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Objective: Diabetes mellitus (DM) is a prevalent chronic disease, with diabetic

nephropathy (DN) being a significant complication. Early detection of DN is

critical for effective management. Current diagnostic methods, such as urinary

albumin-to-creatinine ratio (uACR) and estimated glomerular filtration rate

(eGFR), have limitations. Metabolomics offers a promising alternative by

identifying specific metabolic signatures associated with DM and DN. This

study aimed to ident i fy potent ia l metabol ic b iomarkers of DN

using metabolomics.

Methods: A total of 100 participants were recruited, including 20 healthy controls

and 80 DM patients, who were classified into three groups based on uACR:

normoalbuminuria (DM), microalbuminuria (DN-1), and macroalbuminuria (DN-

2). Metabolomic profiles were analyzed using ultra-high performance liquid

chromatography-tandem mass spectrometry (UPLC-MS/MS).

Results: Results showed 74, 86, and 107 differentially expressed metabolites in

the DM, DN-1, and DN-2 groups, respectively, compared to healthy controls.

Compared to the DM group, DN-1 had 70 differential metabolites (55

upregulated, 15 downregulated), and DN-2 had 91 (81 upregulated, 10

downregulated). Between DN-1 and DN-2, 71 differential metabolites were

identified (57 upregulated, 14 downregulated). Key metabolites such as lactate,

L-ornithine, L-tryptophan, L-alanine, adenine, and cholecalciferol emerged as

potential biomarkers and therapeutic targets. Venn diagram analysis identified 36

common differential metabolites across all groups. KEGG enrichment analysis

highlighted significant involvement of amino acid biosynthesis and arginine and

proline metabolism pathways in DN.
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Conclusion: In conclusion, this study provides valuable insights into potential

metabolic markers and mechanisms for early identification and prediction of DN

progression, which may aid in developing more accurate diagnostic tools and

targeted therapies for DN.
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1 Introduction

Diabetes mellitus (DM) is a common chronic disease that affects

millions of people worldwide, resulting in poor health outcomes

and escalating healthcare costs (1). Diabetic nephropathy (DN), one

of the most severe complications of DM, is the leading cause of end-

stage kidney disease (ESKD) and is now recognized as the fourth

leading cause of death globally (2). Studies have shown that DN

develops in 30-40% of individuals with diabetes, and over 50% of

ESKD cases are attributed to DN (3–7). Therefore, timely

identification of DN is crucial for effective prevention

and management.

However, current clinical diagnosis and staging of DN primarily

rely on the urine albumin-to-creatinine ratio (ACR) and estimated

glomerular filtration rate (eGFR). Albuminuria is considered a

highly specific marker for diagnosing kidney disease because it

can indicate kidney damage even before a decline in glomerular

filtration (8). However, clinically, renal injury in DN patients may

have been ongoing for a considerable duration prior to significant

changes in urinary albumin levels. Furthermore, normoalbuminuric

diabetic kidney disease (NADKD) is prevalent. Additionally,

reversing the condition after the onset of proteinuria is relatively

challenging. Therefore, the sensitivity and specificity of urinary

albumin, particularly microalbuminuria, are limited, posing

challenges for early diagnosis and appropriate classification of

chronic kidney disease (CKD) in clinical settings.

In the past decade, high-throughput metabolomic techniques

have provided critical insights into the preconditions and

pathophysiological pathways of diabetes, facilitating their

widespread application in the clinical diagnosis of DN (4, 9–11).

Liquid chromatography-mass spectrometry (LC-MS)-based

metabolomics has become a prevalent tool for monitoring

metabolic changes in diabetes and predicting disease progression.

Numerous metabolomic studies have demonstrated that serum

metabolites are significantly altered in patients with DN and type

2 diabetes mellitus (T2DM), including sugar metabolites and

derivatives, amino acids (such as aromatic amino acids, glycine,

glutamine, and glutamate), alpha-hydroxybutyrate (a-HB),

hexadecanoic acid (C16:0), linolelaidic acid (C18:2n6t), and

linoleic acid (C18:2n6c) (10, 12–14). These alterations in serum

metabolites enhance our understanding of the metabolic
02
mechanisms underlying T2DM onset and progression and aid in

identifying early potential metabolic markers (15–17).

The identification of definitive markers for accurately

estimating the stages of DN in patients is crucial. Early detection

and timely intervention can significantly mitigate the risk of kidney

injury in DN patients. Consequently, enhancing the detection

capability for DN and identifying more sensitive and specific

biomarkers are essential to facilitate early diagnosis and predict

disease progression. In this study, we utilized ultra-performance

liquid chromatography-tandem mass spectrometry (UPLC-MS/

MS) to analyze the metabolomic profiles of healthy individuals

and those with T2DM, aiming to identify novel metabolic markers

indicative of DN in diabetic patients. Additionally, we investigated

the correlation between differential metabolites as potential

predictors of DN progression.
2 Materials and methods

2.1 Ethics statement

The written informed consent was obtained from all subjects,

and the study design was approved by the Ethics Committee of the

First Affiliated Hospital of Henan University of Science and

Technology. The ethical approval number for this study is 2024-

0585. The registration number at the Chinese Clinical Trial Registry

(ChiCTR) is ChiCTR2400093494.
2.2 Sample collection

A total of 100 participants (61 males and 39 females) were

included in this study, consisting of 20 healthy volunteers and 80

patients with T2DM. The average age was 53.62 ± 13.24 years. All

samples were from the first affiliated hospital of Henan university of

science and technology. Inclusion criteria included (1): age ≥ 18

years (2); clinical diagnosis of DM, which was in line with the

American Diabetes Association (ADA) criteria (18). Exclusion

criteria included (1): age <18 years (2); T1DM; (3) suffering from

diseases that affected urinary albumin secretion and eGFR, such as

benign and malignant tumors, hypertension, and urogenital
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infections; (4) kidney transplantation; (5) menstruating, pregnant,

and lactating women. According to the KDIGO guidelines, patients

with type 2 diabetes were divided into three groups: DM (uACR <30

mg/g), DN-1 (uACR 30–300 mg/g), and DN-2 (uACR >300 mg/g)

(19). Healthy volunteers were used as control in this study. Blood

samples were collected the next morning after fasting. Blood

samples were centrifuged to prepare serum samples, which were

then frozen at -80°C.
2.3 Metabolomic analysis

2.3.1 Serum sample pretreatment
All serum samples were treated as previously described (20).

The samples were thawed in ice water bath and was mixed by

vortexing for 30s. Two hundred fifty microliters of water and 1200

µL acetonitrile-methanol (1:1, containing isotope internal

standards) (CNW Technologies) were added into 50 µL sample

and were vortexed for 30 s. After sonication in ice-water bath for

15min, samples were incubated at -40°C for 2 h. Then the samples

were centrifuged at 12000 rpm and 4°C for 15 min, 1200 µL

supernatant of each sample was transferred to a new Eppendorf

tube and was dried with a centrifugal concentrator. One hundred

twenty microliters acetonitrile (60%) was added into the Eppendorf

tube to reconstitute the dried samples. The Eppendorf tube was

vortexed until the powder was completely dissolved, followed by

centrifugation at 12,000 rpm for 15 min at 4°C.

2.3.2 UPLC–MS/MS
The supernatant of each sample (60-70 µL) was transferred to

glass vial for LC-MS/MS analysis. Mixture of standard metabolites

were prepared as QC sample. The LC separation was carried out

using an UPLC System (1290, Agilent), equipped with a Waters

Atlantis Premier BEH Z-HILIC Column. Mobile phase A consisted

of a mixture of H2O and acetonitrile (9:1), containing 10 mmol/L

ammonium formate, while mobile phase B consisted of a mixture of

H2O and acetonitrile (1:9), also containing 10 mmol/L ammonium

formate. The auto-sampler temperature was set at 4°C and the

injection volume was 1 µL. AB Sciex QTrap 6500 plus mass

spectrometer was applied for assay development. Typical ion

source parameters were as follows: IonSpray Voltage: +5500V/-

4500V, Curtain Gas: 35 psi, Temperature: 400°C, Ion Source Gas 1:

50 psi, Ion Source Gas 2: 50psi.

Raw data files generated by LC-MS/MS were processed with

SCIEX Analyst Work Station Software (1.7.3). Metabolites

quantification was analyzed with BIOTREEBioBud (2.0.3).

Multivariate analysis, including fold change, principal component

analysis (PCA) and orthogonal partial least-squares discriminant

analysis (OPLS-DA) and variable importance in the projection

(VIP) values, were performed on the SIMCAV18.0.1 software

package (Sartorius Stedim Data Analytics AB, Umea, Sweden).

Heatmap of hierarchical clustering analysis was conducted in R

(ggplot2) 3.3.5 package (Vienna, Austria).
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2.4 Statistical analysis

SPSS25.0 was used for statistical analysis. The continuous

variables of clinical characteristics among the study population

were presented as means ± standard deviations for normally

distributed data, while categorical variables were reported as

frequencies. The chi-squared test was used for categorical

variables. To ensure the validity of the student’s t-test, we

rigorously verified the underlying assumptions, including the

normality of distribution and homogeneity of variance between

groups. For data conforming to both normal distribution and

homogeneity of variance, Student’s t-tests were conducted. In

cases where data exhibited normal distribution but heterogeneity

of variance, Welch’s t-tests were applied. For data that did not meet

the assumption of normal distribution, non-parametric tests

(Mann-Whitney tests) were utilized. One-way ANOVA tests were

conducted for data that adhered to normal distribution and

homogeneity of variance. For data that exhibited normal

distribution but heterogeneity of variance, Welch’s ANOVA tests

were performed, with multiple comparisons corrected using the

Dunnett T3 method. Non-parametric tests (Kruskal-Wallis tests)

were applied to data that did not conform to normal distribution,

with Dunn’s test used for post-hoc corrections. P <0.05 was

considered statistically significant.

The metabolites with VIP >1 and P <0.05 were considered as

significantly changed metabolites. Area Under Curve with values

0.8 displayed a very high prediction effect of identified metabolites

on disease.
3 Result

3.1 Clinical data of population

Clinical data characteristics of 100 subjects were shown in

Table 1. Twenty individuals were healthy, with an average age of

43.95 ± 8.47 years. Of these, ten were male and ten were female. As

for patients with T2DM, the average age was 48.6, 57.2, 61.1 years

among three groups, respectively. Data showed that there was a

significant difference in age among control group, DM group, DN-1

group and DN-2 group (P < 0.05), and DN-2 group was

significantly older than the others. Furthermore, there was no

significant difference in sex among the four groups (P < 0.05)

(Table 1). There were significant differences in drinking and

smoking habits among the three groups (P < 0.05), suggesting

that these factors may serve as independent contributors to DN.

There was a significant difference in UACR among three groups (P

< 0.05), the mean levels were 2.22 mg/g, 118.04 mg/g and 2183.37

mg/g, respectively. Furthermore, statistically significant differences

were observed in u-AlB, CREA, LDH, and eGFR among the three

disease groups (Table 1). The mean levels of u-ALB, CREA and

LDH were the highest in the DN-2 group, the mean eGFR of the

DN-2 patients was 49.96 mL/min/1.73m2. This suggested that the
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kidney damage is severely and renal function was significantly

impaired. In addition, the duration of diabetes and age at diabetes

onset in patients with DN was significantly difference than that in

patients with diabetes (P < 0.05); the average of the latter was 7.78

years and 40.96 years. In terms of blood glucose, HbA1c, ALT,

URCA, CHO, LDL, HDL and BMI, there was no significant

difference between patients with diabetes and patients with DN (P

> 0.05, Table 1). However, the contents of blood glucose in three

diabetes group were significantly higher than that in healthy group

(P < 0.05) (Table 1). Compared to control group, the levels of TG,

AST were significantly higher in DN-2 group (P < 0.05).
3.2 Alterations in serum metabolic profiles
between disease and health groups

Metabolomics analysis is a systems biology approach that

provides comprehensive metabolic information from biological

samples. This method has been widely applied in the diagnosis
Frontiers in Endocrinology 04
and treatment of diabetes and its complications. To assess the

metabolic profile changes between DM, DN, and normal health

individuals, we conducted quantitative targeted metabolomics

analysis using serum samples from each group. In the PCA plot,

no significant separation was observed between the DM and control

groups, but there were differences in the distribution trends of the

two groups (Figure 1B). Additionally, we observed a clear

separation between the DN-1 and DN-2 groups and the control

group, with the separation of the DN-2 group being more

pronounced (Figures 1C, D). This indicates that there are

significant changes in the metabolic profiles between each disease

group and the normal group, particularly in the DN groups

(Figures 1A-D). Compared to the control group, there were 74

different metabolites in the DM group, among which 51 were

obviously up-regulated and 23 were obviously down-regulated.

Compared to the control group, there were 86 different

metabolites in the DN-1 group, among which 71 were obviously

up-regulated and 15 were obviously down-regulated. Compared to

the control group, there were 107 different metabolites in the DN-2
TABLE 1 Clinical characteristics of enrolled patients.

clinical features Control(n=20) DM(n=30) DN-1(n=30) DN-2(n=20) P value

Age (years) 43.95 ± 8.47 48.6 ± 10.7 57.2 ± 14.95D 61.1± 10.73D P<0.05

Sex (male/female) 10/10 20/10 15/15 10/10 0.502

Drinking (yes/no) – 14/16 21/9 2/18 P<0.05

Smoking (yes/no) – 15/15 11/19 3/17 P<0.05

u-AlB (mg/L) – 7.09 ± 4.21 329.77 ± 427.89D 1793.98 ± 1140.03D◇ P<0.05

uACR (mg/g) – 2.22 ± 3.46 118.04 ± 76.82D 2183.37 ± 2284.33D◇ P<0.05

CREA (umol/L) – 55.27 ± 10.02 71.73 ± 33.01D 171.8 ± 122.18D◇ P<0.05

LDH (U/L) – 131.27 ± 12.82 180.87 ± 39.95D 225.45 ± 56.23D◇ P<0.05

eGFR (mL/min/1.73m2) – 115.15 ± 10.46 95.44 ± 29.14D 49.96 ± 43.85D◇ P<0.05

Blood glucose (mmol/L) 5.04 ± 0.34 7.36 ± 3.07◆ 7.99 ± 5.97◆ 8.99 ± 2.05◆ P<0.05

HbA1c (%) – 8.75 ± 2.15 9.08 ± 3.06 8.99 ± 2.05 0.527

BMI (kg/m2) 23.8 ± 2.48 23.19 ± 2.71 24.07 ± 5.46 24.07 ± 6.56 0.748

Age at diabetes
onset (years)

– 40.96 ± 10.59 44.23 ± 11.88 49.7 ± 10.48D P<0.05

Diabetes duration (years) – 7.78 ± 6.87 12.99 ± 7.65D 11.41 ± 6.46 P<0.05

ALT (U/L) 18.95 ± 7.35 19.8 ± 11.32 20 ± 14.76 19.73 ± 14.84 0.648

AST (U/L) 19.57 ± 5.62 16.83 ± 5.03 20.33 ± 10.9 20.57 ± 7.61◆ P<0.05

UREA (mmol/L) 4.29 ± 1.08 5.8 ± 1.59 7.17 ± 3.84 11.54 ± 6.99◆ P<0.05

URCA (µmol/L) 319.35 ± 70.40 301.6 ± 98.63 348.33 ± 100.24 394.84 ± 147.05 0.053

CHO (mmol/L) 4.99 ± 0.85 4.33 ± 1.0 4.65 ± 2.04 5.4 ± 2.07 0.414

TG mmol/L) 1.17 ± 0.37 1.99 ± 1.6 2.42 ± 2.29 2.23 ± 1.22◆ P<0.05

LDLC (mmol/L) 2.67 ± 0.6 2.44 ± 0.75 2.40 ± 0.78 2.82 ± 1.16 0.631

HDLC (mmol/L) 1.28 ± 0.21 1.07 ± 0.3 1.04 ± 0.39 1.11 ± 0.38 0.092
BMI, body mass index; eGFR, estimated glomerular filtration rate; uALB, urinary microalbumin; CREA, creatinine; HbA1c, glycated hemoglobin; CHO, cholesterol; TG, total triglycerides;
HDLC, high-density lipoprotein; LDLC, low-density lipoprotein; uACR, urine albumin/creatinine ratio; ALT, alanine aminotransferase; AST, aspartate aminotransferase; LDH, lactate
dehydrogenase; URCA, uric acid; D Compared with DM group, P < 0.05; ◇ Compared with DN-1 group, P < 0.05; ◆Compared with control group, P < 0.05.
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group, among which 95 were obviously up-regulated and 12 were

obviously down-regulated. Utilizing the Draw Venn Diagram

platform for the intersection screening of differential metabolites

among four groups, we identified 36 common differential

metabolites in the three disease groups compared to the normal
Frontiers in Endocrinology 05
group (Figure 1E, Supplementary Table S1). The heatmap illustrates

the expression profiles of these differentially expressed metabolites

across all groups (Figure 1F). Among the metabolites that exhibited

a high correlation with DN were lactic acid and L-ornithine, and

their expression levels across different groups are depicted in
FIGURE 1

Metabolites composition and differences between disease and control groups. (A) PCA analysis of control, DM, DN-1 and DN-2 group; (B) PCA
analysis of control vs. DM; (C) PCA analysis of control vs. DN-1; (D) PCA analysis of control vs. DN-2; (E) Venn diagram screening for common
differential metabolites; (F) Heat map of the 36 differential metabolites; G-I. KEGG enrichment analysis of control vs. DM, control vs. DN-1 and
control vs. DN-2; J-K. Expression levels of differential metabolites in different groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Figures 1J, K, respectively. KEGG enrichment analysis revealed the

top 15 differentially enriched metabolic pathways between each

disease group and control group. Notably, the shared differential

metabolic pathways among all disease groups compared to the

control group included “Biosynthesis of amino acids,” “Arginine

and proline metabolism,” and “Glycine, serine, and threonine

metabolism” (Figures 1G, H).
3.3 Alterations in serum metabolic profiles
between DN and DM groups

To understand the differences in metabolites between DN and

DM, we statistically analyzed each DN group against the DM group.

PCA showed notable changes in metabolites for both DN-1 and

DN-2 compared to DM (Figures 2A, B). The metabolic profiling

results revealed that, compared to the DM group, the DN-1 group

exhibited 70 differential metabolites, comprising 55 upregulated

and 15 downregulated metabolites. Moreover, the DN-2 group

displayed 91 differential metabolites, with 81 upregulated and 10

downregulated metabolites. We employed a Venn diagram analysis

to identify 50 common differentially expressed metabolites in DN-1

and DN-2 groups relative to the DM group (Figure 2C). The

detailed information regarding these metabolites is provided in

Supplementary Table S2. The volcano plot illustrates the expression

profiles of the 50 differentially expressed metabolites across the

three groups (Figure 2D). KEGG enrichment analysis revealed the

top 15 significantly altered pathways in the comparisons of DM vs.

DN-1 and DM vs. DN-2, respectively (Figures 2E, F). Notably, the

commonly affected pathways included “Biosynthesis of amino

acids”, “Cysteine and methionine metabolism” and “beta-Alanine

metabolism” Furthermore, three metabolites associated with DN—

L-tryptophan, L-alanine and adenine—were identified, and their

expression levels in each group were visualized using violin plots

(Figures 2G-I).
3.4 Alterations in serum metabolic profiles
between DN-1 and DN-2 groups

To investigate whether metabolic profiles varied among groups

with different degrees of renal damage, we analyzed the

metabolomic data from the DN-1 and DN-2 groups. In the PCA

plot, while the DN-2 group did not fully separate from the DN-1

group, distinct distribution trends were observed between them

(Figure 3A). A total of 71 differentially expressed metabolites were

identified in the DN-2 group compared with the DN-1 group,

including 57 up-regulated metabolites and 14 down-regulated

metabolites. Information regarding the top 20 metabolites that

exhibited statistically significant differences in the studies is

detailed in Supplementary Table S3. A heatmap illustrated the top

20 significantly differential metabolites identified when comparing

the DN-1 group to the DN-2 group (Figure 3D). Among these,

adenine and cholecalciferol, two metabolites associated with DN,

were selected for further analysis, and their expression levels across
Frontiers in Endocrinology 06
the groups are presented in the Figures 3B, C. KEGG enrichment

analysis revealed the top 15 differential pathways, including

“Protein digestion and absorption”, “mTOR signaling pathway”

and “Phenylalanine metabolism” among others (Figure 3E).
4 Discussion

The present study provides valuable insights into the

demographic and biochemical characteristics of patients with

T2DM and DN. The significant differences observed in age,

smoking, drinking, and biochemical markers such as uACR, u-

AlB, CREA, and eGFR between the control, DM, and DN groups

highlight the progressive nature of kidney damage in DN. These

findings underscore the importance of early detection and

intervention in managing T2DM to prevent the onset and

progression of DN.
4.1 Metabolic alterations in DM

Metabolomics has been extensively utilized as a powerful

technique to identify potential biomarkers for disease diagnosis

and to elucidate the underlying mechanisms of disease occurrence

(17, 21–25). To identify the metabolic targets between patients with

diabetes, diabetic nephropathy, and healthy controls, this study

employed quantitative targeted metabolomics. The results

demonstrated that the metabolic profiles of both diabetic and

diabetic nephropathy patients were markedly distinct from those

of healthy controls. Lactate, as the end product of glycolysis, plays a

crucial role in maintaining acid-base balance and energy

metabolism within the body. Our data revealed significantly

elevated lactate levels in the diabetic groups compared to the

control group (Figure 1J), with a trend toward higher lactate

levels in the DN-1 group relative to the DM group. Extensive

research has established that patients with diabetic nephropathy

exhibit abnormal lactate metabolism, and there is a significant

correlation between urinary lactate levels and renal tubular injury

(26). In DN, alterations in renal energy metabolism, such as

mitochondrial dysfunction and impaired fatty acid oxidation,

significantly influence disease progression (27, 28). An abnormal

increase in lactate levels, potentially resulting from renal metabolic

disorders, may contribute to the progressive renal injury observed

in DN (26). Other study has demonstrated that lactic acid can drive

epithelial-mesenchymal transition of DN through H3K14la/KLF5

pathway, and aggravate renal tubular fibrosis in patients with DN

(29). The findings of these studies are in high consistency with the

results of the present study, underscoring the critical role of lactate

metabolism in the progression of diabetic kidney injury. In the

present study, L-ornithine levels were significantly elevated in the

disease group relative to the control group (Figure 1K). As a key

amino acid in the urea cycle, L-ornithine plays an essential role in

ammonia detoxification by facilitating its conversion to urea,

thereby reducing blood ammonia levels (30). In DN, the impaired

filtration and excretion functions of the kidney may affect the
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efficiency of the urea cycle, consequently influencing the

metabolism of L-ornithine (31). The progression of DN is closely

linked to a chronic inflammatory response. As a precursor of nitric

oxide (NO), arginine plays a crucial role in regulating vascular tone

and modulating immune responses. In DN, aberrant arginine
Frontiers in Endocrinology 07
metabolism can result in diminished NO production, potentially

impairing renal blood flow and exacerbating the inflammatory state

(32). L-ornithine is a metabolite of arginine and may indirectly

influence the production of inflammatory mediators by modulating

arginine metabolism. Notably, our metabolomic enrichment
FIGURE 2

Metabolites composition and differences between diabetic nephropathy group and diabetic group. (A) PCA analysis of DM vs. DN-1; (B) PCA analysis of DM
vs. DN-2; (C) Venn diagram screening for common differential metabolites; (D) Heat map of the 50 differential metabolites; E-F. KEGG enrichment analysis
of DM vs. DN-1 and DM vs. DN-2; G-I. Expression levels of differential metabolites in different groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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analysis revealed significant alterations in arginine and proline

metabolism as well as arginine biosynthesis in each disease group

relative to the control group (Figures 1G-I). These findings indicate

that L-ornithine could impact arginine metabolism, resulting in

decreased NO production, which in turn affects renal blood supply,

exacerbates the inflammatory response and interstitial fibrosis, and

ultimately contributes to kidney injury. Additionally, these results

suggest that lactate and L-ornithine may serve as important

biomarkers and therapeutic targets for DM and DN.
4.2 Key metabolites specific to DN

To further investigate potential metabolic differences between

DN and DM patients, the metabolomic profiles of the DN-1 and

DN-2 groups were compared with those of the DM group. The

results demonstrated that the metabolic signatures of DN patients

were markedly distinct from those of DM patients, particularly in

amino acid metabolism. Tryptophan, an essential aromatic amino

acid, plays a multitude of critical physiological roles in the human

body. Our study demonstrated that L-tryptophan levels were

significantly lower in DN groups compared to DM group

(Figure 2G). Numerous studies have highlighted the importance

of L-tryptophan in the early detection of DN. In a metabonomic

analysis of serum and urine samples from 286 diabetic patients,

Solini et al. found that the combination of c-glycotryptophan,

pseudouridine, and acetyl-L-threonine was associated with a

lower glomerular filtration rate (GFR) and enhanced the

predictive value of clinical parameters (33). By analyzing the

serum metabolite levels of 52 diabetic patients with chronic
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kidney disease across various stages, Zhou et al. discovered that

tryptophan levels were significantly correlated with a rapid decline

in GFR. Specifically, tryptophan levels decreased as renal lesions

progressed, suggesting its potential as a prognostic marker for DN

(34). These findings are consistent with our results. Furthermore,

our findings revealed that L-alanine levels were significantly

reduced in the DN groups relative to the DM group (Figure 2H).

Co-administration of L-alanine and L-glutamine was observed to

enhance renal function in alloxan-induced diabetic rats (35). In a

separate study, L-alanine supplementation was demonstrated to

significantly improve blood glucose levels and biochemical

parameters, restore tissue antioxidant levels, and enhance liver

and kidney function in alloxan-induced diabetic rats (36). L-

alanine promoted insulin secretion in INS-1E cells across a range

of concentrations, with the effect becoming more pronounced at

higher doses. These findings suggest that L-alanine has a dose-

dependent positive influence on insulin secretion function (37).

These findings suggest that L-alanine may be implicated in the

development and progression of DN through multiple mechanisms,

including alterations in amino acid metabolism and improvements

in renal function and insulin secretion. In the present study,

adenine levels were significantly elevated in the DN group

compared to the DM group (Figure 2I). Our data indicate that

adenine plays a crucial role in the progression of DN. For instance,

adenine has been shown to induce kidney damage in mouse and rat

models of chronic kidney disease (38, 39). Renal pathological

changes induced by adenine administration encompass

glomerular sclerosis, renal tubular atrophy, interstitial fibrosis,

and inflammatory cell infiltration (40, 41). The expression

patterns of these metabolites across groups are detailed in
FIGURE 3

Metabolites composition and differences between groups with different degrees of renal injury. (A). PCA analysis of DN-1 vs. DN-2; (B, C). Expression
levels of differential metabolites in different groups; (D). Heat map of the top 20 differential metabolites; (E). KEGG enrichment analysis of DN-1 vs.
DN-2. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Supplementary Table S3. These findings indicate that L-tryptophan,

L-alanine, and adenine could serve as potential biomarkers for the

early diagnosis of DN.
4.3 Key metabolites specifically associated
with the progression of DN

To further investigate the metabolic markers that could predict

DN progression, we conducted an in-depth analysis of the metabolic

profiles of the DN-1 and DN-2 groups, revealing significant

alterations in several metabolites. Previous studies have confirmed

that adenine effectively activates the mTOR pathway (42), and

inhibiting mTOR can prevent renal lesions induced by adenine (43,

44). Sharma et al. utilized spatial metabolomics and single-cell

transcriptomics of human kidney biopsies to demonstrate that

adenine is specifically localized in the diseased areas of blood

vessels, renal tubules, and glomeruli in diabetic patients. This

finding suggests that adenine may serve as a potential endogenous

pro-fibrotic factor. By stimulating the mTOR pathway, adenine could

enhance the production of extracellular matrix by renal tubular cells,

which is closely associated with the progression of DN. These results

indicate that adenine may be a promising biomarker for DN (45),

aligning with our study’s findings. Our study revealed that the mTOR

pathway was significantly dysregulated in the DN-2 group compared

to the DN-1 group (Figure 3E), potentially due to the markedly

elevated adenine levels observed in the DN-2 group (Figure 3B).

Interestingly, in the present study, cholecalciferol levels were

significantly lower in the DN-2 group compared to the DN-1

group (Figure 3C), which may be associated with the progression

of DN. Top differential metabolites are shown in Figure 3D. Previous

research has indicated that cholecalciferol exerts a protective effect on

renal function (46, 47). Agarwal et al. conducted a double-blind,

randomized, placebo-controlled trial to evaluate the safety and

efficacy of oral paricalcitol in patients with stage 3–4 secondary

chronic kidney disease. The study randomized participants to

receive either oral paricalcitol or placebo. Patients with

nephropathy who received paricalcitol demonstrated a significant

reduction in proteinuria excretion (48). These findings indicate that

adenine and cholecalciferol hold promise as potential biomarkers for

predicting the progression of DN and novel therapeutic agents for

mitigating the progression of DN.

Overall, this study systematically identified several key

metabolites with potential for the early diagnosis of DM and its

complication, DN. Specifically, six metabolites were found to

exhibit significant alterations in both DM and DN: lactic acid, L-

ornithine, L-tryptophan, L-alanine, adenine, and cholecalciferol.

Among these, lactic acid and L-ornithine may serve as potential

biomarkers for the early detection of DM. Further analysis revealed

that changes in L-tryptophan, L-alanine, adenine, and

cholecalciferol were independent of the underlying pathological

state of DM and were strongly associated with the onset and

progression of DN. Notably, L-tryptophan and L-alanine could
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potentially act as biomarkers for the early diagnosis of DN, whereas

adenine and cholecalciferol not only hold promise as indicators for

predicting DN progression but may also represent novel therapeutic

targets for mitigating disease advancement. Collectively, these

metabolites can be considered specific markers reflecting kidney

injury and provide critical insights for the early intervention of DN.
4.4 Limitations

However, our study has some limitations. While we utilized

quantitative targeted metabolomics to analyze metabolites, resource

and technical constraints prevented us from implementing

stringent quality control measures to further validate our results.

We acknowledge the importance of external validation to enhance

the reliability and robustness of our findings. Therefore, future

studies will aim to externally validate our results using independent

cohorts, and we plan to conduct surveys with larger sample sizes to

further confirm our findings. Additionally, the average age of

patients with DN was significantly higher than that of the healthy

control group. This primarily reflects the inherent nature of DN as a

chronic progressive disease, where the duration of the disease

naturally extends as the condition worsens. With increasing

severity of DN, both the disease course and patient age tend to

increase correspondingly. The “disease course-age” association is a

well-documented phenomenon in chronic disease cohort studies,

which poses significant challenges for achieving perfect age

matching between DN patients and healthy controls in cross-

sectional studies. Future research employing prospective designs

or incorporating more precisely age-matched control groups could

help further validate these findings.
5 Conclusion

This study utilized a comprehensive metabolomics approach to

elucidate metabolic alterations in patients with T2DM and DN

compared to healthy controls. The results demonstrated significant

differences in the metabolic profiles of these groups, particularly in

key metabolites such as lactate and L-ornithine, which were

markedly elevated in T2DM and DN patients. These metabolites

are involved in critical pathways including energy metabolism and

the urea cycle, suggesting their potential utility as biomarkers for

early detection and progression prediction of DM. Additionally, the

study identified specific amino acids like L-tryptophan and L-

alanine, adenine, and cholecalciferol, whose altered levels in DN

patients may serve as indicators of disease severity and progression.

The dysregulation of these metabolites in DN highlights the

importance of metabolic interventions in managing the disease.

These findings not only enhance our understanding of the

pathophysiology of DN but also provide a foundation for

developing novel diagnostic tools and therapeutic strategies aimed

at mitigating the progression of DN complications.
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