolism and hypertension (308),

however, they may assist in regulating menstrual cycles and reducing

androgenic symptoms in individuals with CAH. Spironolactone,

commonly used in women with androgen excess, improves

cardiovascular outcomes in various cardiac conditions. Nevertheless,

its cardiometabolic safety in the context of androgen excess remains

unestablished, and its use in CAH may be limited due to the frequent

coexistence of aldosterone deficiency (309, 310).

Given the elevated cardiometabolic risk in patients with CAH,

especially those predisposed to developing diabetes, interventions

commonly used in the general population are considered applicable,

although evidence specific to CAH remains limited. Intensive lifestyle

modifications—encompassing dietary improvements, increased

physical activity, smoking cessation, and weight management—are

recommended as first-line measures (311). Isolated case reports have

demonstrated the beneficial effects of metformin (312, 313), topiramate

(314), and bariatric surgery (315, 316) on weight reduction, visceral fat

mass, and insulin sensitivity in patients with CAH. Newer antiobesity

medications (liraglutide, semaglutide, tirzepatide, and naltrexone/

bupropion) have not yet been studied in patients with CAH.

Statin therapy is considered safe and effective for lipid

management in CAH, demonstrating significant reductions in

total and LDL cholesterol (317, 318) and potential antiandrogenic

effects (318). Despite theoretical concerns regarding statin- and

glucocorticoid-induced myopathy (319, 320), no such cases have

been reported in CAH, likely due to the use of moderate doses.

Management of hypertension in CAH should prioritize

angiotensin-converting enzyme (ACE) inhibitors and angiotensin-

receptor blockers (ARBs) due to their cardioprotective properties,

beneficial effects on endothelial function, and ability to improve

insulin sensitivity (321, 322). Thiazide diuretics, b-blockers, and
calcium channel blockers can be used as adjuncts, though b-
blockers should preferably be third-generation agents (nebivolol,

carvedilol) with more favorable metabolic profiles (311, 323, 324).
8 Conclusion

Endothelial dysfunction plays a critical role in the cardiovascular

comorbidities observed in individuals with CAH due to 21OHD.

The complex interplay of disease-related factors, such as androgen

excess, metabolic disturbances, and glucocorticoid therapy,

contribute to the heightened cardiovascular and metabolic risk in
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this population. The pathophysiological mechanisms driving

endothelial dysfunction in CAH are multifaceted, involving

oxidative stress, inflammation, and altered vascular tone. Although

various diagnostic techniques—such as FMD, PAT, PWV, and IMT

measurements—offer valuable insights into endothelial function, the

optimal in vivo assessment method remains an area of ongoing

investigation (Figure 3).

Emerging biomarkers of endothelial dysfunction, including

neopterin, osteoprotegerin, fetuin-A, homocysteine, leptin,

adiponectin, PAI-1, CRP, IL-6, and CECs, provide additional

understanding of the pathophysiology of endothelial damage.

Elevated levels of these biomarkers have been documented in

populations with cardiovascular risk factors, indicating their

potential for early detection and monitoring of endothelial

dysfunction in CAH. Despite their promise, several limitations

impede their translation into routine clinical practice. The lack of

standardized chemical assay protocols for evaluating endothelial

damage, high cost, and technical complexity restrict their current

application to research settings primarily. Furthermore, many

endothelial biomarkers exhibit limited sensitivity and specificity,

often overlapping with markers of inflammation, platelet activation,

and vascular smooth muscle dysfunction. Small sample sizes in

clinical studies further constrain the reliability of these biomarkers,

necessitating large-scale, multicenter trials to validate their clinical

utility. Some findings remain controversial or inconclusive,

highlighting the need for standardized approaches to address

discrepancies in the literature. Additionally, the impact of

metabolic and cardiovascular comorbidities on endothelial

biomarkers remains insufficiently explored, particularly in the

context of multiple coexisting conditions, which may have

additive or interactive effects on biomarker levels.

Until stronger evidence becomes available, strategies for

cardiovascular risk reduction in CAH should follow existing

recommendations for high-risk populations, focusing on aggressive

management of hypertension, dyslipidemia, disturbances in glucose

metabolism, and obesity. Pharmacological strategies to improve

cardiovascular health in CAH include optimized glucocorticoid

replacement, adjunctive antiandrogen therapies, insulin sensitizers,

statins, and renin–angiotensin system inhibitors, although disease-

specific evidence remains limited.

Nevertheless, the present analysis is constrained by several

important methodological limitations that warrant careful

consideration. Most of the studies included in this review are

observational, often retrospective in nature, and are limited by

small sample sizes. Additionally, various sources of bias, such as

sampling bias, recall bias, observation bias, and confounding bias,

further weaken the strength of the available evidence and

complicate the interpretation of findings related to endothelial

dysfunction in CAH. Future research is needed to further

investigate novel biomarkers of endothelial dysfunction and to

refine diagnostic strategies, potentially integrating endothelial

function assessment, to enhance cardiovascular risk evaluation

and management. Particularly, well-designed, prospective studies

conducted on large cohorts and across different age groups are
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necessary to better understand biomarker dynamics over time and

their predictive value in clinical practice. Longitudinal cohort

studies are needed to track changes in endothelial function over

time and to evaluate the effects of factors such as age, treatment

duration, and adherence to medical regimens. Moreover, the

application of omics-based technologies holds promise for the

discovery of novel endothelial biomarkers in CAH, potentially

enhancing risk stratification and personalized management. Such

efforts are crucial to improving long-term cardiovascular outcomes

in individuals with CAH. Special attention to vascular health is

essential for children with CAH, as atherosclerotic processes

typically initiate in childhood and progress more rapidly in high-

risk populations (80).
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